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Abstract: In order to continuously respond to a changing environment and support self-
generating cognition and behaviour, neural communication must be highly flexible and 
dynamic at the same time than hierarchically organized. While whole-brain fMRI measures 
have revealed robust yet changing patterns of statistical dependencies between regions, it is 
not clear whether these statistical patterns —referred to as functional connectivity— can 
reflect dynamic large-scale communication in a way that is relevant to cognition. For 
functional connectivity to reflect actual communication, we propose three necessary 
conditions: it must span sufficient temporal complexity to support the needs of cognition 
while still being highly organized so that the system behaves reliably; it must be able to adapt 
to the current behavioural context; and it must exhibit fluctuations at sufficiently short 
timescales. In this paper, we introduce principal components of connectivity analysis (PCCA), 
an approach based on running principal component analysis on multiple runs of a time-
varying functional connectivity model to show that functional connectivity follows low- yet 
multi-dimensional trajectories that can be reliably measured, and that these trajectories meet 
the aforementioned criteria to index flexible communication between neural populations and 
support moment-to-moment cognition. 

Introduction 

The widespread existence of weak correlations between neurons in the brain is a well-known 
observed phenomenon (Averbeck et al., 2006; Averbeck and Lee, 2004; Cohen and Kohn, 
2011; Nirenberg and Latham, 2003). An important question in theoretical neuroscience is 
about the mechanistic role of these correlations; particularly, whether or not these 
correlations convey information by themselves, i.e. as a separate “channel” above and 
beyond the firing rates and precise temporal ordering of the neuron’s firing events. If that 
were the case, then these correlations should be able to modulate their magnitude and 
configuration dynamically according to the external circumstances and the internal state of 
the animal (Cohen and Kohn, 2011; Nienborg and Cumming, 2009). Here, we ask a similar 
question at the macroscopic level using functional magnetic resonance imaging (fMRI) from 
humans, which, given its spatial coverage, might be better suited than the microscopic level 
to index higher-level aspects of cognition (Dehaene and Naccache, 2001). It is known that 
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patterns of voxel activations can encode for a variety of task-related variables (Hasson et al., 
2009) and cognitive states (Haynes and Rees, 2006; Shine et al., 2019a). Furthermore, it has 
been shown that session-average patterns of covariance (or functional connectivity, FC) 
between regions are phylogenetically conserved (Lu et al., 2012), map the functional 
specialization of the different brain areas (Margulies et al., 2016), and can reflect clinical (Fox 
and Greicius, 2010) and psychological variations across the population (Finn et al., 2015; 
Smith et al., 2015). The question here is whether these (second-order) patterns of covariation 
can reflect actual long-range communication, and therefore relate to the current cognitive 
state of the subject and its perpetual, self-organized change —i.e. above and beyond the 
(first-order) voxel activation patterns. We reasoned that at least three necessary conditions 
must be met: (i) covariances across regions should exhibit temporal modulations of enough 
complexity to be able to support the flexibility of long-range neural communication and 
cognition; (ii) the nature of these modulations must be able to adapt to the behavioural 
context; and (iii) these modulations should span reasonably short timescales (compatible for 
example with the timescales of a thought process). 

To find whether these conditions are met in real data, we introduce principal components of 
connectivity analysis (PCCA), an approach that combines multiple hidden Markov model 
(HMM) estimates from randomized initializations, and principal component analysis (PCA) to 
extract the latent temporal structure across HMM runs. PCCA revealed a multidimensional 
axis of temporal covariation in macroscopic FC that fits all the above requirements. Along this 
axis, robust trajectories of cross-region covariation unfold reliably across several dimensions 
(first condition) and at relatively short timescales (third condition). While the spatial 
connectivity patterns of these dimensions generalise across the population of subjects, the 
estimated temporal trajectories were subject-specific and were strongly modulated by the 
behavioural condition of the experiment (second condition). These results suggest that the 
estimated low-dimensional FC trajectories can not only be measured reliably, but suit the 
requirements to index dynamic interregional communication. 

Results 

We analysed fMRI data (repetition time, TR = 0.72s) from the Human Connectome Project 
(HCP; van Essen et al., 2013) from 100 subjects across three behavioural conditions: resting-
state (rest), working memory (WM) task, and motor task. We developed PCCA, a new 
approach based on PCA and multiple runs of the HMM to identify reliable patterns of time-
varying FC (Fig. 1). We used the resting-state data projected onto 25 independent 
components (ICs), and applied the group 25-IC parcellation from this dataset to extract the 
time series of the WM and motor task datasets (Fig. 1A). Then, we used the HMM to represent 
the data as a series of state activations, where each state represents a pattern of FC (Vidaurre 
et al., 2017); here, the HMM was set up to have K = 12 states (Fig. 1B). Note that the HMM is 
a probabilistic model whose inference estimates both the state activation probabilities (i.e. 
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the temporal parameters) and the state parameters (i.e. the spatial parameters) 
simultaneously and in a data-driven way. Critically, such parameter inference depends on an 
optimization procedure that typically starts from a random initialization. This means that 
different runs of the algorithm may result in somewhat different results. Here, we used this 
variability to our advantage by running the algorithm multiple times (on each behavioural 
condition separately) and performing PCA on the resulting state time series (Fig. 1C). By doing 
so, we reduced the dimensionality of the data into a small set of orthogonal principal 
components (PCs) that capture the dominant fluctuations in FC, where each PC has an 
associated covariance matrix. The PC-specific covariance matrices were computed as 
weighted averages of the HMM state covariance matrices (Fig. 1D); each weight, β, (one per 
HMM state and PC component) was calculated as the variance of the corresponding PC time 
series during the time that the corresponding HMM state was active (see β calculation in Fig. 
1D and Methods for more details).  

Fig. 1 Graphical summary of PCCA. A processed BOLD time series of 25 ICs obtained from 100 subjects of 
the HCP. B HMM was applied to the concatenated BOLD time series across subjects (25 ICs by [Nsubjects × 
Nframes]) resulting in K = 12 states, each with associated state time series (i.e., the probability of a given 
state to be active or not at every time point) and covariance matrix Cm across 25 ICs. The HMM was run 
several times (Nruns), each starting from a different random initialisation. C PCA was applied to the 
concatenated state time series across runs ([Nruns × K] by [Nsubjects × Nframes]), projecting the Nruns × K rows 
into a reduced set of PCs explaining maximum variance. D The covariance matrix of each PC was estimated 
as a linear combination of the covariance matrices of the original states, using the betas of each state (βm) 
as their weights. The betas were computed as the weighted average of each original state time series with 
the square time series of a given PC. HMM: hidden Markov model(ling); ICs: independent components; 
PCA: principal component analysis. PCCA: principal components of connectivity analysis. 

In what follows, we show that time-varying FC follows reliable trajectories that meet the 
aforementioned criteria. First, we show that such trajectories are low- but multi-dimensional. 
Second, we demonstrate that the nature of these trajectories differs across behavioural 
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conditions. Third, we show that FC exhibits changes within reasonably short timescales that 
are arguably compatible with the timescale of cognition and behaviour. In addition, we 
confirm that FC trajectories are not determined just by amplitude modulations. Finally, we 
verify the reproducibility of our results on new model configurations and a separate set of 
subjects. 

Functional connectivity reliably embeds into multidimensional temporal trajectories  

We used our PCCA approach to capture modulations in brain network activity, in the sense of 
changing patterns of covariance across regions. By running the HMM multiple times, we 
leveraged the variability of the HMM inference by refactoring the different estimations into 
reliable, latent trajectories of time-varying FC. By doing so, we explored the complexity of 
these trajectories, finding that they robustly span multiple dimensions. 

First, to quantify the stability of the separate instances of the HMM inference, we computed 
a Pearson correlation between the state time series generated across multiple runs. Because 
the ordering of the states within a run is arbitrary, the states were aligned between runs using 
the Hungarian algorithm (Munkres, 1957), so that the first state in one run corresponds to 
the first state in another run, and so forth. We obtained correlation coefficients between 
every pair of aligned states for each pair of runs. Fig. 2A confirmed that the states inferred by 
the HMM were (to some extent) variable between the different runs of the inference 
(Vidaurre et al., 2019). Note that, because of the nature of the Hungarian algorithm, the states 
were ordered from best to worst aligned, therefore creating a natural ordering of the states 
from most to least replicable.  

As illustrated in Fig 1, we exploited this variability by applying PCA across the state time series 
from 200 HMM runs. This produced a set of orthogonal PCs that optimally explained 
maximum time-varying FC variability across states and runs (i.e., 2400 states obtained from 
200 runs of the model, with 12 states per run). As shown in Fig. 2B, the top five PCs alone 
retained 44% of the total temporal variance present across all of the states, suggesting that 
the temporal network variability in the data has more than five dimensions. Focusing on these 
five dimensions, we assessed the reliability of these PCs across 30 different PCA runs, where 
each PCA run was performed on 200 HMM runs from the original pool of 1000 HMM runs. 
We then estimated the reliability of each PC by computing the Pearson correlation between 
the PC time series of each pair of PCA repetitions. The average coefficient across all pairs was 
very close to r = 1.0 for PC1 and PC2, and r = 0.99 for PC3, PC4 and PC5, confirming that our 
approach is extremely stable against estimation noise (of which other approaches suffer 
systematically: Hindriks et al., 2016; Vidaurre et al., 2019). To quantify the relation between 
the number of HMM runs (Nruns) and the stability of the results, we repeated this process for 
various choices of Nruns. Fig. 2C shows that the set of states generated over 30 PCA runs was 
already able to make the five PCs highly stable, (r > 0.92). While this stability decreased for 
lower-order PCs, adding more HMM runs did increase the number of stable PCs. Additionally, 
since the aim of applying PCA was to integrate information across HMM runs, we verified that 
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the PCs were not representations of specific runs. As observed in Fig. 2D the average state 
contribution of each HMM run to the PCs are similar across runs (particularly concerning their 
contributions to higher-order PCs), demonstrating that the PCs effectively represent a low-
dimensional embedding across all runs.  

Similar conclusions were drawn from the analysis of task fMRI data, as depicted in 
Supplementary Fig. 1: during the WM and the motor task conditions, FC followed reliable 
trajectories across multiple dimensions. Compared to the resting-state condition, there is a 
higher variability between the states of different HMM runs during the task conditions, 
particularly during the WM task. Due to this increased variability, more HMM runs were thus 
needed to ensure stable PCA results for the task conditions. However, similarly to the resting-
state condition, the top five PCs were highly stable during both task conditions (r > 0.9); these 
retained around 40% of the total variance present across the 2400 states, suggesting that FC 
organises into even higher dimensions.  

Fig. 2. Resting-state time-varying FC spans multiple temporal dimensions that can be reliably measured. 
A Pearson correlation coefficient between states for each pair of HMM runs (aligned to coincide in their 
ordering), for K = 12 states and 200 HMM runs (i.e. 19900 pairs). B Plot representing the percentage of 
individual (bars) and cumulative (line) explained variance by the top 20 PCs that resulted from applying 
PCA to the K = 12 states from 200 HMM runs (i.e., 12 × 200 = 2400 states). C Pearson correlation coefficient 
(y-axis) of the 20 PCs (x-axis) between each pair of 30 PCA runs, for several numbers of HMM runs (from 
20 to 200); error bars represent the standard error of the mean correlation across all pairs of PCA runs. D 
Average state contribution (PCA weights) of each HMM run to the final PCCA model for the top 20 PCs. 

These results indicate that, despite the stochastic nature of the HMM, momentary changes 
in FC can be reliably captured; and that these changes occur in a multidimensional space, 
where at least five dimensions could be reliably measured.  
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FC fluctuations depend on the behavioural context 

We examined whether the spatial patterns of the estimated FC trajectories were specific to 
the different behavioural conditions (i.e., rest, WM and motor). For this purpose, we 
transformed the covariance matrices of the top 20 PCs of each behavioural condition into 
correlation matrices and then applied the Fisher z-transformation on the off-diagonal 
elements of the matrices; these were then vectorised and compared to one another using 
Pearson correlation (Fig. 3A). To determine whether the overall correlation within conditions 
was significantly higher than between conditions we used permutation testing (significance 
level of 0.05; 10000 permutations); see Fig 3B. See brain connectivity graphs and connectivity 
maps of the top five PCs for each behavioural condition in Supplementary Fig. 2. 

First, we found that changes in FC were condition-specific, that is, they depend on the 
behavioural context. As indicated by the red block in Fig. 3B, the overall similarity across PCs 
(i.e., the averaged correlation across the top 20 PCs) was significantly higher within than 
between conditions (p < 0.0001). Second, the largest differences were observed between the 
rest and task conditions, i.e. the similarity of the spatial patterns between the two tasks was 
always higher than between a task and the rest condition (p < 0.0001; lower green triangle in 
Fig. 3B). Although the WM and motor tasks were designed to target different cognitive 
processes (i.e., working memory function and motor execution, respectively), there are 
however common aspects to the two tasks such as motor coordination and visual processing, 
and potentially other factors related to attention (e.g., following instructions), that might be 
causing the resting-state to be more markedly different. Third, we observed that the 
differences between rest and task PCs were even more pronounced for the WM than for the 
motor task (p < 0.0001), which could partially be explained by the higher experimental 
demands of the WM task compared to the motor task. Fourth, we found that the spatial 
connectivity patterns of each condition were more diverse (i.e., lower correlation across PCs) 
during rest than during task conditions (p < 0.01; upper green triangle in Fig. 3B), probably 
due to the higher capacity of the participants to engage in a more unconstrained type of 
cognition during the resting-state (Wang et al., 2018).  

In summary, these results indicate that the dominant modulations in FC meaningfully relate 
to the behavioural context and that these modulations are more diverse during rest than 
during task conditions —reflecting the unconstrained nature of the resting-state.  
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Fig. 3. The spatial patterns of the FC trajectories are condition-specific. A Correlation (lower triangular) 
and partial correlation (upper triangular) coefficients across the top 20 PCs within and between conditions: 
rest, WM and motor (each row and column is a different PC). B Significant differences (lower in green and 
higher in red; significance level of 0.05) of the averaged similarity of the spatial patterns (of rows with 
respect to columns) for all pairs of within (rest, WM, motor) and between (rest-WM, rest-motor, WM-
motor) conditions. 

FC fluctuates at timescales that are compatible with cognition 

Having shown that the nature of the estimated FC trajectories is context-dependent, we 
sought to investigate the temporal scales of these modulations. We reasoned that dynamic 
neural communication and ongoing cognition should be reflected at relatively short 
timescales. In particular, focusing on the memory task, we asked how differences in cognitive 
abilities (i.e., WM performance) and cognitive demands (i.e., WM load) would relate to each 
of the different timescales underlying the FC trajectories.  

To dissect the various FC-related timescales, we used the empirical mode decomposition 
(EMD, Huang et al., 1998), a data-driven approach that allowed us to split each FC trajectory 
(i.e. each PC time series) into different so-called intrinsic mode functions (IMFs). Each IMF 
covers a certain range of frequency, with one instantaneous frequency value per time point. 
Focusing on the top five PCs, the EMD yielded ten IMFs for each PC time series (see Fig. 4A 
and Supplementary Fig. 3), where the first IMF (IMF1) corresponded to the fastest scale (with 
the range 0.03Hz to 0.31Hz covering 90% of the instantaneous frequency values) and the last 
IMF (IMF10) to the slowest scale (90% range of 0.02Hz to 0.09Hz). To assess the relationship 
between IMF-specific PC time series and both WM variables, we used canonical correlation 
analysis (CCA) and permutation testing —with 10000 permutations per test accounting for 
the family structure of the HCP data (Smith et al., 2015; Winkler et al., 2015). Specifically, we 
ran a separate test for each IMF (i.e. data-driven frequency band) and each behavioural 
variable (WM performance and WM load) to assess the canonical correlation between the 
IMF’s variance across the top 5 PCs (which can be conceptualised as the “energy” of the 
various FC trajectory dimensions within an EMD-estimated frequency band) and the 
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behavioural aspects of the task. In terms of the behaviour, WM performance was encoded as 
a two columns matrix, containing accuracy and reaction time; here, permutations were 
performed across subjects. WM load was encoded as a single vector, which elements are 
minus one for 0-back and plus one for 2-back blocks; here, permutations were performed 
within each subject across blocks and runs. False discovery rate (FDR; Benjamini and 
Hochberg, 1995) was used to correct across multiple comparisons. 

For illustration, Fig. 4B shows how the IMF3’s energy of the first three PCs varies across 
subjects. IMF3 was chosen since it exhibited a highly significant relation to behaviour (see 
below) and spans relatively fast timescales (mean frequency is 0.01 Hz), therefore being a 
reasonable candidate to reflect aspects of dynamic, whole-brain neural communication. To 
further illustrate how the FC trajectories vary across subjects, Fig. 4C projects the IMF3 time 
series for the subject with the lowest (in blue) and the highest (in red) IMF3 energy. For WM 
performance, the (first) canonical correlation was statistically significant (r = 0.45, p < 0.01, p-
FDR = 0.045). Fig. 4D shows a scatter plot of the canonical covariate related to WM 
performance vs the canonical covariate related to the IMF3-related energies. For WM load, 
the fastest IMFs (IMF1–IMF3) showed a significant (p-FDR < 0.05) canonical correlation with 
WM load of, respectively, r = 0.31, r = 0.36 and r = 0.29. Fig. 4E shows the distribution of the 
canonical covariates for IMF1 to IMF3, obtained as an optimal linear projection of their energy 
values for low (in yellow) and high load (in purple). See Supplementary Table 1 for a display 
of all canonical correlations, permutation p-values and FDR p-values. 

Altogether, these analyses revealed that the three modes (IMF1–IMF3) that capture relatively 
fast changes in FC (i.e., from seconds to tens of seconds) relate to behavioural information 
such as cognitive abilities and cognitive demands. 
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Fig. 4. Fast changes in FC are strongly associated with cognitive abilities (WM performance) and cognitive 
demands (WM load). A IMFs from an illustrative session obtained from PC1’s time series; on the right, 
median instantaneous frequency of each IMF. B Individual subject values of the IMF3’s energy for the top 
three PCs, coloured from low to high energy (blue to red colour bar). C Two subject’s trajectories of IMF3 
with the lowest (blue) and the highest (red) energy; colour bars indicate the time of the session from light 
to dark colours. D Scatterplot of the relationship between the canonical covariate for IMF3’s energy values 
and the canonical covariate for the WM performance scores (N = 99 subjects); each dot represents the 
values for one subject. E Distribution of the canonical covariates for the energies of IMF1–IMF3, for low (in 
yellow) and high WM load (in purple) trials.  

Functional connectivity trajectories are not driven by simple activation patterns 

Since we are interested in whether dynamic cross-regional communication can be related to 
FC trajectories, we sought to verify that such trajectories are not determined just by 
amplitude modulations. To disambiguate whether the PC modulations contain information 
that is unique to time-varying FC (i.e. above and beyond just regional activations and 
amplitude modulations), we examined how much of the temporal covariation in FC can be 
predicted by changes in the raw BOLD signal (represented as 25 IC time series). Using cross-
validated regularized ridge regression (Hoerl and Kennard, 1970) on each PC separately, we 
show that the main patterns of temporal fluctuations in FC during rest cannot be well 
explained by changes in order-1 activations (Fig. 5). Specifically, the IC time series can only 
explain 1% of the variance of the top four PCs and 11% of the fifth PC. In contrast, the order-
2 interactions of the signal (i.e. the pairwise product of the IC time series, which is directly 
related to Pearson-based FC), explained considerably more variance of the PCs (values 
ranging between 18% and 43%). Note that because the predictions are cross-validated, this 
comparison is not biased by the fact that the number of order-2 interactions (300 time series, 
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one per pair of ICs) is larger than the number of order-1 activations (25 IC time series). 
Moreover, since the order-2 interactions also contain the information of the amplitude itself 
(within the diagonal of the covariance matrices), we repeated the prediction after regressing 
out the raw signal of the PC time series in a cross-validated fashion (Snoek et al., 2019). On 
average, less than 2% of the explained variance was lost after accounting for the raw signal, 
indicating that the PCs do contain information that is unique to time-varying FC.  

During the task conditions, however, the changes in order-1 time series contributed more to 
explain the fluctuations in FC. This was expected since the evoked responses are synchronised 
across brain regions by the task experimental design, creating task-induced correlations and 
therefore contributing to the FC estimations. This effect was more pronounced for the motor 
task than for the WM task condition. Specifically, the IC time series could explain up to 48% 
of the variance of the first PC during the motor task, and 32% of the second PC during the 
WM task. Order-2 interactions of the signal had similar contributions to the amplitude for the 
first two PCs of the WM task and the first three PCs of the motor task. For the remaining PCs, 
order-2 interactions explained more variance than the IC time series. As before, we repeated 
the prediction after correcting for the order-1 activations, finding that the variance explained 
by order-2 interactions decreased around 12% for the WM task, and 21% for the motor task, 
after deconfounding for the IC time series. This loss of variance indicates that a considerable 
proportion of the fluctuations in FC are driven by changes in signal amplitude that are likely 
evoked by task responses.  

Fig. 5. PCCA time series cannot be well 
explained by amplitude. Percentage of 
explained variance (R2, y-axis) of the 
top 5 PCs (x-axis) by the (order-1) IC 
time series, and order-2 interactions 
with and without deconfounding for 
amplitude. Components are coloured 
according to 3 conditions: rest, WM 
and motor. 

 

Reproducibility of the results 

We sought to evaluate the reproducibility of our results with respect to five different 
variations of the experimental setup (Fig. 6, left to right): using a separate set of subjects, 
using the original dataset with different model configurations (changing the fixed number of 
HMM states from 12 to 6 and to 16), and using different data configurations (reducing the 
length of the time series from 4800 to 810 frames; and using a subsample with half of the 
subjects). We focused on the resting-state, free of task-related activations that could trivially 
explain the reproducibility scores, and used the top 20 PCs (instead of five) for completeness.  
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For each of these five experimental variations, we first extracted the top 20 PCs following the 
same procedure as described in Fig. 1. As discussed, we transformed the covariance matrices 
of each of these 20 PCs into correlation matrices, applied the Fisher z-transformation on the 
off-diagonal elements of the matrices and vectorised them. These vectors were then 
compared to those of the original dataset using Pearson correlation. Reproducibility was 
assessed by comparing whether the correlation between aligned PCs was significantly higher 
than between nonaligned PCs. The statistical significance of the difference was determined 
using permutation testing (significance level of 0.05; 10000 permutations). 

We found that the overall changes in FC (as captured by the top 20 PCs) were highly 
reproducible for all five experimental variations. That is, the correlation between aligned PCs 
was significantly higher than between non-aligned PCs (p < 10-5). In particular, when using a 
separate set of subjects (first column of Fig. 6) only three out of 20 aligned PCs (orange) fall 
below the 75th percentile of the correlations between non-aligned PCs (green). With respect 
to changes in model configurations, reducing the number of fixed states from 12 to 6 (second 
column of Fig. 6) returned 14 very similar PCs; while increasing it from 12 to 16 (third column 
of Fig. 6) returned 19 very similar PCs, suggesting that our approach is robust to the number 
of HMM states within a reasonable range. When reducing the length of the time series to 810 
frames (the length of the WM task), 15 of the 20 PCs could still be recovered even though 
only a fifth of the original number of volumes were available (fourth column of Fig. 6). Lastly, 
only one of the 20 PCs could not be recovered when estimating the PCCA model on just a half 
of the subjects from the original dataset (fifth column of Fig. 6). 

 

Fig. 6. Reproducibility of the time-
varying FC patterns for the top 20 PCs 
in the resting-state. From left to right, 
reproducibility of our results on a 
separate set of subjects (i.e., 100 
subjects, 4600 frames, 12 states), and 
with respect to changes in the number 
of states (from 12 to 6 and 16 per 
HMM run), to different scan lengths 
(from 4600 frames to 810), and 
different sample sizes (from 100 to 50 
subjects). Boxplots represent the 
inter-quartile range (IQR; between the 

75th and 25th percentiles) and median (horizontal line) of the correlation values (one per dot) between 
aligned PCs (orange) and nonaligned PCs (green). 
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Discussion 

Can the temporal variability of patterns of fMRI FC across multiple regions reflect information 
transfer between the underlying neuronal populations, or, rather, they just reflect stable 
anatomical pathways? We propose that, for the former case to be true, these correlations 
should fulfil the following criteria: (i) its latent dimensionality must be relatively low to be 
reliable, but still high enough to accommodate the flexibility that brain communication 
requires; (ii) it should adapt to the behavioural context; and (iii) it should exhibit relevant 
changes at fast timescales. Using Principal components of connectivity analysis, a new 
approach based on multiple runs of the HMM in combination with PCA, we showed that 
reliable estimations of FC patterns can be represented as low-dimensional trajectories of 
order-2 interactions. Importantly, these could not be trivially explained from order-1 signal 
activations. These FC-related trajectories were found to meet the proposed criteria, 
suggesting that they may faithfully reflect at least some aspects of large-scale, cross-regional 
communication.  

The fact that not only one but several FC dimensions could be reliably estimated might seem 
at odds with previous work where network activity was shown to be hierarchically organized 
into two groups of states or metastates (Vidaurre et al., 2017). Indeed, having the states 
strongly clustered into two metastates essentially defines a one-dimensional axis of variation 
for FC. Two main reasons explain this discrepancy. First, in Vidaurre et al. (2017) the HMM 
was run only once, whereas here we have used multiple runs; this allowed us to explore the 
space of solutions exhaustively. Second, and most importantly, while in the previous study 
PCA was applied on the fractional occupancies (an aggregated measure where each session 
is defined as how much time the subject spent on each state), here we have applied PCA on 
the state time series. That is, in the previous study PCA was run on a (no. of subjects by no. of 
states) matrix, and here PCA is applied on a much larger ([no. of subjects × no. of time 
points × no. of sessions] by [no. of states × no. of HMM runs]) matrix. Therefore, whereas the 
metastates in Vidaurre et al. (2017) fundamentally reflect between-subject variability of both 
time-varying and time-averaged FC, PCCA characterises the actual temporal dimension of the 
FC patterns, where multiple dimensions are shown to be at play.  

We have investigated whether the estimated FC-related trajectories reflect the behavioural 
context and cognitive demands by comparing the brain representations of FC fluctuations 
across three experimental conditions: at rest, during a WM task, and during a motor task. On 
the one hand, our analysis revealed distinct spatial patterns for each of the three conditions, 
indicating the behavioural specificity of the estimated trajectories. On the other hand, we 
found a higher similarity of brain network modulations during the execution of tasks, 
highlighting the constrained element of both WM and motor tasks as opposed to the 
unconstrained nature of the resting-state. A plausible explanation is that the task designs 
elicit patterns of synchronised activity that are to some extent generalisable across tasks (for 
instance related to attentional processes), and these become reflected in the network 
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trajectories. This observation aligns with previous evidence that task-induced changes in FC 
are not simply driven by task-evoked activation (Greene et al., 2020). Recent studies analysing 
how brain activity unfolds within a low-dimensional space have also found common patterns 
across several tasks (Saggar et al., 2018; Shine et al., 2019a), and observed that modulations 
in these patterns have been associated with differences in task demands and task 
performance (Cornblath et al., 2020; Saggar et al., 2018; Shine et al., 2019b).  
As opposed to our PCCA approach, however, these latent trajectories were computed based 
on order-1 statistics and are therefore unspecific to connectivity. Our work extends these 
findings by demonstrating that cognitive demands and cognitive performance shape the 
temporal evolution of brain FC (i.e. not just activity) at relatively fast timescales. 

These results align with previous reports on the variability in BOLD signals as an important 
feature of brain function (Garrett et al., 2020, 2010; McIntosh et al., 2008). Using EEG and 
fMRI, these studies showed that higher brain signal variability facilitates the formation of 
brain networks and transitions between them, which in turn enhances the brain’s dynamical 
repertoire to enable cognitive function. Complementing these studies, we quantified the 
degree of variability in the space of brain network interactions, therefore extending the 
notion of signal variability towards connectivity variability. In doing so, we found that 
connectivity variability at relatively fast frequencies tracks cognitive load and task 
performance. Furthermore, we found brain network modulations to be more diverse during 
rest than during task, reflecting the unconstrained nature of the resting-state and supporting 
the idea that resting-state FC may provide a richer characterization of brain activity than task-
states (Ponce-Alvarez et al., 2015). 

Previous research on time-varying FC has often identified a set of brain states occurring within 
the full scanning session (Lurie et al., 2020), for example using an HMM (Vidaurre et al., 2018) 
or by performing (e.g. k-means) clustering on sliding window estimates (Allen et al., 2014). 
Despite the specifics of each approach, the choice of the number of states is a cross-
methodological concern. Here, we found that irrespective of the initial number of fixed states 
(K = 6, 12 and 16), PCA was able to reliably capture the same prevalent underlying 
configurations. The highly robust estimation across choices of K indicates that the relative 
instability of the HMM inference can be turned into an advantage when harnessed by PCA; 
see Vidaurre et al., 2019 for a similar argument in the context of statistical testing. 
Methodologically, PCA might offer a promising alternative to conventional model selection, 
toward model integration.  

In summary, our results indicate that brain network modulations fluctuate at short timescales 
following reliable patterns that are context-dependent, influenced by cognitive complexity 
and associated with cognitive abilities. The estimated trajectories are relatively low- but still 
multi-dimensional, meeting the minimum requisites to reflect the dynamics of information 
transfer across the brain.  
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Methods  

Data Description 

We used fMRI data from 100 subjects from the Human Connectome Project (HCP, van Essen 
et al., 2013) publicly available. For each subject, we considered data from the resting-state 
(rest), the working memory (WM) task, and the motor task. One subject’s WM task data was 
missing. Brief descriptions of each condition are provided in Table 1; please refer to Van Essen 
et al., 2012 for full details about the acquisition and preprocessing of the data. In brief, whole-
brain fMRI data was acquired at 3T, with a spatial resolution of 2×2×2 mm and a temporal 
resolution of 0.72 s. All fMRI processing was performed using FSL (Jenkinson et al., 2012) 
including minimal high-pass temporal filtering (< 0.01 Hz) to remove the linear trends of the 
data, no low-pass filter, no global signal regression, and artefact removal using independent 
component analysis (ICA)+FIX (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). In 
particular, group spatial-ICA was performed using MELODIC (Beckmann and Smith, 2004) on 
the resting-state data to obtaining a parcellation of 25 ICs. For ease of comparison across 
conditions, the time series for each IC was computed —separately for each subject and 
condition (rest, WM and motor)— using the group 25-ICA parcellation from the resting-state 
data through dual regression (Filippini et al., 2009). Specifically, the IC time series 
corresponding to the task sessions were computed from the fully preprocessed data in 
MNI152 space as delivered in the HCP1200 release; the IC time series of the resting-state 
sessions were directly obtained from the HCP ‘PTN’ Parcellation+Timeseries+Netmats 
(specifically, the first 100 subjects from the ‘recon2’ version). 

 

 

Table 1. Data description 

Condition Subjects Runs Frames 
per run 

Description 

Rest 100 4 1200 Participants were instructed to try to lie still, to keep their eyes open 
(relaxed fixation), not to think of anything specific, and not to fall 
asleep (although some likely fall sleep at some point).  

Working 
Memory 
(WM) 

99 2 405 Participants were presented with pictures (places, faces, body parts 
and tools) in alternating blocks of 0-back and 2-back WM. During 0-
back blocks, participants had to respond to any presentation a 
target cue (presented at the start of the block). During 2-back 
blocks, participants had to respond whether the current stimulus 
was the same as two stimuli earlier. 

Motor 100 2 284 Participants were presented with visual cues that required them to 
tap their left or right fingers, squeeze their left or right toes, or move 
their tongue.  
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Principal Component of Connectivity Analysis 

Principal Component of Connectivity Analysis, or PCCA, is composed of two methodological 
elements: the HMM and PCA. We next describe these, including how to compute connectivity 
maps from the resulting principal connectivity components.  

Hidden Markov modelling. The HMM was used to extract whole-brain patterns of time-
varying FC during the rest and task conditions. In a data driven way, the HMM characterises 
neural time series of concatenated data using a finite number of K (group-level) states that 
reoccur across time (Rabiner, 1989), where the k-th state time series represents the 
probability for that state to be active at each time point; that is, the spatial parameters of the 
HMM are at the group level, while the temporal parameters are at the subject level. The 
states themselves are probability distributions within a certain family, and each is 
characterised by a certain set of parameters. In order to focus on FC, each state was here 
characterized by a Gaussian distribution with no mean parameter (i.e. with the mean 
parameter pinned to zero) and a full covariance matrix (representing pairwise covariations 
across regions); or, equivalently, as a Wishart distribution (Vidaurre et al., 2021). Finally, a K-
by-K transition probability matrix is estimated as part of the model, containing the probability 
of transitioning from one state to another, or to remain in the current state. Here, the number 
of K states was set to 12 and the HMM was applied to the concatenated time series for all 
subjects ([Nruns × K] by [Nsubjects × Nframes]) for each condition separately (rest, WM task and motor 
task; see Table 1). See Fig. 1A-B for a schematic description of the HMM.  

Principal component analysis and component characterization. PCA was applied on the 
HMM state time series to integrate the time-varying FC estimations across many runs. In 
short, the state time series generated over multiple runs (Nruns) were attached together into 
a matrix (Y) with as many rows as frames in the data set (Nsubjects × Nframes) and M columns 
(Nruns × K states); see Fig. 1B-C. PCA was then performed by eigendecomposing Y YT, which 
returns a set of M eigenvectors and eigenvalues according to the equation:  

     𝑌𝑌! = 𝑈Λ𝑈!	     (1) 

where U contained the (orthonormal) eigenvectors on its columns and Λ contained the 
corresponding eigenvalues in its diagonal (Fig. 1C). These eigenvectors, or PCs, represented 
patterns of variation across all time-varying FC states, while the eigenvalues described the 
contribution of each PC in terms of explained variance. The PCs (columns of U) were arranged 
according to their relative contributions to Y, from higher to lower eigenvalues. 

To estimate the PC-specific spatial FC patterns for the i-th PC, we computed one covariance 
matrix for each PC (denoted as Qi) by weighting the covariance matrices of the original states 
(Cm) with weights βm as follows: 

     𝑄" = ∑ 𝛽#𝐶##      (2) 
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The weights βm were calculated as the variance of the (1 by [Nsubjects × Nframes]) PC time series 
Si, during the time when state m is active:  

 𝛽# = 𝑌#		!𝑆"		% |𝑌#|&⁄     (3) 

where Si represents the time series of the i-th temporal PC, Ym is the probability of that state 
to be active or not at every time point (Fig. 1D), and |𝑌#|& represents the sum of all elements 
of Ym (i.e. the L1 norm of the vector). Note that it is not possible to estimate the PCs’ 
covariance matrices using the PCA weights directly, because these are not necessarily positive 
and therefore the resulting matrix would not necessarily be positive definite (a mathematical 
requirement for any covariance matrix). Therefore, Eq. (3) is defined by convention, and does 
not follow from first principles.  

To facilitate visualization, the spatial connectivity map of each PC was then derived using the 
first eigenvector of the PC covariance matrix (Qi), which represented the main pattern of FC 
for that PC. Note that this is a different eigendecomposition than Eq. (1), which is done on the 
PC time series. The brain connectivity maps shown in Supplementary Fig. 2 were created by 
overlaying these eigenvectors on brain surface space. 

Empirical mode decomposition 

Using an iterative algorithm, the EMD aims at decomposing multi-frequency time series into 
a number of oscillatory modes referred to as Intrinsic Mode Functions (IMFs), where each IMF 
relates to one fundamental frequency (Huang et al., 1998; Quinn et al., 2021). Here, we used 
the EMD to decompose each FC trajectory (i.e. PC time series) into a set of IMF-specific time 
series of the same length as the PC time series. The number of IMFs were determined in a 
data-driven way by the intrinsic temporal-spectral characteristics of the PC time series. The 
decomposition of the PC time series yielded ten IMFs (IMF1–IMF10), where each IMF covered 
a certain frequency range; see Fig. 4A and Supplementary Fig. 3. The instantaneous 
frequencies of each IMF were obtained using the Hilbert-Huang Transform (Huang et al., 
2009).  

Code availability 

The code used to analyse the data in this study comprises our open-access code repository 
(https://github.com/OHBA-analysis/HMM-MAR) and custom Matlab scripts publicly available 
at https://github.com/sonsolesalonsomartinez/PCCA. 
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Supplementary Information 

Supplementary Table 1. Canonical Correlation Analysis between IMF-specific PC time series and both 
WM performance and WM load. 
 

  WM performance                      WM load 
 

r p-Perm p-FDR r p-Perm p-FDR 

IMF1 0.26 0.767 0.767 0.31 0.0001 0.0003 

IMF2 0.34 0.046 0.155 0.36 0.0001 0.0003 

IMF3 0.45 0.004 0.045 0.29 0.0001 0.0003 

IMF4 0.28 0.397 0.662 0.10 0.3313 0.8282 

IMF5 0.25 0.624 0.722 0.07 0.7004 0.9999 

IMF6 0.36 0.017 0.087 0.03 0.9168 0.9999 

IMF7 0.44 0.075 0.188 0.04 0.9180 0.9999 
IMF8 0.27 0.650 0.722 0.004 0.9999 0.9999 

IMF9 0.33 0.187 0.374 0.002 0.9998 0.9999 

IMF10 0.25 0.626 0.722 0.001 0.9999 0.9999 

IMF: intrinsic mode function; p-Perm: p-value of 10000 permutation test; p-FDR: false discovery rate 
adjusted p-value; WM: working memory. 
 
  

Supplementary Fig. 1. Time-varying FC trajectories in task span multiple temporal dimensions that can 
be reliably measured. For WM (top) and motor (bottom) task conditions: A Pearson correlation coefficient 
between states for each pair of HMM runs (aligned to coincide in their ordering), for K = 12 states and 200 
HMM runs (i.e. 19900 pairs). B Plot representing the percentage of individual (bars) and cumulative (line) 
explained variance by the top 20 PCs that resulted from applying PCA to the K = 12 states from 200 HMM 
runs (i.e., 12 × 200 = 2400 states). C Pearson correlation coefficient (y-axis) of the 20 PCs (x-axis) between 
each pair of 30 PCA runs, for several numbers of HMM runs (from 20 to 200); error bars represent the 
standard error of the mean correlation across all pairs of PCA runs. D Average state contribution (PCA 
weights) of each HMM run to the final PCCA model for the top 20 PCs. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.453965doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.27.453965
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Supplementary Fig. 2. PC-specific time-varying FC patterns. 
(left to right) For each of the five PCs across (A) rest, (B) WM 
and (C) motor task conditions: (top) brain connectivity maps 
created using the 1st Eigenvector of each PC covariance 
matrix. See Methods for details on the calculation of the 
PCs’ covariance matrices; (bottom) brain connectivity 
graphs of the pairwise FC across 25 ICs. D spatial maps of 
each IC obtained from the 25-ICA group parcellation. 
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Supplementary Fig. 3. Distributions of instantaneous frequencies for each IMF, for the top five PC time 
series. Each IMF occupies a specific frequency band with very little overlap between them. For each IMF, 
dots and bars show the median and the 90% frequency range for each PC (shown in colour) as well as their 
average (in grey). The instantaneous frequencies of each IMF were obtained using the Hilbert-Huang 
Transform. 
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