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Abstract (300 words) 17 

The development of high-throughput genomic technologies associated with recent genetic perturbation 18 

techniques such as short hairpin RNA (shRNA), gene trapping, or gene editing (CRISPR/Cas9) has made it 19 

possible to obtain large perturbation data sets. These data sets are invaluable sources of information 20 

regarding the function of genes, and they offer unique opportunities to reverse engineer gene 21 

regulatory networks in specific cell types. Modular response analysis (MRA) is a well-accepted 22 

mathematical modeling method that is precisely aimed at such network inference tasks, but its use has 23 

been limited to rather small biological systems so far. In this study, we show that MRA can be employed 24 

on large systems with almost 1,000 network components. In particular, we show that MRA performance 25 

surpasses general-purpose mutual information-based algorithms. Part of these competitive results was 26 

obtained by the application of a novel heuristic that pruned MRA-inferred interactions a posteriori. We 27 

also exploited a block structure in MRA linear algebra to parallelize large system resolutions.  28 

 29 

Author Summary (150-200 words) 30 

The knowledge of gene and protein regulatory networks in specific cell types, including pathologic cells, 31 

is an important endeavor in the post-genomic era. A particular type of data obtained through the 32 

systematic perturbation of the actors of such networks enables the reconstruction of the latter and is 33 

becoming available at a large scale (networks comprised of almost 1,000 genes). In this work, we 34 

benchmark the performance of a classical methodology for such data called modular response analysis, 35 

which has been so far applied to networks of modest sizes. We also propose improvements to increase 36 

performance and to accelerate computations on large problems. 37 

  38 
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Introduction 39 

The expression and activity of genes and proteins in cells are controlled by highly complex regulatory 40 

networks involving genes and proteins themselves, but also non-coding RNAs, metabolites, etc. Despite 41 

tremendous efforts in research, including all the developments of high-throughput genomic 42 

technologies, a significant portion of this machinery remains uncharted. Moreover, dysregulations in 43 

such networks are related to many diseases, and healthy cells of a same organism feature adjusted 44 

regulatory networks depending on their cell types and states. Techniques, both experimental and 45 

computational methodologies, that enable the inference of regulatory networks for different cells are 46 

obviously of great interest. 47 

Reference databases such as Reactome[1], KEGG[2], IntAct[3], or STRING[4] that compile our knowledge 48 

of biological pathways or protein interactions have been established that provide valuable reference 49 

maps. Due to their universal nature, these maps do not reflect natural and pathologic variations of 50 

regulatory networks though some chosen disease pathways might be included. In principle, researchers 51 

should generate data specific to the biological system of interest to assess the actual wiring of its 52 

regulatory network. Specific data can be combined with reference databases in some algorithms, while 53 

others only rely on de novo inferences. The field of systems biology has proposed many algorithms for 54 

such a purpose involving different modeling approaches[5–7]. Obviously, algorithms must match the 55 

type of data available to perform the inference such as a transcriptomes or proteomes obtained under 56 

multiple conditions, time series, or perturbation data. 57 

In this work, we are interested in the inference of regulatory networks based on systematic perturbation 58 

data. That is, given a biological system of interest, which could be the whole cell, but also a small set of 59 

related genes or proteins such as a pathway or part of a pathway, we have access to information 60 

reporting the activity level of every component (gene/protein). Typical examples are transcript, protein, 61 

or phosphorylated protein abundances. This information is available in basal condition as well as under 62 

the systematic perturbation of each single component. When this type of data are obtained from a 63 

biological system in a steady state, modular response analysis[8] (MRA) has been widely and successfully 64 

applied[9]. The elegance of MRA is that it provides an efficient mathematical framework to estimate a 65 

directed and weighted network representing the system regulatory network. Most applications of MRA 66 

are limited to networks comprised of a modest number of modules (<10). In this study, we want to 67 

explore the application of MRA to medium- (>50) and large-size (>500) systems. It entails a particular 68 
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implementation of the linear algebra at the heart of MRA to parallelize computations as well as the 69 

introduction of a heuristic to prune the inferred networks a posteriori to improve accuracy. 70 

As stated above, rewiring of regulatory networks is natural and necessary to yield a multitude of cell 71 

types in higher organisms, and to adapt to distinct environmental conditions. Rewiring is also associated 72 

with several diseases[10,11], an extreme case being cancer[12–14]. For instance, kinase signaling 73 

cascades might be redirected in certain tumors to achieve drug resistance or to foster exaggerated cell 74 

growth. MRA has been applied to a number of such cancer-related investigations[15,16] considering 75 

rather small networks. Here, we take advantage of two published data sets that involve cancer cell lines 76 

and provide systematic perturbation data compatible with MRA requirements. The first – medium-size – 77 

data set[17] reports the transcriptional expression of 55 kinases and 6 non kinases under 11 78 

experimental conditions (unstimulated plus 10 distinct stimulations). Under every condition, the 79 

transcript levels of all the 61 genes were obtained by shallow RNA sequencing, including wild type cells 80 

and cells with individual KOs of each gene. These data hence enable us to infer one network per 81 

condition (11 networks) to discover how those 61 genes regulate themselves transcriptionally. The 82 

second – large-size – data set was generated by the next generation of the Connectivity Map (CMap) 83 

using its new  L1000 platform[18]. Both shRNA- and CRISPR/Cas9-based systematic perturbations of 84 

roughly 1,000, respectively 350, genes in 9, respectively 5, cell lines were released. These data enable us 85 

to infer 9+5=14 networks. 86 

We compare the performance of MRA, with and without the proposed pruning heuristic, to mutual 87 

information (MI)-based methods that have found broad acceptance. 88 

  89 
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Results 90 

Network inference algorithms 91 

The availability of large functional genomics data collections (transcriptomes and/or proteomes) has led 92 

to the development of a number of algorithms aimed at inferring interaction networks [7]. An essential 93 

ingredient of most algorithms is the co-expression of genes (or proteins)[19], which can be captured by 94 

simple correlation coefficients[20], mutual information (MI), or diverse statistical models[21]. There are 95 

too many such algorithms to review them all here, but MI-based approaches seem to have provided off-96 

the-shelf, robust solutions that are widely used. We hence compare MRA to representatives of this 97 

category such as CLR[22], MRNET[23], and ARACNE[24]. 98 

MI is often preferred over correlation for its ability to detect nonlinear relationships. With a network 99 

involving � genes whose expression levels are measured in � transcriptomes, we write ��  the discrete 100 

distribution representing gene � expression. The MI between genes � and � is given by 101 

���,� � 	
��� � 	��� � 	
�� , ���, 102 

where 	
�� � � ∑ �
���ln 
�
�������  is the entropy of a discrete random variable �. There exist 103 

different estimators for 	
�� that use the � available transcriptomes[25]. Networks of interactions 104 

identified though MI, imposing a minimal threshold on MI values, are commonly called relevance 105 

networks[26,27]. The CLR algorithm improves over relevance networks by introducing a row- and 106 

column-wise z-score-like transformation of ���,�  to normalize the MI matrix into a � � 
��,�� matrix 107 

before thresholding. Namely, for each gene � CLR computes 108 

�� � max �0; ���,� � mean
���,.�sd
���,.� " 

and then 109 

��,� � #��� � ���. 110 

 111 

MRNET applies a greedy maximum relevance strategy to link each gene � to the gene � that has 112 

maximum MI with it (� � arg max ���,�). Additional links are added recursively maximizing MI with both 113 
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the gene � and the already linked genes until a stop criterion based on redundancy is met. A further 114 

approach by pruning was proposed by ARACNE authors, where as in relevance networks a common 115 

threshold is applied to all the ��,�  followed by the application of a pruning rule. This rule states that, if 116 

gene � interacts with gene � through gene &, then ��,� ' min)��,�; ��,�*. Consequently, among each 117 

triplet of nonzero MI after initial thresholding, the weakest interaction is removed. 118 

 119 

The MRA and MRA+CLR algorithms 120 

Due to its ability to model biological systems at various resolutions, the MRA terminology for a system 121 

component is a module. We follow this terminology and consider that the � modules composing the 122 

system have their activity levels denoted by � + ,	. Here, modules are genes and ��  stands for gene � 123 

transcript abundance. If we make the rather nonrestrictive assumption that relationships between 124 

modules are modeled by a dynamical system 125 

�- � .
�� 

(.
. � must exist but it does need to be known), and the system is in a steady state at the time of 126 

experimental measurements (�- � 0�, MRA theory lets us compute an � 0 � matrix of local interaction 127 

strengths 1 � 
1�,�� from a gene � to a gene � (1�,� � 
��

��

��
��

). The matrix 1 is obtained from linear 128 

algebraic computations based on the observed activity of each module in an unperturbed state, and 129 

under the individual, successive perturbations of each module. Details are provided in MRA original 130 

publication[8], reviews of MRA developments[9], or in our recent publication[15]. We use the notations 131 

of this recent paper. In Materials and Methods, we provide a brief overview of MRA along with a 132 

description of the particular way we implemented the linear algebra to take advantage of parallel 133 

computing. 134 

Returning to the regulatory network inference problem, the MRA local interaction matrix 1 provides us 135 

with a direct estimate of this network. Interactions are signed with positive coefficients representing 136 

activation and negative coefficients representing inhibition. Given the fact that we want to apply MRA to 137 

large systems, where every module does not necessarily have a direct influence on all the others, we 138 

also face the problem of thresholding or pruning. Within the context of this study, we call MRA the 139 

direct use of MRA computations followed by a threshold on the absolute values of 1 coefficients (values 140 

below a given threshold in absolute values are set to 0). We also adapted CLR heuristic (z-score-like 141 
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computation) to bring 1 coefficients to a more uniform scale before thresholding. We call this algorithm 142 

MRA+CLR, see Materials and Methods for details. 143 

 144 

Application to a medium-size data set 145 

Gapp et al.[17] published a data set, where they studied the transcriptional impact of the full knockouts 146 

(KOs) of 55 tyrosine kinases and 6 non-kinases. We call this data set K61. The systematic perturbations 147 

(KOs) of each gene as well as the unperturbed transcriptomes obviously constitute a bona fide MRA data 148 

set. The transcriptomes were acquired under 11 conditions: no stimulation (None), FGF1, ACTA, BMP2, 149 

IFNb, IFNg, WNT3A, ionomycin (IONM), resveratrol (RESV), rotenone (ROTN), and deferoxamine (DFOM) 150 

stimulation. Stimulations were applied for 6 hours allowing the cells to adapt and reach a steady state or 151 

near steady state. To facilitate the generation of full-KOs, human HAP1 haploid cells[28] were utilized. 152 

The published transcriptomes were not limited to the expression of the 61 perturbed genes, but here, 153 

due to the specifics of MRA, we limited the data to those 61 genes. Replicates were essentially averaged 154 

(see Materials and Methods), resulting in a 61061 matrix for each of the 11 conditions. Interestingly, 155 

considering the complete transcriptomes, K61 authors showed in their publication that those clustered 156 

primarily after the stimulatory condition. That is transcriptomes of different KOs obtained under the 157 

same stimulation were closer to each other than transcriptomes of the same KO but under different 158 

conditions. When reduced to the 61 genes of the network, this picture was less pronounced. In Fig. 1, 159 

we see that None-, WNT3A-, and to a certain extent IFNg-stimulated transcriptomes clustered 160 

separately thus potentially indicating rather different network wiring. The other conditions were not 161 

really separated suggesting that more similar networks could take place. 162 

 163 
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 164 

Figure 1. t-distributed stochastic neighbor embedding (t-SNE) 2D projection of the 61 11 transcriptomes of the 165 

K61 data set. 166 

 167 

We applied MRA, MRA+CLR, CLR, MRNET, and ARACNE to the K61 data set, the later 3 algorithms 168 

implementations were provided by the minet BioConductor package[25]. To estimate performance, we 169 

compared our results with the STRING database[4] due to its broad content. In fact, working with 170 

transcriptomic data, the inferred networks might overlap protein complexes as well as certain parts of 171 

known pathways, but they might also unravel different types of relationships such as genetic 172 

interactions, strong co-regulation, etc. Physical interaction of well-described pathway databases[1,3] 173 

might thus be too restrictive. To apply a uniform selection mechanism to all of the algorithms, we simply174 

took the top 5%, 10%, 20%, 30% and 40% scores of the returned interaction matrices and determined 175 

the intersection with STRING. This resulted in confusion matrices reporting true/false positives (TPs/FPs)176 

and true/false negatives (TNs/FNs) along with a P-value for the significance of the STRING intersection 177 

(hypergeometric test). A representative example (None condition) is featured in Fig. 2A, while the 178 

complete results are in Suppl. Table 1. Given the limited overlap between STRING and our data, and the 179 

rather large numbers involved in the confusion matrices, we found the P-values rather unstable (small 180 

differences in confusion matrices might cause important changes in terms of P-values). They should 181 

hence be regarded as indicative only. Because we used a constant reference (STRING), and all the 182 

algorithm scores were selected in identical numbers, reporting the number of TPs gives a clear 183 

indication of the relative algorithm performances. In Fig. 2B-E we provide these numbers at the top 10% 184 

and the top 20% selection levels. ARACNE implementation in minet did not perform well, typically 185 

reaching half of CLR or MRNET TPs. Accordingly, ARACNE performance is not reported in Fig. 2, but in 186 

y 
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Suppl. Table 1 only. The CLR heuristic applied on top of MRA did not provide much performance 187 

increase, but it resulted in more stable performances thus making it nonetheless an attractive option. 188 

 189 

Figure 2. Performance on K61 data. A. Representative confusion matrices for the None condition. B. TP numbers at190 

the top 10% selection level. C. Comparison between the algorithm TP numbers (Wilcoxon test, 2-sided, *P < 0.05). 191 

D. TP numbers at the top 20% selection level. E. Comparison between the algorithm TP numbers (Wilcoxon test, 2-192 

sided, *P < 0.05, ***P<0.005). 193 

 194 

In their article, K61 authors discussed interesting differences in JAK1 versus JAK2 and TYK2 signaling, 195 

three members of the JAK family. In particular, they found that JAK1 KO cells were insensitive to IFNb 196 

and IFNg stimulation, while JAK2 and TYR2 KO cells responded normally although, in general, all these 197 

t 
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proteins are known to contribute to transcriptional response upon type I and II interferon stimuli[29]. To198 

illustrate how network inference might provide some clue on such differences, we report in Fig. 3A the 199 

MRA+CLR-inferred transcriptional interaction strengths between those three genes and their targets 200 

under the unstimulated (None), IFNb, and IFNg conditions. In the absence of stimulation, we clearly 201 

notice opposed influences of JAK1 on its targets compared to JAK2 and TYR2 (first three columns), which202 

already indicate different signal transduction capabilities. Upon IFNb stimulation, the interactions are 203 

closer with opposed action on ROR1 and PDFGRA. JAK2 and TYR2 remained highly similar in this 204 

condition. IFNg stimulation induced three different patterns with ROR1 transcriptional inhibition 205 

remaining a specific mark of JAK1. Gapp et al. also found differences in FGF receptors. FGF-induced 206 

response was attenuated in FGFR1 and FGFR3 KO cells, but preserved in FGFR2 and FGFR4 KO cells. In 207 

Figure 3B, we notice an almost perfect inversion of the activation/inhibition pattern between FGFR1 208 

versus FGFR2 and FGFR3. FGFR4 adopted a very different configuration with limited interactions. This 209 

observation already indicates a distinct role for FGFR1. Upon FGF stimulation, the interactions are more 210 

patchy, but certain oppositions can be found such as a strong inhibitory action of FGFR1 and FGFR3 on 211 

RYK transcription. 212 

 213 

o 

h 
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Figure 3. MRA+CLR-inferred interactions (top 20% selected). A. Interaction strengths (in log2 with sign preserved) 214 

between JAK1, JAK2, and TYR2 and their targets. Stimulatory conditions are in brackets (None, IFNb, IFNg) B. 215 

Interaction strengths between FGFR1, FGFR2, FGFR3, and FGFR4 and their targets. 216 

 217 

Application to a large-size data set 218 

CMap next generation platform L1000[18] has recently released (December 2020) a new batch of data. 219 

These data are in majority comprised of transcriptomes obtained in reference cancer cell lines under a 220 

large number of perturbations with chemical agents, but most importantly shRNA-induced knockdowns 221 

and CRISPR/Cas9 KOs. L1000 cost effective design entailed the identification of roughly 1,000 hallmark 222 

genes from which a large proportion of the whole transcriptome can be inferred. The L1000 platform 223 

only measures the expression of the hallmark genes experimentally. Two subsets of these data interest 224 

us. 225 

A first data set is composed of the almost systematic shRNA perturbation of all the hallmark genes, thus 226 

providing an expression matrix close to 1,00001,000 in size for 9 human cell lines: A375 (metastatic 227 

melanoma), A549 (lung adenocarcinoma), HCC515 (non-small cell lung cancer, adenocarcinoma), HT29 228 

(colorectal adenocarcinoma), HEPG2 (hepatocellular carcinoma), MCF7 (breast adenocarcinoma), PC3 229 

(metastatic prostate adenocarcinoma), VCAP (metastatic prostate cancer), and HA1E (normal kidney 230 

cells). To alleviate shRNA off-target effects, L1000 employed multiple hairpins, which were integrated 231 

into a consensus gene signature (CSG) that the authors showed to be essentially devoid of off-target 232 

consequences[18]. Cells were harvested 96 hours after shRNA perturbation leaving time to reach a 233 

steady state that is compatible to shRNA common use. Due to variation in data production, the actual 234 

matrix sizes ranged from 8150815 (MCF7) to 9380938 (A375). Interestingly, the t-SNE 2D projection of 235 

all the L1000 shRNA transcriptomes used here clearly indicate cell line specific subnetworks as well as 236 

shared, core parts (Fig. 4). 237 
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 238 

Figure 4. t-SNE projection of L1000 shRNA data. We note well-separated clusters that are specific to certain cell 239 

lines, e.g., HA1E, VCAP, HCC515, HEPG2, A549, A375, as well as shared undistinguishable profile. This indicates 240 

potential common and specific subnetworks across the cell lines. 241 

We followed the same performance evaluation procedure as above for K61. A representative (A375 242 

cells) confusion matrix is reported in Fig. 5A (full results in Suppl. Table 2), followed by TP numbers at 243 

the top 10% and top 20% selection levels in Fig. 5B-E. With these larger matrices, but also knockdown 244 

perturbations instead of KOs, MRA and MRA+CLR advantage was much augmented. Moreover, the CLR 245 

heuristic not only attenuated performance variability, but it almost systematically outperformed MRA 246 

alone. 247 

To illustrate the interest of network inference at this scale, we intersected MRA+CLR inferences in 248 

normal kidney HA1E and melanoma A375 cells with a Gene Ontology term, i.e., GO:0006974 cellular 249 

response to DNA damage stimulus. In Fig. 6, we can notice the difference in connectivity between 250 

normal cells and cells where this process is obviously exacerbated, in particular the regulation of ATMIN 251 

a key molecule in DNA repair. This result is in agreement with the known rewiring of genetic networks in252 

response to DNA damage[30]. 253 
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 254 

Figure 5. Performance on L1000 shRNA data. A. Representative confusion matrices for A375 cells. B. TP numbers at255 

the top 10% selection level. C. Comparison between the algorithm TP numbers (Wilcoxon test, 2-sided, #P < 256 

0.001). D. TP numbers at the top 20% selection level. E. Comparison between the algorithm TP numbers (Wilcoxon 257 

test, 2-sided, #P < 0.001, ##P < 0.00005). 258 

 259 

t 
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 260 

Figure 6. Networks inferred with MRA+CLR (top 10% selection) in normal kidney cells (A) and melanoma cells (B) 261 

for genes involved in cellular response to DNA damage stimulus (GO:0006974). 262 
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 263 

The second L1000 data set of interest is the CRISPR/Cas9 collection of KOs. These data were only 264 

available for five cell lines: A375, A549, HT29, MCF7, and PC3. The matrix sixes ranged from 343 343 265 

(MCF7) to 359 359 (A375). Performance results are featured in Fig. 7 and Suppl. Table 3. Although MRA266 

and MRA+CLR again dominated the other algorithms, their advantage was less pronounced on these 267 

large, full KO data. 268 

 269 

 270 

Figure 7. Performance on L1000 CRISPR/Cas9 data. A. Representative confusion matrices for A375 cells. B. TP 271 

numbers at the top 10% selection level. C. Comparison between the algorithm TP numbers. D. TP numbers at the 272 

top 20% selection level. E. Comparison between the algorithm TP numbers (Wilcoxon test, 2-sided, *P < 0.05). 273 

A 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.453942doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.27.453942
http://creativecommons.org/licenses/by-nc/4.0/


16 

 

 274 

 275 

Discussion 276 

We presented a particular application of MRA to large biological systems and showed its competitive 277 

performance compared to first-in-class MI-based inference methods. Obviously, MI-based methods 278 

have a much broader spectrum of application, as they do not need specific and systematic perturbations 279 

on the components of the biological system whose network is inferred. Nevertheless, when 280 

perturbation data are available, our results suggest that a dedicated method, relying on a modeling 281 

approach might deliver good performance in a robust fashion. The simple heuristic we proposed to 282 

prune MRA inferences, which was adapted from the CLR algorithm, provided more stability in MRA 283 

performance. In many cases, especially with very large systems (� 2 1,000), this heuristic boosted 284 

performance. 285 

Although the number of data sets was limited, we could notice much superior improvement over MI-286 

based methods with L1000 shRNA knockdown perturbation data compared to the two full KO data sets. 287 

This might relate to the linearization at the heart of MRA modeling, where the error depends on the 288 

magnitude of perturbations (see our derivation of MRA through Taylor series expansion[15]). Very 289 

strong perturbation such as full KOs might bring the data away from MRA area of safe application. 290 

  291 
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Materials and Methods 292 

 293 

Modular response analysis 294 

We briefly recall the main MRA equations to facilitate the reading of this text, and to explain the 295 

particular way we implemented the linear algebra. We assume that the biological system is comprised of 296 

� modules whose activity levels are denoted by � + ,	. We further admit the existence of � intrinsic 297 

parameters, � + ,	, one per module, and each of them can be perturbed by an elementary 298 

perturbation. One can imagine � reporting mRNA abundances and perturbations induced by shRNAs for 299 

instance. Lastly, we assume that there exist 3 4 ,	 0 ,	, an open subset, and .: 3 6 ,	of class 7�, 300 

i.e., continuously differentiable, such that 301 

�- � .
�, ��.                                                                                    (1) 302 

We do not need to know .
�, �� � 
.�
�, ��, 8 , .	
�, ��� explicitly, but we need the existence of a 303 

time 9 : 0 such that all the solutions, for any � and initial conditions of �, have reached a steady state, 304 

i.e., 305 

�- � 0, ;t : 9. 
The unperturbed, basal state of the modules is denoted �
��� + ,	 and it has corresponding 306 

parameters �� + ,	. By the application of the implicit function theorem and Taylor expansion at the 307 

first order [8,15], MRA relates the experimental observations of the global effect of perturbations to 308 

local interaction strengths, i.e., the matrix 1 � 
1�,�� � =
��

��

��
��

> that we mentioned in Results. Such local 309 

interactions are obviously signed and non-symmetric. To compute 1, we need to compute the relative 310 

global change induced by each elementary perturbation in each module. These values are compiled in a 311 

� 0 � matrix denoted ? � 
?�,�� with 312 

?�,� � @���
��

A
��

, 313 

 the relative difference in activity of module � upon Δ�� change induced by an elementary perturbation 314 

C� that touches module & only. The relationship between observational data in ? and the local 315 

interactions we want to estimate in 1 are provided by the following equations 316 

@���
��

A
��

� ∑ 1�,� =���
��

>
��

��� , & D �,                                                         (2) 317 

@���
��

A
��

� ∑ 1�,� =���
��

>
��

��� � 
��

��


��� @���
��

A.                                                (3) 318 
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By setting 1�,� � �1, Eqs (2) and (3) can be put together in matrix form and we obtain 319 

1? � �F,                                                                               (4) 320 

where F is a diagonal � 0 � matrix with 321 

F�,� � 
��

��


��� @���
��

A, � + G1, 8 , �H.                                                          (5) 322 

Eq. (3) can be solved in two steps: 1 � �F?�� and 1�,� � �1 imply F�,�
?����,� � 1, thus 323 

F�,� � �
������,�

. 324 

Therefore, 325 

1 � �Idiag
?���J��?��.                                                                 (6) 326 

In practice, relative differences in ? are often estimated with the more stable formula 327 

?�,� � 2 @�����������������
�����������������

A,                                                              (7) 328 

where we denote �
�� � Δ�� the steady-state corresponding to the changed parameters �� � Δ�, i.e., 329 

the solution of �-
�� � Δ�� � .
�
�� � Δ��, �� � ∆��. 330 

 331 

Parallelized and stable linear algebra 332 

Eq. (6) requires the computation of the inverse of the matrix ?, which is less efficient and less stable 333 

than LU decomposition with pivot search[31]. These technical issues are usually irrelevant with small 334 

systems, but in applications of MRA to larger biological systems they should be addressed.  335 

As several authors noticed, including in MRA original publication[8], the homogeneous Eq. (2) is 336 

sufficient to compute 1. Moreover, letting � take the values 1, 8 , �, we remark that Eq. (2) defines � 337 

systems of linear equations of dimension � � 1, which can be solved independently. In particular, those 338 

systems can be solved on independent processors by performing the LU decomposition with pivot 339 

search. Illustrative speedup curves are featured in Fig. 8. Depending on the size of �, each such 340 

subsystem could itself benefit from a parallel solver if enough processors were available. 341 

When Eq. (2) is solved for each value of �, it is straightforward to solve Eq. (3) to find F�,�  values in case 342 

those are required:  343 

@���
��

A
��

� ∑ 1�,� =���
��

>
��

��� � F�,� M F�,� � ∑ 1�,� =���
��

>
��

��� � @���
��

A
��

, 344 
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where Eq. (4) was used for the definition of . 345 

 346 

 347 

Figure 8. Speedup curves. A. K61 data(None condition, 61 61 matrix). B. L1000 shRNA data (A375 cells, 938 938 348 

matrix). 349 

 350 

CLR, MRNET, and ARACNE computations 351 

We used the implementation of these algorithms provided by the BioConductor R package minet[25]. 352 

The performance reported here reflects the performance of this specific implementation. 353 

 354 

CLR heuristic adapted to MRA 355 

We adapted the CLR normalization scheme by means of z-score computation to MRA  matrix content. 356 

From  we thus derive a  defined as follow: 357 

, with  the standard deviation of ’s -th row, 358 

, with  the standard deviation of ’s -th column, 359 

, and 360 

. 361 
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 362 

Data sets preparation 363 

TK61 data were obtained on multiple 96-well plates. Accordingly, we tried to stick to this format 364 

preparing data for MRA computations. We computed an ? matrix for each plate and then simply 365 

averaged the relevant ?’s for each experimental condition to obtain the averaged ? used in MRA. For 366 

MI-based inferences, we averaged all the relevant values. 367 

L1000 shRNA data were extracted at level 5 (L1000 terminology) where CGSs (integration of multiple 368 

shRNA hairpins to alleviate off-target effects) were transformed into z-scores for normalization purposes 369 

by the authors of the data. Consequently, values representing the abundance of a gene were no longer 370 

positive numbers but just real numbers. Eq. (7) above was adapted to compute the relative changes in 371 

MRA ? matrices according to 372 

?�,� � 2 N CGS�
�� � ∆��� � CGS�
���
|CGS�
�� � ∆���| � |CGS�
���|S 

avoiding potential divisions by 0 in case of small values with opposed signs. 373 

L1000 CRISPR/Cas9 data were averaged over replicates (also level 5). 374 

 375 

Performance evaluation 376 

STRING as well as MI-based inference are devoid of direction of interaction and a sign. Therefore, the 377 

intersection of inferences with STRING content only used the upper triangular part of matrices 378 

representing the inferences (such matrices are symmetric anyway). To provide a fair comparison with 379 

MRA and MRA+CLR, we filled the upper triangular part of 1 according to 1�,� � max)T1�,�T; T1�,�T*, � U �. 380 
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