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Abstract23

Brain decoding aims to infer human cognition from recordings of neural activity using modern24

neuroimaging techniques. Studies so far often concentrated on a limited number of cognitive states25

and aimed to classifying patterns of brain activity within a local area. This procedure demonstrated a26

great success on classifying motor and sensory processes but showed limited power over higher27

cognitive functions. In this work, we investigate a high-order graph convolution model, named28

ChebNet, to model the segregation and integration organizational principles in neural dynamics, and29

to decode brain activity across a large number of cognitive domains. By leveraging our prior30

knowledge on brain organization using a graph-based model, ChebNet graph convolution learns a31

new representation from task-evoked neural activity, which demonstrates a highly predictive signature32

of cognitive states and task performance. Our results reveal that between-network integration33

significantly boosts the decoding of high-order cognition such as visual working memory tasks, while34

the segregation of localized brain activity is sufficient to classify motor and sensory processes. Using35

twin and family data from the Human Connectome Project (n = 1,070), we provide evidence that36

individual variability in the graph representations of working-memory tasks are under genetic control37

and strongly associated with participants in-scanner behaviors. These findings uncover the essential38

role of functional integration in brain decoding, especially when decoding high-order cognition other39

than sensory and motor functions.40

41

Keywords: fMRI, brain decoding, functional integration, graph convolutional network, brain atlas,42

brain connectome, saliency map, representation similarity43

44

Teaser45

 Modelling functional integration through graph convolution is a necessary step towards46

decoding high-order human cognition.47

48

Significance statement49
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Over the past two decades, many studies have applied multivariate pattern analysis to decode what50

task a human participant is performing, based on a scan of her brain. The vast majority of these51

studies have however concentrated on select regions and a specific domain, because of the52

computational complexity of handling full brain data in a multivariate model. With the fast progress53

in the field of deep learning, it is now possible to decode a variety of cognitive domains54

simultaneously using a full-brain model. By leveraging our prior knowledge on brain organization55

using a graph-based model, we uncovered different organizational principles in brain decoding for56

motor execution and high-order cognition by modelling functional integration through graph57

convolution.58
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Introduction59

Understanding the neural substrates of human cognition is a main goal of neuroscience research.60

Modern imaging techniques, such as functional magnetic resonance imaging (fMRI), provide an61

opportunity to map cognitive function in-vivo, and to decode the dynamics of cognitive processes62

from neural activity. Brain decoding has been an active topic since Haxby and colleagues first63

proposed the idea of using fMRI brain responses to predict the category of visual stimuli presented to64

a subject (1). Nowadays, a variety of computational models are used in the field, including multi-65

voxel pattern recognition, linear regression models, as well as nonlinear models such as deep artificial66

neural networks (DNN). Among which, DNN showed promising advantages over other linear models67

by providing an end-to-end solution to a direct mapping from recorded brain activity to brain68

cognition, for instance, using convolutional (2) and recurrent neural networks (3). However, most69

previous decoding studies aimed to segregate the spatial patterns of brain activation under different70

task conditions, but largely ignored the integration of brain dynamics during cognitive processes.71

Functional segregation into highly localized brain areas, and functional integration at the levels of72

distributed brain regions, modules and networks, are fundamental principles of brain organization and73

have been widely observed in different populations and among a variety of cognitive tasks (4–7). So74

far, the majority of brain decoding studies only utilized the functional specialization hypothesis that75

aims to distinguish the localized brain activation patterns under a small number of experiment tasks,76

for instance, the involvement of the motor and sensory cortex during the movement of different body77

parts (8), or the engagement of different regions in the visual cortex for the recognition of various78

types of visual stimuli (9). As a result, such brain decoders were restricted to mostly motor and79

sensory processes (e.g. recognition of visual stimuli) and highly relied on domain knowledge (e.g.80

activating different parts of the visual cortex). This assumption of functional segregation also limited81

the generalizability of brain decoding towards high-order cognitive functions that were known to82

engage multiple brain systems. One typical example is the visual working memory task (VWM), for83

which multiple brain networks were involved through intense interactions among memory84

representations and other basic attention and sensory processes (10). For instance, early visual cortex85

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.26.453914doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453914
http://creativecommons.org/licenses/by-nd/4.0/


played an important role in the detection of visual features including orientation (11), motion (12) and86

content (13), while the parietal and prefrontal cortex contributed to maintenance of visual information87

over a delayed interval (14). In these cases, both local and global information of brain activity may88

contribute to the decoding of cognitive processes (15,16).89

We started to tackle this problem in our previous paper (17) by generalizing the convolutional90

operations from DNN onto brain organization. This approach can effectively capture both segregated91

brain activity of task-related brain regions, and information integration of neural dynamics within92

brain networks. Compared to previous linear and nonlinear decoding models, the proposed decoding93

model showed high generalizability over a variety of cognitive domains without relying on any prior94

information on the tested domain. However, this model relied on a simplified version of graph95

convolution which only took into account information integration within the same brain network at96

each layer. It showed limited power of representational learning on high-order cognitions that may97

involve complex forms of functional interactions across multiple brain systems.98

To address this issue, we investigated a more sophisticated form of graph convolution in this study,99

namely ChebNet, which approximates the calculation of graph convolution using high-order100

Chebyshev polynomials. It has been proved that the ChebNet graph convolution is -localized in101

space (on the graph) by taking up to th order Chebychev polynomials (18). In other words, ChebNet102

integrates information within a relatively larger neighborhood by taking multiple steps of random103

walks on the brain graph. As a result, ChebNet graph convolution is capable of characterizing the104

complex forms of information processing during cognitive processes, i.e. segregating task-evoked105

activity from localized brain regions (K=0), integrating neural activity within the same brain networks106

(K=1), as well as information integration between different networks and among multiple brain107

systems (K>1). ChebNet provides a generalized form to encode this multiscale hierarchical108

organization of brain cognition in a single graph convolutional layer. The decoding model started with109

a parcellation that divides the whole brain into hundreds of brain regions and a brain graph that110

captures hierarchical and modular structures in brain organization. The brain graph as well as the111

dynamic information flow (i.e. task-evoked brain response at each brain region) on the graph was then112

mapped onto a new representational space through multilayer spatiotemporal graph convolutions.113
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These embedded graph representations naturally disassociate different cognitive tasks with large114

distances between task conditions and small distances within the same condition, and can improve the115

prediction of cognitive states by achieving better functional alignment between multiple trials and116

across different subjects.117

In order to verify this hypothesis, we constructed the decoding model based on ChebNet graph118

convolution at different orders, ranging from local brain regions (K=0), to the same brain network119

(K=1), to multiple brain systems (K>1). All decoding models were evaluated on the task-fMRI120

database from the Human Connectome Project (HCP)(19) and simultaneously distinguished 6121

cognitive domains or 21 task conditions by using a short time window of fMRI scans (e.g. 10122

seconds). Under this framework, we systematically investigated how large-scale functional integration123

impact on brain decoding especially for multidomain decoding and decoding of high-order cognitive124

functions. Taking Motor and Working-memory tasks as examples, we further investigated the125

organizational structures among ChebNet layers within and across decoding models, and explored126

their relations to the two principles of brain organization, i.e. functional segregation and integration.127

Moreover, we investigated whether the representations learned through ChebNet graph convolutions128

were able to improve inter-subject alignment in brain responses and preserve individual variability in129

brain organization at the same time.130

131
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Results132

Decoding cognitive functions with fine cognitive granularity and high accuracy133

We proposed a decoding pipeline based on ChebNet graph convolution which automatically learns the134

spatiotemporal dynamics of brain activity from a short series of fMRI responses and predicts brain135

states based on learned feature representations (as shown in Figure 1-S1). The model starts with a136

brain graph with nodes representing brain parcels and edges representing brain connectivity, maps137

task-evoked fMRI responses onto the predefined brain graph, and learns high-level graph138

representations of neural activity by using stacked graph convolutions, taking into account both139

segregated neural activity within localized brain regions and functional interactions among between140

brain networks. For a more detailed description of the decoding model, please see the “Methods”141

section and Supplemental Information.142

The ChebNet decoding model was evaluated using the cognitive battery of HCP task-fMRI dataset143

acquired from 1200 healthy subjects. Using the ChebNet-K5 model (i.e. ChebNet graph convolution144

with K=5), the six cognitive domains were nearly perfectly differentiated from each other by only145

using 10s of brain recordings (approximately the shortest duration of task conditions in HCP), with an146

average test accuracy of 96% (mean=95.81%, STD =0.15% by using 10 fold cross-validation with147

shuffle splits). Moreover, the pipeline was capable of distinguishing experimental conditions with fine148

cognitive granularity and fine temporal resolution, either across multiple domains (see Table S3) or149

within each cognitive domain (see Table S2), and achieved high decoding accuracy on both tasks.150

Among the six cognitive domains (as shown in Figure 1-S2 and Table S2), the language tasks (2151

conditions, story vs math), and motor tasks (5 conditions, left/right hand, left/right foot and tongue)152

were the most easily recognizable conditions, and showed the highest precision and recall scores (F1-153

score = 98.45% and 99.38%, respectively for classifying two language conditions and five motor154

conditions). The model achieved high decoding performance on other high-order cognitive functions155

when longer duration of task blocks was available, for instance working-memory (94.51%, classifying156

8 conditions using 25s) and social cognition (96.58%, classifying 2 conditions using 23s). Our157
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decoding model outperformed existing linear and nonlinear models including other deep learning158

architectures, which neglect the hierarchical brain organization during cognitive processes, for either159

classifying between cognitive domains (e.g. 93.7% when using 27 TRs reported in (2)) or decoding160

task states within specific domain (e.g. 92.6% and 92.9% for working-memory and social cognition161

respectively when decoding on 30s of fMRI data (3)).162

Brain decoding captured reliable and task-specific salient features163

In order to validate that the decoding model used biological meaningful features, we generated the164

saliency maps on the trained decoding model by propagating the non-negative gradients backwards to165

the input layer (20). An input feature is salient or important only if its little variation causes big166

changes in the decoding output. The saliency scores were evaluated for each task trial independently167

and then averaged within each subject and for each condition (cognitive domain or task state). First,168

different sets of salient brain regions were detected for each cognitive domain (as shown in Figure 1C169

and D), for instance the involvement of the somatosensory cortex for motor execution (MOTOR) and170

the engagement of perisylvian language areas for language comprehension (LANGUAGE). Second,171

the salient features were not only highly selective to specific cognitive tasks but also very stable172

across trials and subjects. We took the Motor and Working-memory tasks as examples. The reliability173

of saliency values was evaluated by using repeated-measure ANOVA, controlling for the random174

effect of subjects and experimental trials. Only the salient brain regions that having high saliency175

values (>0.3) and showing a significant effect of task ( � <0.001) were reported in the following176

analysis. As shown in Figure 2, salient brain regions in the sensorimotor cortex were identified in the177

Motor tasks, including region “a” (labelled as “area 5m” in the Glasser’s atlas) selectively activated178

during foot movements, region “b” (labelled as “area 2”) selectively activated during hand movements,179

regions c (labelled as “area OP4”) selectively activated during tongue movements. This distinctive180

pattern in the saliency maps were highly consistent across trials, sessions, and even subjects. For181

Working memory tasks, which involved both the differentiation between 0back vs 2back tasks and the182

recognition of different image categories, the decoding model learned reliable features related to both183

aspects, i.e. memory-load and image category. Here, we plotted the salient features for 0back and184
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2back tasks on face and place images. As shown in Figure 2D, ParaHippocampal Area 1 (PHA1) and185

ParaHippocampal Area 2 (PHA2) were selectively involved for the recognition of place images186

(repeated measure ANOVA, F-score=70.96 and 38.12, p-value=1.74e-8 and 3.0e-6 respectively for187

PHA1 and PHA2), while Fusiform Face Complex (FFC) and Lateral Occipital Area 1 (LO1) were188

selectively engaged for the recognition of faces (F-score=57.75 and 91.47, p-value=1.02e-7 and189

1.75e-9 respectively for FFC and LO1). On other hand, for both place and face images,190

ParaHippocampal Area 3 (PHA3) was more involved in 0back tasks than 2back tasks (F-score=26.38,191

p-value=3.3e-5) while area PH was selectively engaged in the 2back tasks (F-score=102.56, p-192

value=6.01e-10) when fixing the stimuli category. Our results revealed that the decoding model193

captured reliable salient features from task-evoked brain activities, in order to distinguish among194

cognitive domains and task states. These salient features were derived from task-related brain regions195

and showed selective responses to different task conditions with high consistency not only with the196

same subject but also between different subjects (as shown in Figure 2), possibly revealing the197

biological basis of the decoding model.198

199

200
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201

Figure 1. Decoding on six cognitive domains and the corresponding saliency maps.202

The decoding model predicted the cognitive domain from each 10s of fMRI responses and achieved203

an average test accuracy of 96%. The F1-score on each domain was shown in A. The corresponding204

cross-domain confusion matrix was shown in B. The saliency maps were evaluated for each task trial205

independently and then averaged within each subject and each domain. Different sets of salient brain206

regions were detected for each cognitive domain (C). Due to the similarity in task stimuli, the salient207

features in the ventral visual stream were identified for image recognition in three cognitive tasks, i.e.208

Working-memory (WM), relational processing (RELATIONAL) and emotional processing209

(EMOTION). Still, the decoding model captured different sets of visual areas for the three cognitive210

domains (D).211

212

213
Figure 2. Salient features for the Motor (A) and Working-memory (B) tasks.214

Saliency value of each individual trial was estimated by using the guided backpropagation approach.215

The stability of saliency was evaluated by plotting the saliency values across randomly selected HCP216

subjects. The effect of task condition in the saliency values was then evaluated by using repeated-217

measure ANOVA, with the ‘subject’ as the random effect and ‘task condition’ as the within-subject218

effect. Only salient brain regions (saliency values>0.3, the full range of saliency is (0,1)) with a219

significant ‘task condition’ effect (p<0.001) were shown in the final saliency maps (A and B). For220

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.26.453914doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453914
http://creativecommons.org/licenses/by-nd/4.0/


Motor task (C), three salient brain regions were selected that showed selective responses to the221

movement of foot (region “a”), hand (region “b”) and tongue (region “c”). The task trials222

corresponding to the movements of the left body parts were plotted in solid lines and in dashed lines223

for the right body parts. Brain regions in the left hemisphere were shown in the 1st row and the right224

hemisphere shown in the 2nd row. For Working-memory task (D), three sets of salient brain regions225

were selected that showed selective responses to the image category, e.g. place (1st column, in orange)226

and face image (2nd column, in blue), or to memory load, e.g. 0back (solid line) and 2back (3rd column,227

dashed line).228

229

Decoding model learned hierarchical representations among ChebNet layers230

The decoding model not only extracted biologically meaningful features associated with task-related231

brain regions, as illustrated by the saliency map analysis, but also learned hierarchical representations232

of brain response in each ChebNet layer. For instance, in the first graph convolutional layer (gcn1),233

the model learned various shapes of temporal kernels (accounting for the hemodynamic response in234

BOLD signals). Using these kernels, the model extracted a collection of spatial “activation maps”,235

which resembled the actual brain activation maps detected by the canonical GLM approach (Figure 3-236

S1 and Figure 3-S2). More sophisticated and task-specific feature representations were captured in237

deeper layers. In order to verify the hierarchy among ChebNet layers, we evaluated the similarity of238

feature representations using centered kernel alignment (CKA) with a linear kernel (21), with 0 <239

CKA < 1 . As shown in Figure 3, a block-diagonal structure was detected in the CKA matrix of240

Working-memory (WM) tasks, indicating a hierarchical organization of representations among241

stacked ChebNet layers such that each layer inherited some information from previous layers, learned242

new representations in the current layer and passed these features onto the next layer.243

The hierarchical clustering was applied to the CKA matrix and revealed a strong disassociation244

between the low-level features (gcn1 to gcn2), hidden representations (gcn3 to gcn4), and high-level245

representations (gcn5 to gcn6). Weak associations were detected across different levels (CKA=0.94246

and 0.76 for within- and between-level similarity), with a stepwise progression towards the last247
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ChebNet layer (CKA=0.54, 0.83, 0.92 for low, middle, high-level features as compared to gcn6),248

where category-specific information was present (i.e. different representations between task249

conditions). A similar hierarchical organizational structure was detected on the Motor task (as shown250

in Figure 3) but with fewer levels in the hierarchy, i.e. low- and high-level features, and with high251

redundancy in the middle layers (gcn3 to gcn5, average similarity with gcn6 is CKA=0.92). Still,252

distinct features were learned in the low- and high-level representations (CKA=0.58 for gcn1-gcn2 as253

compared to gcn6). Besides, the model already captured category-specific information starting in254

early ChebNet layers (Figure 6-S2). Our results indicated that the ChebNet decoding model learned255

hierarchical representations across graph convolutional layers in order to capture the underlying256

neural dynamics during cognitive processes. The hierarchy in the representations of the decoding257

model resembled the hierarchy in brain organization which has been reported in a variety of cognition258

functions especially for high-order cognition (22,23). Moreover, the different organizational patterns259

in ChebNet representations between cognitive tasks to some extent reflects different scales of260

information integration in cognitive processes, such that a deep ChebNet architecture was required to261

encode the complex forms of functional integration in WM, while a shallow ChebNet was sufficient262

to encode the segregation of localized brain activity during motor execution.263

264
Figure 3. Hierarchical organization of layer representations learned through ChebNet graph265

convolutions.266

The similarity of representations between ChebNet layers was first calculated using CKA with a267

linear kernel. A distance metric was then generated from the CKA matrix (dis = 1-cka). After that, the268

hierarchical clustering was applied to the distance matrix using Ward's linkage. The resulting269
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dendrogram illustrated the hierarchical organization among ChebNet layers, for instance two-level270

organization in the Motor task and a tripartite organization in the Working-memory task.271

272

Variable sensitivity to the K-order uncovers different organizational principles in cognitive273

processes274

Another factor that impacts information integration in brain decoding is the K-order of ChebNet, by275

taking into account multi-level integration of neural dynamics at each graph convolutional layer,276

ranging from localized brain areas (K=0) to spatially distributed regions within the same network277

(K=1) and towards inter-connected brain networks (K>1). The choice of K-order not only showed an278

impact on the decoding performance, but also changed the hierarchy of feature representations learned279

in each ChebNet layer.280

First of all, the decoding of six cognitive domains significantly impacted by the choice of �-order in281

ChebNet, indicating a faster convergence speed as well as higher decoding accuracy when using high-282

order models (Figure 4B). Significant improvements in decoding were detected between K=1283

(integration of brain activity within the same network) and K>1 (between-network communication)284

(test accuracy = 93% vs 96% respectively for K=1 and K>1), significantly boosted compared to the285

localized decoding model (test accuracy = 83% for K=0). Second, variable sensitivity to the K-order286

was detected among different cognitive domains (Figure 4A). Specifically, for the Motor task, the287

decoding performance showed no improvement when increasing K, which means no gain from288

between-network communication during motor execution. Coinciding with this, the hierarchical289

organization of layer representations in the Motor task showed a very stable bipartition pattern when290

increasing K, i.e. low- and high-level features (as shown in Figure 4C). By contrast, the decoding of291

WM tasks gradually improved as increasing K and reaching the plateau after � > 5, which means that292

between-network communication and high-order integration plays an important role in WM,293

especially for distinguishing between 0back and 2back tasks (as shown in Figure 4-S1). Interestingly,294

the hierarchical organizational structure in WM (as shown in Figure 4D) started with three isolated295
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clusters at K=1, gradually fused the representations by filling the gaps between neighboring layers,296

and converged to a stable tripartite organization at K=5 (i.e. low-, middle- and high-level297

representations). Further increase in the K-order did not change this organization but instead298

expanded the middle-level through encoding redundant hidden representations. Our results indicated299

that the variable sensitivity to the choice of K-order may uncover distinct organizational principles in300

cognitive processes, for instance, localized information processing within the motor and sensory301

cortex for motor execution, while complex forms of functional interaction and information integration302

across multiple brain systems/networks during WM tasks. Our findings coincided with the notion of303

functional segregation and integration in brain cognition (24), for instance, within-network304

communication is essential for motor execution, whereas integrative, between-network305

communication is critical for visual working memory (4).306
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307
Figure 4. The effect of K-order on brain decoding and hierarchical organization of ChebNet.308

The effect of K-order on brain decoding was investigated by spanning over the list of [0,1,2,5,10]. The309

decoding performance on K=0 was not shown in this figure due to its low overall performance310

(decoding accuracy = 83.76%, 84.21%, 83.51% on training, validation and test sets). (B) High-order311

decoding models showed a faster convergence speed during model training and also achieved better312

decoding accuracy. Significant improvements were detected between K=1 (information integration313

within the same network) and K>1 (transmission of brain activity among inter-connected brain314

networks). (A) Variable sensitivity to the K-order was detected among different cognitive domains.315

The effect of K-order on each cognitive domain was estimated by averaging the F1-score on the test316

set. Among which, the Motor tasks showed stable decoding performance when increasing K while the317
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decoding of WM tasks gradually improved as increasing K. (C) A stable two-level organization318

among ChebNet layers was revealed for the Motor tasks when increasing K. (D) For the Working-319

memory task, it started with an unstable bipartition and gradually evolved into a tripartite organization320

among ChebNet layers. The similarity of representations among ChebNet layers was calculated using321

CKA with a linear kernel. The hierarchical clustering was then applied to the distance matrix (dis = 1-322

cka) using Ward's linkage and revealed the organizational principles among ChebNet layers.323

324

Functional integration in Working-memory tasks and segregation in Motor tasks325

To further validate the functional segregation and integration hypothesis in brain decoding, we326

conducted a systematic analysis on the decoding models at different K-orders by calculating the327

similarity of representations between ChebNet models. We used the ChebNet-K5 model as the328

reference model for the similarity analysis.329

For Motor tasks, the ChebNet-K1 model already captured the low-to-high-level organization in graph330

representations. Further increase in K did not change this organization but only caused redundant331

representations in the high-level features (average similarity with gcn6 in gcn3-gcn5 is CKA=0.78332

and 0.92 for ChebNet-K1 and ChebNet-K5). A direct comparison between the two models (3rd row333

and 1st column in Figure 5B) revealed that, compared to the ChebNet-K5 model, the ChebNet-K1334

model captured highly similar low-level features (CKA=0.92 for gcn1 when comparing between335

ChebNet-K1 and ChebNet-K5) and learned closely related high-level representations (CKA=0.84 for336

gcn6 between the two models). However, very different hidden representations were learned in the337

middle layers between the two models (averaged CKA=0.70 for gcn2 to gcn5). These results338

indicated that the highly segregated brain function, such as the sensory and motor tasks, did not339

involve high-level of information integration, but rather relied on neural transmission of brain activity340

within a local area or segregated networks.341

On the other hand, for the Working Memory tasks, the ChebNet-K5 model captured a nice342

disassociation between low-level features (gcn1 to gcn2), hidden representations (gcn3 to gcn4), and343

high-level features (gcn5 to gcn6). Such hierarchical organization was broken in the ChebNet-K1344

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.26.453914doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453914
http://creativecommons.org/licenses/by-nd/4.0/


model due to poor between-layer communication (i.e. big gaps in the representations between345

neighboring layers, CKA=0.98 and 0.69 for within- and between-level similarity in ChebNet-K1).346

Moreover, the ChebNet-K1 model successfully captured the low-level features by showing high347

similarity to ChebNet-K5 in the first two ChebNet layers, but it was not capable of encoding high-348

level representations in the last ChebNet layer (3rd row and 1st column in Figure 5C, compared349

between ChebNet-K1 and ChebNet-K5, CKA=0.93 for gcn1, 0.88 for gcn2, 0.74 for gcn6). By350

contrast, the ChebNet-K10 model learned very similar representations in the low, middle and high351

ChebNet layers as in ChebNet-K5 (4th row and 3rd column in Figure 5C, compared between352

ChebNet-K5 and ChebNet-K10, CKA=0.94 for gcn1, 0.90 for gcn6, average CKA=0.90 for gcn3 to353

gcn5). These results indicated that the high-order cognitive functions required a large scale of354

information propagation and integration on the brain graph, not only involving the local connections355

within a specific brain network (� = 1) but also engaging the long-range connections across multiple356

networks (� ≥ 5).357

358
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Figure 5. Similarity analysis of the decoding model with different K orders for the Motor and359

Working-memory tasks.360

The similarity analysis of layer representations demonstrated a hierarchical organization among361

stacked ChebNet layers in both Motor and Working-memory tasks (A). The decoding models were362

built on the same functional graph derived from the resting-state functional connectivity. The363

similarity of ChebNet representations was estimated not only between different layers in the same364

model but also between different models. For the Motor task (B), the decoding model already365

achieved the best performance at � = 1, and no further improvement on the decoding performance366

when increasing the K-order. In terms of layer representations, the ChebNet-K5 model captured367

similar low-level and high-level representations as ChebNet-K1 (3rd row and 1st column in B), but368

learned different representations in the hidden layers. Besides, higher redundancy was captured in the369

ChebNet-K5 model. This analysis indicated that ChebNet-K1 was enough to capture the functional370

segregation in brain activity during Motor tasks. For the Working-memory task (C), the decoding371

model showed high sensitivity to the choice of K-order and achieved the best decoding accuracy372

when� = 10. In terms of layer representations, the ChebNet-K1 model captured similar low-level373

representations as ChebNet-K5 (3rd row and 1st column in C), but learned very different hidden and374

high-level representations. On the other hand, ChebNet-K10 was highly similar to ChebNet-K5 (4th375

row and 3rd column in C), not only in the low-level representations (gcn1-gcn2), hidden376

representations (gcn3-gcn5), as well as high-level representations (gcn6). This analysis indicated that377

a high-order model was required in order to capture the complex forms of functional integration378

during Working-memory tasks.379

380

Improved functional alignment of cognitive states using graph convolution381

The layer representations in ChebNet improved inter-subject alignment of task-evoked brain382

responses. For visualization purposes, we projected the feature representations of each ChebNet layer383

onto a 2-dimensional space using t-SNE (25). Compared to raw fMRI data or the activation maps384

derived from GLM analysis, the ChebNet representations of different task conditions were highly385
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clustered and easily separated from each other, demonstrating a strong effect of task segregation386

(Figure 6A). The projections using other dimension reduction techniques were shown in Figure 6-S1,387

including PCA, UMAP (McInnes et al., 2018), and PHATE (Moon et al., 2019). The segregation388

effect was evaluated by calculating the modularity score (Q) of the state-transition graph on the389

projections of layer representations. As we went deeper along ChebNet layers, the segregation effect390

gradually strengthened and reached the peak in the last ChebNet layer. As shown in Figure 6-S2, for391

the Motor task, a low segregation was detected in the raw fMRI data (Q = 0.25), with slightly higher392

values in early ChebNet layers (e. g. Q = 0.41 in gcn1) and reaching the peak in the last ChebNet393

layer (Q = 0.60 in gcn6). A similar level of task segregation was observed when using a high-order394

ChebNet model, except for a faster convergence speed among ChebNet layers (Figure 6-S2B). For the395

WM tasks, the segregation effect was evaluated separately for the memory-load and image category.396

Interestingly, stronger segregation effect was detected among different image categories, e.g. place,397

face, body and tool images, than between different levels of memory loads, e.g. 0back and 2back (e.g.398

Q = 0.55 vs 0.38 in gcn6 respectively for the image category and memory load), but both higher than399

the effects in the raw fMRI data (Q = 0.06 vs 0.03 respectively).400

Association between ChebNet representations and behavioral performance401

The segregation effect in the ChebNet representations not only boosted the decoding of cognitive stats,402

through better alignment of brain response across trials and subjects, but also improved the403

association between behavior and brain organization, largely preserving individual variability in404

cognitive processes. Specifically, the decoding model achieved much higher decoding accuracy when405

using the ChebNet representations as features, regardless of the choices of classifiers and parameters,406

for instance either using a multi-class support vector machine classification (SVC) or deep neural407

networks (as shown in Figure 6B). In addition, the segregation in the representations of brain response408

was significantly associated with behavioral performance during visual working memory task (as409

shown in Figure 6C). It has been shown in previous studies that the modularity of state-transition on410

individual fMRI data was significantly associated with participants’ in-scanner task performance (26).411

This association was also observed in our analysis. Moreover, we found a much stronger brain-412
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behavior association when constructing the state-transition graph based on ChebNet representations413

rather than using raw fMRI data (Figure 6C). Specifically, the segregation of memory load in graph414

representations was highly associated with subjects’ in-scanner performance (as shown in Figure 7415

and Figure 7-S1), including the average accuracy on all WM tasks (� =0.5013, � =2.0e-69), on 0back416

tasks (� =0.4450, � =2.33e-53) and on 2back tasks (� =0.3962, � =1.08e-13), as well as the reaction417

time on all WM tasks (� =-0.2601, � =5.74e-18), on 0back tasks (� =-0.3592, � =1.13e-33) and on418

2back tasks (� = -0.1173, � =0.0001). This analysis was done by using all subjects from the HCP419

S1200 database (� =1074 of all subjects with available behavioral and imaging data for WM tasks).420

The significant correlations were sustained after controlling for the effect of confounds including age,421

gender, handedness and head motion (� =0.4659, � =5.74e-59 for the average accuracy; � =-0.2552,422

� =2.0e-16 for the reaction time). Moreover, the segregation of ChebNet representations as well as in-423

scanner behavioral performance during WM tasks were significantly heritable in HCP population (h2424

=0.2882 for ChebNet representations, h2 =0.5624 and 0.4118 for average accuracy and reaction time425

in WM tasks, see Table S4 for all heritability estimates) and demonstrated significant shared genetic426

variance in ChebNet representations and behavioral scores (ρ� =0.80 and -0.39 respectively for the427

average accuracy and reaction time, see Table 1 for shared genetic influences in brain-behavioral428

associations).429
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430
Figure 6. ChebNet graph representation improved the functional alignment of cognitive states,431

and induced higher decoding accuracy (B) and better prediction of task performance (C).432

Graph representations were extracted from the last ChebNet layer of the decoding model. Both fMRI433

data and contrast maps were mapped onto the same brain atlas, i.e. Glasser’s atlas (27) in the example,434

by averaging the fMRI time-series or z-scores of task activation within each brain region. (A) All435

three types of features, i.e. fMRI data, contrast maps and graph representations, were projected onto a436

2-dimensional space using t-SNE (25) for the visualization purpose. Among them, graph437

representations showed high distinctions among different task conditions. (B) The decoding of eight438

working-memory tasks was re-evaluated by using multi-class support vector machine classification439

(SVC) on these features. Among them, graph representations showed the highest decoding accuracy,440

regardless of the chosen classifiers and parameters, e.g. linear classifier like SVC or nonlinear441

classifier such as ChebNet. (C) The effect of task segregation was evaluated by the modularity score442

on individual state-transition graph, as proposed by (26). We found a strong association between the443

task segregation of ChebNet representations and participants’ in-scanner task performance. The purple444

line indicated the association of participants’ in-scanner task performances with graph representations445

derived from ChebNet, while the blue line indicated the association with raw fMRI data.446
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447
448

Figure 7. Modularity scores in the state-transition graph significantly correlated with correct449

responses during Working-memory tasks.450

The modularity score was calculated based on the state-transition graph of each subject, as proposed451

by (26). Specifically, we first constructed a kNN graph from the t-SNE projections of fMRI signals (B)452

or learned graph representations (A) of each subject. The modularity scores were then evaluated based453

on the kNN graph with the partition provided by task conditions (e.g. 0back vs 2back). We found454

significant correlations between the modularity scores of graph representations (A) and correct455

responses during working-memory tasks (1st panel), 0back task conditions (2nd panel) and 2back task456

conditions (3rd panel). Much weaker associations were detected in the raw fMRI data (B). The blue457

lines indicated the linear regression models between the modularity score of the state-transition graph458

and the average accuracy during task performance. The analysis was done among all subjects from459

HCP S1200 release, with complete records of behavioral and imaging data for working memory tasks460

(N=1074).461

462

463

Table 1: Shared genetic influences in ChebNet representations and behavioral scores.464
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Bivariate genetic analyses were applied to quantify the shared genetic variance between ChebNet465

representations of brain responses and behavioral measures. Strong associations of ChebNet466

representations with the average accuracy (Acc) and reaction time (RT) during WM tasks were467

observed, mainly due to shared genetic effects in brain response and behaviors. Both genetic and468

phenotypic correlations reached a high-level of significance (FDR corrected). ***: � <0.001, **:469

� <0.01, *: p<0.05470

Phenotypic

correlation (��)

Genetic

correlation (��)

WM_Task_Acc 0.4659 *** 0.7992 ***

WM_Task_2bk_Acc 0.3716 *** 0.7731 ***

WM_Task_0bk_Acc 0.4189 *** 0.8650 ***

WM_Task_RT -0.2552 *** -0.3895 **

WM_Task_2bk_RT -0.1173 *** -0.2455

WM_Task_0bk_RT -0.3408 *** -0.4967 **

471
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Discussion472

We proposed a generalized framework for brain decoding based on ChebNet graph convolutions. The473

model takes in a short window of fMRI time series and a brain graph (with nodes representing brain474

parcels and edges representing brain connectivity), and then annotates brain activity with fine475

temporal resolution, and fine cognitive granularity. Using a 10s window of fMRI signals, our model476

identified 6 cognitive domains with a test accuracy of 96%, and distinguished fine-grained cognitive477

states on a trial basis with an accuracy above 93%, outperforming existing linear and nonlinear478

decoding models. This gain in brain decoding was mainly contributed by high-level integration of479

brain dynamics not only within limited subsets of brain regions but also between multiple brain480

networks. Specifically, we used high-order ChebNet graph convolution to encode the complex forms481

of functional integration during cognitive processes and captured hierarchical representations of brain482

activities at different levels. This hierarchical organizational pattern as well as the decoding accuracy483

was selectively impacted by the K-order in graph convolution, due to different organizational484

principles of the cognitive tasks. For segregated brain function like motor execution, the K=1 model485

achieved the best performance and revealed a stable 2-level hierarchy in neural representations. By486

contrast, for high-order cognition such as visual working-memory tasks, the model plateaued at K=5487

and uncovered a tripartite organization in neural activity. Our findings revealed the essential role of488

functional integration in brain decoding, especially when decoding high-order cognition other than489

sensory and motor functions.490

Functional segregation and integration in brain decoding491

Brain decoding has been a popular topic in neuroscience literature for decades since Haxby first492

proposed the idea of recognition of different visual stimuli using brain activity from the visual cortex493

(1,28). In the last decades, a variety of decoding models have been proposed with the aim to learn a494

linear discriminative function on the spatial patterns of brain activations associated with different task495

conditions. For instance, researchers have successfully attempted to use brain activity to reconstruct496
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the frames of movies (29), or to decode the semantic context from words (30) and visual scenes (31)497

by using linear regression models. Recently, the fast development of deep artificial neural networks498

(DNNs) has also drawn a lot of attention in neuroscience research. Several different DNN499

architectures have been proposed to map human cognition from recorded brain activity, for instance500

using classical convolutional (2) and recurrent neural networks (3), or a generalized form of501

convolutions in the graph domain (17). However, the majority of brain decoding studies only utilized502

the functional specialization hypothesis that aims to distinguish the localized brain activation patterns503

by either training a linear classifier (16,32) or a nonlinear model through DNNs (2).504

However, the majority of brain decoding studies so far only utilized the functional specialization505

hypothesis that aims to distinguish the localized brain activities from a single brain region or a small506

set of areas. This approach has shown promising results in the recognition of visual stimuli (28) and507

decoding the direction of finger movements (33). It may suffer from limited decoding power when508

dealing with large populations and a variety of cognitive states that involve not only motor and509

sensory perception but also high-order cognition (16). Such large-scale decoding is still challenging510

and may require a large collection of brain imaging data and incorporating brain responses from the511

whole brain in the decoding model, including both local and global information (34). So far, the512

functional integration at the whole-brain has been largely ignored in the brain decoding literature, but513

started to draw the attention of neuroscientists. Cole and colleagues (35) first showed that the514

information flow within functional networks was able to predict brain activation during cognitive515

tasks, specifically to predict activation patterns of unseen brain regions from regions of the same516

network. A similar idea was recently used in (3) by first extracting an integrated signal from each of517

90 resting-state networks and then inferring brain states based on the temporal dependencies of these518

brain signals. Following this line of work, we recently proposed a graph convolutional network to519

decode brain states by propagating temporal dynamics of brain activity based on functional networks520

(17). In the present study we further extended this framework by exploring more variants in the graph521

convolutional network architecture. By using high-order graph convolutions, the model projected the522

spatiotemporal dynamics of cognitive processes onto a new representational space and integrated the523
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context of brain activity in both local and global extent, ranging from brain region to functional524

networks and towards the whole brain.525

Compared to previous linear and nonlinear decoding models, our proposed decoding model provided526

a generalized solution over a large population and a variety of cognitive domains. Besides, our model527

outperformed other approaches on the same dataset (as shown in Table S3), most of which followed528

the functional segregation assumption by predicting cognitive states from localized features of each529

brain parcel covering the entire cerebral cortex. After incorporating the network architecture of the530

human brain and integrating information flow within functional networks (e.g. first-order GCN), the531

classification accuracy was largely improved (90%, as stated in (17)). The decoding accuracy was532

further improved after taking into account the high-order interactions on the graph, not only within533

functional networks but also across multiple brain systems (93% using the 5-order ChebNet model).534

Our results suggest that not only the segregated brain activations played an important part in535

distinguishing between cognitive processes as illustrated in previous brain decoding literature, but the536

functional integration within and between brain networks can also contribute to the classification of537

cognitive states to some degree. The tradeoff between functional segregation and integration largely538

depends on the nature of cognitive processes, for instance, localized brain signatures from motor and539

sensory cortex for Motor tasks (as shown in Figure 2A), while complex forms of functional540

interactions among multiple brain systems during WM tasks (as shown in Figure 2B). Their relations541

were automatically captured during the training of deep neural networks. Coinciding with this542

hypothesis, the decoding model achieved excellent performance in distinguishing different types of543

body movements when only considered the local context of brain activity either from a local area544

(94.7% in (2)) or within a functional network (96.6% in (3)). A similar level of performance was545

achieved when using either first-order or high-order graph convolutions (95.6% when using 10s fMRI546

signals). By contrast, when classifying 0-back and 2-back WM tasks, much higher classification547

errors were detected only using local brain activity (14% in (2)) compared to functional integration548

within the functional networks (10% in (3)). The classification errors among WM tasks were highly549

reduced when applying graph convolutions (<=9% when using ChebNet-K1, <=4% when using the550

ChebNet-K5, as shown in Figure 4-S1).551
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To conclude, our results demonstrated that an efficient brain decoder not only involved functional552

segregation, e.g. distinguishing localized brain activation during body movements, but also engaged553

functional integration, e.g. integrating brain activity among multiple brain networks during visual554

working memory tasks.555

Saliency of brain decoding goes beyond brain activation556

Both saliency maps and brain activations aimed to reveal the neural substrates of cognitive processes.557

They also shared some common features, for instance, both relying on task-evoked brain responses558

and showing selective responses to different task conditions. However, their relations need to be559

addressed with caution. Brain activation was commonly used in neuroscience research to study the560

neural basis of cognitive processes by convolving neural activity with a canonical hemodynamic561

response function and to find the localization of each cognitive function using a generalized linear562

model (GLM) approach. However, as stated in Poldark’s paper (34), not all brain activations were563

“diagnostic” in terms of brain state prediction, i.e. distinguishing among different cognitive processes.564

To address this issue, we used saliency maps to detect the important features that show high565

contributions to the prediction.566

First, common brain regions were revealed in both approaches, i.e. areas that not only strongly567

activated during task performance (in GLM analysis) but also largely contributed to the classification568

of different tasks (in saliency maps). For example, salient features in the sensorimotor cortex were569

detected for motor execution and in the ventral visual stream for image recognition during WM tasks570

(Figure 2 A and B). These brain regions have been well validated in the literature, that the primary571

motor cortex was engaged during movements of the human body (36) and ventral temporal cortex was572

responsible for the recognition of face and place images (37). Most previous decoding studies were573

based on this set of brain regions, for instance, using brain activity of the visual cortex to decode the574

category of seen images including faces vs objects as well as different animal species (28).575

Second, some inconsistent findings were reported by the two techniques. On one hand, low saliency576

values did not mean no brain activation. Instead, the regions might be activated for all task conditions577

(i.e. low saliency but showing high activation on all tasks). For example, the visual cortex was578
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consistently activated during the Motor task (38), in response to the presentation of the cue images579

and visual instructions (e.g. images of hand, foot and tongue in the cue phase). But this activation580

pattern was not related to actual movements and not informative to distinguish between hand and581

tongue movements, i.e. much lower decoding accuracy in the cue phase compared to the movement582

blocks, as indicated in the Figure 6A in (17). Consequently, the visual cortex was not detected in the583

saliency maps of Motor tasks (Figure 2A). On the other hand, some brain regions with absence of584

strong activations might show high saliency to the prediction (i.e. high saliency but with low585

activation scores). For instance, high saliency values were detected in the bilateral area OP4 for586

tongue movements and in the left area PHA3 for recognition of both place and face images. These587

patterns were not detected by random but instead highly consistent across a number of subjects588

(Figure 2C and D). By contrast, when using the GLM approach, these regions were not detected in589

either the group activation maps from HCP database (Figure 5-S1 in (17)) or meta-analysis from a590

collection of previous studies (Figure 5-S2 in (17)). Specifically, weak activation was detected in the591

left but not right OP4 for the tongue movement (T-score=4.6 and -1.66 respectively for the left and592

right OP4 in the contrast maps of tongue vs rest, using group activation maps from HCPS500 release),593

while area PHA3 was not even activated for the recognition of face and place images (T-score= -1.78594

and -7.02 respectively for the contrast maps of face and place images vs rest). One possible595

explanation of this is that task-evoked activities in these brain regions did not follow the shape of the596

canonical hemodynamic response function and thus were not detected by the GLM approach and not597

shown in the contrast maps. However, these brain regions still showed distinctive patterns of response598

to different cognitive tasks, and thus were detected in the saliency maps when such constraint of599

temporal dynamics was not applied in the decoding model. Our results suggest that not only brain600

activations but also deactivations or even brain responses not shown in the contrast maps might highly601

contribute to the classification of cognitive states. In addition, the detected salient features were602

highly consistent across subjects and showed selective responses to different cognitive states, may603

uncover the biological basis of the decoding model and shed a light on the anatomical and functional604

substrates of cognitive processes.605

606
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To conclude, our results suggested that a more generalized framework was required for brain607

decoding which does not rely on localized brain activations or spatial patterns of contrast maps, but608

instead decoding information from task-evoked brain responses of the whole brain. Consequently, the609

model was able to distinguish the neural dynamics of various cognitive functions in both spatial and610

temporal domains and learn new representations of brain organization during cognitive processes (39).611

The spatiotemporal graph convolution provided a promising solution for this problem by leveraging612

our prior knowledge on brain organization using a graph-based model. Instead of classifying patterns613

of brain activity within a local area, graph convolution takes into account the functional interactions614

of neural dynamics across multiple networks and projects the spatiotemporal dynamics of cognitive615

processes onto a new representational space. Moreover, ChebNet graph convolution naturally616

incorporates both functional segregation and integration for brain decoding, i.e. distinguishing617

localized brain activities from a subset of brain regions or within a specific brain network (first-order618

convolution) and encoding complex forms of functional interactions among multiple brain systems619

(high-order convolution), in line with different organizational principles of cognitive processes. As a620

result, the learned representations improved the functional alignment among trials and subjects and621

therefore increased the decoding of cognitive states. More importantly, by largely preserving the622

individual variability in brain organization, the ChebNet representations achieved better associations623

with human behaviors during task, demonstrating shared genetic influences in brain responses and624

behaviors. The present work suggests the feasibility of large-scale multi-domain decoding with full-625

brain models, opening new avenues for modelling of naturalistic tasks such as movies or video games.626

627

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.26.453914doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453914
http://creativecommons.org/licenses/by-nd/4.0/


7

Materials and Methods628

fMRI Datasets and Preprocessing629

We used the block-design task-fMRI dataset from the Human Connectome Project S1200 release630

(https://db.humanconnectome.org/data/projects/HCP_1200). The minimal preprocessed fMRI data in631

CIFTI formats were selected. The preprocessing pipelines includes two steps (40): 1) fMRIVolume632

pipeline generates “minimally preprocessed” 4D time-series (i.e. “.nii.gz” file) that includes gradient633

unwarping, motion correction, fieldmap-based EPI distortion correction, brain-boundary-based634

registration of EPI to structural T1-weighted scan, non-linear (FNIRT) registration into MNI152 space,635

and grand-mean intensity normalization. 2) fMRISurface pipeline projects fMRI data from the cortical636

gray matter ribbon onto the individual brain surface and then onto template surface meshes (i.e.637

“dtseries.nii” file), followed by surface-based smoothing using a geodesic Gaussian algorithm.638

Further details on fMRI data acquisition, task design and preprocessing can be found in (38,40). The639

task fMRI database includes six cognitive domains, which are emotion, language, motor, relational,640

social, and working memory. In total, there are 21 different experimental conditions. We excluded the641

two gambling conditions in our analysis due to the short event design of the gambling trials (1.5s for642

button press, 1s for feedback and 1s for ITI). The detailed description of the task paradigms as well as643

the selected cognitive domains can be found in (17,38)644

Decoding brain activity using graph convolution645

A brain graph provides a network representation of brain organization by associating nodes with brain646

regions and defining edges via anatomical or functional connections (41). We recently found that647

convolutional operations on brain graph can be used to encode the within-network interactions of648

task-evoked brain responses and to decode a large number of cognitive tasks (17). Here, we proposed649

a more generalized form of graph convolution by using Chebyshev polynomials and explored how650

functional segregation and high-order functional interactions affects brain decoding.651
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Step 1: Construction of brain graph652

The decoding pipeline started with a weighted graph , where is a parcellation of653

cerebral cortex into regions, is a set of connections between each pair of brain regions, with its654

weights defined as . Many alternative approaches can be used to build such brain graph , for655

instance using different brain parcellation schemes and constructing various types of brain656

connectomes (for a review, see (41)). Here, we used the Glasser’s multi-modal parcellation, consisting657

of 360 areas in the cerebral cortex, bounded by sharp changes in cortical architecture, function,658

connectivity, and topography (27). The edges between each pair of nodes were estimated by659

calculating the group averaged resting-state functional connectivity (RSFC) based on minimal660

preprocessed resting-state fMRI data from � = 1080 HCP subjects (Glasser et al., 2013). Additional661

preprocessing steps were applied before the calculation of RSFC, including regressing out the signals662

from white matter and csf, and bandpass temporal filtering on frequencies between 0.01 to 0.1 HZ.663

Functional connectivity was calculated on individual brains using Pearson correlation and then664

normalized using Fisher z-transform before averaging among the entire group of subjects. After that, a665

k-nearest-neighbor (k-NN) graph was built by only connecting each node to its 8 neighbors with the666

highest connectivity strength.667

Step 2: Mapping of brain activity onto the graph668

After the construction of brain graph (i.e. defining brain parcels and edges), for each functional run669

and each subject, the preprocessed task-fMRI data was then mapped onto the set of brain parcels,670

resulting in a 2-dimensional time-series matrix. This time-series matrix was first split into multiple671

task blocks according to fMRI paradigms and then cut into sets of time-series of the chosen window672

size (e.g. 10 second). Shorter time windows were discarded in the process. The remaining time-series673

were treated as independent data samples during model training. As a result, we generated a large674

number of fMRI time-series matrices from all cognitive domains, i.e. a short time-series with duration675

of for each of brain parcels, . The entire dataset consists of over 1000 subjects for676

each cognitive domain (see Table S2 for detailed information), in total of 14,895 functional runs677
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across the six cognitive domains, and 138,662 data samples of fMRI signals when using a678

10s time window (i.e. 15 functional volumes at TR=0.72s).679

Step 3: Spatiotemporal graph convolutions using ChebNet680

Graph convolution relies on the graph Laplacian, which is a smooth operator characterizing the681

magnitude of signal changes between adjacent nodes. The normalized graph Laplacian is defined as:682

(Eq. 1)683

where D is a diagonal matrix of node degrees, I is the identity matrix, andW is the weight matrix. The684

eigendecomposition of Lapalcian matrix is defined as � = U∆U� , where U = �0, �1, ⋯��−1 is the685

matrix of Laplacian eigenvectors and is also called graph Fourier modes, and ∆ =686

diag �0, �1, ⋯��−1 is a diagonal matrix of the corresponding eigenvalues, specifying the frequency687

of the graph modes. In other words, the eigenvalues quantify the smoothness of signal changes on the688

graph, while the eigenvectors indicate the patterns of signal distribution on the graph.689

For a signal defined on graph, i.e. assigning a feature vector to each brain region, the convolution690

between the graph signal and a graph filter based on graph , is defined as691

their element-wise Hadamard product in the spectral domain, i.e.:692

(Eq. 2)693

where �� = ����(����) and � indicate a parametric model for graph convolution �� , U =694

�0, �1, ⋯��−1 is the matrix of Laplacian eigenvectors and ��� is actually projecting the graph695

signal onto the full spectrum of graph modes. To avoid calculating the spectral decomposition of the696

graph Laplacian, ChebNet convolution (Defferrard et al., 2016) uses a truncated expansion of the697

Chebychev polynomials, which are defined recursively by:698

T� � = 2�T�−1 � − T�−2 � , T0 � = 1, T1 � = � (Eq. 3)699

Consequently, the ChebNet graph convolution is defined as:700

� ∗ �� = �=0
� ��T� �� �� (Eq. 4)701

where �� = 2� ����−� is a normalized version of graph Laplacian with ���� being the largest702

eigenvalue, θk is the model parameter to be learned at each order of the Chebychev polynomials. It703

has been proved that the ChebNet graph convolution was naturally K-localized in space by taking up704
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to K th order Chebychev polynomials (18), which means that each ChebNet convolutional layer705

integrates the context of brain activity within a K-step neighborhood.706

Brain-decoding pipeline using ChebNet graph convolution707

We used a similar decoding pipeline as proposed in (17), consisting of 6 graph convolutional layers708

with 32 graph filters at each layer, followed by a flatten layer and 2 fully connected layers (256, 64709

units). The model takes in a short series of fMRI volumes as input, maps the fMRI data onto the710

predefined brain graph and results in a 2-dimensional time-series matrix , i.e. a short711

time-series with duration of T for each of N brain parcels at the first ChebNet layer. The first ChebNet712

layer learns various shapes of temporal convolution kernels by treating multiple time steps as input713

channels (C = T ) and propagates such temporal dynamics within (K=1) and between (K>1) brain714

networks. As a result, a set of “brain activation” maps are generated (see Figure 3-S1) and passed onto715

the next ChebNet layer for higher-order information integration (see Figure 3-S2), and so on. The716

learned graph representations in the last ChebNet layer were then imported to a 2-layer multilayer717

perceptron (MLP) to predict the cognitive state.718

The entire dataset was split into training (60%), validation (20%), test (20%) sets using a subject-719

specific split scheme, which ensures that all fMRI data from the same subject was assigned to only720

one of the three sets. Approximately, the training set includes fMRI data from 700 unique subjects721

(depending on data availability for different cognitive tasks ranging from 1043 to 1085 subjects, see722

Table S2), with 176 subjects for validation set and 219 subjects for test set. Specifically, we used the723

training set to train model parameters, the validation set to evaluate the model at the end of each724

training epoch, and saved the best model with the highest prediction score on the validation set after725

100 training epochs. The saved model was evaluated on the test set and reported the final decoding726

performance. We used Adam as the optimizer with the initial learning rate as 0.0001 on all cognitive727

domains. Additional l2 regularization of 0.0005 on weights was used to control model overfitting and728

the noise effect of fMRI signals. Dropout of 0.5 was additionally applied to the fully connected layers.729

The implementation of the ChebNet graph convolution was based on PyTorch 1.1.0, and was made730

publicly available in the following repository: https://github.com/zhangyu2ustc/gcn_tutorial_test.git .731
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Effects of K-order in ChebNet brain decoding732

ChebNet graph convolution used truncated expansion of Chebychev polynomials of order K for the733

approximation of graph convolution in the spectral space (see Eq. 4). The choice of K-order controls734

the scale of the information integration on the graph. When K = 0, , which indicates a735

global scaling factor on the input signal by treating each node independently, similar to the classical736

mass univariate analysis for brain activation detection. When K = 1 , , which737

indicates information integration between the direct neighbors and the current node on the graph738

(integrating signals within the same network). When K = 2, , which739

indicates information integration within a two-step neighborhood on the graph (consisting of740

information from local area, within network and between networks). Generally speaking, when K > 1,741

the graph convolution integrates the information within a �-step neighbourhood by propagating graph742

signals not only within the same network but also among inter-connected brain networks. Thus, the �-743

order controls the propagation rate of information flow on the brain graph. We explored different744

choices of K-order in ChebNet spanning over the list of [0,1,2,5,10] and found a significant boost in745

both brain decoding and representational learning by using high-order graph convolutions.746

Saliency map of the decoding model: contribution of brain regions747

The saliency map analysis aims to locate which part of the brain (or input features) helps to748

differentiate between cognitive tasks. We used a gradient approach named Guided BackProp (20) to749

visualize the contribution of inputs. This approach has been commonly used to visualize a deep neural750

network and easily generalized to graph convolutions. The basic idea is that if an input is relevant, a751

little variation on it will cause high change in the layer activation. This can be characterized by the752

gradient of the output given the input, with the positive gradients indicating that a small change to the753

input signals increases the output value. Specifically, for the graph signal of layer and its gradient754

, the overwritten gradient can be calculated as follows:755

(Eq. 5)756
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In order to generate the saliency map, we started from the output layer of a pre-trained model and757

used the above chain rule to propagate the gradients at each layer until reaching the input layer. This758

guided-backpropagation approach can provide a high-resolution saliency map which has the same759

dimension as the input data. We further calculated a heatmap of saliency by taking the variance across760

all time steps for each parcel, considering that the variance of the saliency curve provides a simplified761

way to evaluate the contribution of task-evoked hemodynamic response. To make it comparable762

across subjects, the saliency value was additionally normalized to the range [0,1], with its highest763

value at 1 (a dominant effect for task prediction) and lowest at 0 (no contribution to task prediction).764

Similarity analysis of layer representations in graph convolutions765

ChebNet graph convolution maps the spatiotemporal dynamics of fMRI brain activity onto a new766

representational space in the spectral domain. Different representations were learned at each ChebNet767

graph convolutional layer by integrating the information flow within (K = 1) and between networks768

( K > 1 ). Besides, by using a multi-layer architecture, the scale of information integration was769

gradually enhanced, ranging from a local area (first ChebNet layer) to the whole-brain (last ChebNet770

layer). For a better understanding of the ChebNet models, we analyzed the similarity of learned771

representations between ChebNet layers as well as across different decoding models (e.g. using772

different K-orders). Considering the high-dimensional nature of learned representations (360*32 in773

our case), we evaluated the cross-layer and cross-model similarity using centered kernel alignment774

(CKA) with a linear kernel, which was proposed to compare layer representations of deep neural775

networks, not only in the same network trained from different initializations, but also across different776

models (21). Linear CKA is closely related to CCA and linear regression. Studies showed that CKA777

was invariant to orthogonal transformation and isotropic scaling, and consistently identified the778

correspondences of representations between layers, and thus can reveal pathology in neural networks779

representations (21). Here, we used CKA to evaluate the effects of K-orders in ChebNet brain780

decoding for both Motor and Working-memory tasks. First, we extracted the layer representations781

from each ChebNet layer by passing all data samples from the test set into the pre-trained decoding782

model and reshaped the representations (samples * nodes * channels) into a matrix783
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. Then, the linear CKA of two representation matrices X and Y, either from784

different layers or different models, was defined as:785

(Eq. 5)786

where indicates the Frobenius norm of the cross-correlation matrix A. The CKA787

value was within the range [0,1], with its highest value at 1 (the same layer representation) and lowest788

at 0 (totally different layer representations).789

Projections of layer representations using t-SNE790

For visualization purposes, we projected the high-dimensional layer representations to a 2-791

dimensional (2D) space by using t-SNE (25). Based on the t-SNE projections, we calculated the792

modularity score among task conditions as a measure of task segregation, representing the cost of793

brain state transition between task conditions. It has been shown that the modularity score on the794

shape graph constructed from individual fMRI data was significantly associated with participants’ in-795

scanner task performance (26). Here, we estimated the modularity score on t-SNE projections derived796

from not only fMRI signals but also layer representations of graph convolutional networks.797

Specifically, fMRI signals and layer representations were first mapped onto a 2D space by using t-798

SNE. Then, a k-NN graph (k=5) was constructed based on the coordinates of t-SNE projections by799

connecting each data sample with its five nearest neighbors in the 2D space. After that, a segregation800

index was defined by calculating the modularity score (Q) based on the partition of communities801

using task conditions, with a high separation value indicating more edges within the same task802

condition that expected by chance (42).803

(Eq. 6)804

where and are the degrees of the nodes on the kNN graph, is the total number of805

edges on the kNN graph, and indicates whether node and node belong to the same806

community (or task condition). The value of the task segregation index was within the range [-0.5,1],807
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with the value close to 1 indicating a strong community structure and a positive value indicating the808

number of edges within the same task conditions exceeds the number expected by chance (e.g. on a809

random graph). The same procedure could also be applied to individual subject, i.e. constructing a810

kNN graph using t-SNE projections of fMRI signals or layer representations from the same subject.811

Their association with participants’ in-scanner task performance were also investigated by calculating812

the Pearson correlation coefficient of individual segregation index (i.e. modularity score on fMRI813

signals or layer representations) with the correct response and reaction time during working-memory814

tasks.815

Heritability analysis of brain representations and behavioral performances816

For the heritability estimates of brain response and behavioral performance during WM tasks, we used817

the Sequential Oligogenic Linkage Analysis Routines (SOLAR) Eclipse software package818

( http://www.nitrc.org/projects/se_linux ). SOLAR relies on the maximum variance decomposition819

of the covariance matrix Ω for a pedigree:820

Ω = 2Φσ�2 + ���2 (Eq. 7)821

where σ�2 is the genetic variance due to the additive genetic factors, Φ is the kinship matrix822

representing the pairwise kinship coefficients among all individuals, ��2 is the variance due to823

individual-specific environmental effects and measurement error, and � is an identity matrix. Narrow824

sense heritability is defined as the fraction of phenotypic variance σ�2 attributable to additive genetic825

factors: ℎ2 = σ�2 σ�2 . The significance of the heritability estimate is tested by comparing the826

likelihood of the model in which σ�2 is constrained to zero with that of a model in which σ�2 is827

estimated. Prior to the heritability estimation, all phenotype (brain and behavioral phenotypes) were828

adjusted for covariates including age, gender, handedness and head motion.829

The heritability estimate was applied on 1070 subjects from HCP S1200 release with available830

behavioral and imaging data for WM tasks, which consist of 447 unique families, including 143831

monozygotic-twin pairs, 83 dizygotic-twin pairs and 290 non-twin siblings.832
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We further performed the bivariate genetic analyses to quantify the shared genetic variance and the833

phenotypic correlation between brain responses and behavioral measures, relying on the following834

model:835

�� = ℎ�2 ℎ�2∙ �� + 1− ℎ�2 1 − ℎ�2 ∙ �� (Eq. 8)836

where Pearson’s phenotypic correlation �� is decomposed into �� and �� , where �� is the proportion837

of variability due to shared genetic effects and �� is that due to the environment, while ℎ�2 and ℎ�2838

correspond to the narrow sense heritability for phenotypes a (representation of brain response) and b839

(behavioral scores).840

841
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Supplementary Figures

Figure 1-S1. Pipeline of brain decoding using graph convolution network.

The decoding model consists of six ChebNet graph convolutional layers with 32 graph filters at each

layer, followed by a flatten layer and 2 fully connected layers. Specifically, for a short series of fMRI

volumes, the measured brain activity was first mapped onto a predefined brain atlas consisting of

hundreds of brain regions (e.g. 246 regions from Brainnetome atlas (43)). A functional graph was then

constructed by calculating group-averaged resting-state functional connectivity for each pair of brain

regions. Next, a new representation of task-evoked neural activity was generated through a multi-layer

graph convolutional network, taking into account the segregation of localized brain activity and

information integration among multiple brain networks. These representations were then used to

predict the corresponding cognitive state associated with the short time window. The implementation

of the ChebNet graph convolution was based on PyTorch 1.1.0, and was made publicly available in

the following repository: https://github.com/zhangyu2ustc/gcn_tutorial_test.git .
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Figure 1-S2. Decoding accuracy of single-domain brain decoders for each of the six cognitive

domains.

The same decoding pipeline was used as in Figure 1 except that the decoding model here was trained

by using task-fMRI data exclusively from a single domain. Besides, variable temporal durations were

used for each cognitive domain, according to the maximum length of event trials/blocks among all

experimental tasks, for instance 12s for MOTOR tasks and 25s for WM tasks. Among the six

cognitive domains, the emotion tasks (in blue, fearful face vs shape) and motor tasks (in magenta,

distinguishing five types of body movements) were the most easily recognizable conditions, with F1-

score reaching around 99%.
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Figure 3-S1. Temporal filters and the corresponding activation maps extracted from the first

ChebNet layer for the Language tasks.

We used the Language tasks as an example to illustrate that ChebNet graph convolutions captured

hemodynamic response in the temporal domain and brain activations in the spatial domain. First of all,

various temporal convolutional kernels were learned at the first ChebNet layer (1st column), which

resembled the hemodynamic response function in BOLD signals. Second, using these temporal filters,

the corresponding “activation maps” in the first ChebNet layer were extracted and grouped according

to the task conditions, e.g. story (2nd column) and math (3rd column) for the Language tasks.

These activation maps demonstrated a possible explanation of the biological basis behind

spatiotemporal graph convolutions. For instance, when the temporal filter only focused on brain

activity within 0-6s after task onset (3rd row), the classical language network and frontoparietal

network were detected for the story and math condition respectively, responsible for language

comprehension and numerical processing during the cognitive task. By contrast, when the temporal

filter focused on brain activity 5-10s after task onset (4th row), the motor and sensory cortex were
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detected for both conditions, responsible for button press during the task. When both time windows

were taken into account (1st row, 0-10s after task onset), the brain response in the language network

and frontoparietal network were further enhanced while the activity in the auditory cortex was

weakened. Similar analysis on theMotor tasks was shown in Figure 1-Supplement 2 in (17).

Figure 3-S2. Layer representations in ChebNet resembled brain activation maps.

We used the Language tasks as an example to illustrate the hierarchical organization of layer

representations in ChebNet. At each ChebNet layer, the layer activations were extracted and saved as

feature representations for the following analysis. First, the similarity of representations was

calculated using CKA with a linear kernel (A), which illustrated a hierarchical organization of layer

representations in ChebNet. These representations were then projected onto a 2-dimensional space

using t-SNE (1st row in C) which indicated a nice disassociation between different task conditions (e.g.

story vs math for the Language task). After that, the “activation map” associated with each task

condition (2nd row in C) were calculated by averaging the layer representations across all data samples

of the same category and mapped back onto the cortical surface. These representations resembled the

actual brain activation maps detected by the canonical GLM approach (B), provided by (38),

downloaded from neurovault (https://neurovault.org/collections/457/ ).
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Figure 4-S1. Confusion matrix of Working-memory tasks using ChebNet graph convolution

with different K-orders.

The confusion matrix was normalized by each task condition (row) such that each element in the

matrix shows the recall score, i.e. among all predictions how many of them are positive predictions.

The confusion matrix showed a nice block diagonal architecture, indicating that the majority of the

cognitive tasks were accurately identified in all models. ALL decoding models were trained using 25s

of fMRI time series. The classification errors were largely reduced when using high-order graph

convolutions, e.g. K=1 vs K=5, especially for 0back vs 2back tasks. Our results indicated that large-

scale functional integration of brain dynamics played an important role in the decoding of working

memory tasks.
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Figure 6-S1. Projection of features representations from the ChebNet decoding model for WM

tasks.

Graph representations were mapped onto a 2-dimensional space by using different dimension

reduction techniques, including PCA (first column), t-SNE (second column) (25), UMAP (third

column) (44), and PHATE (last column)(45). The data samples included eight task conditions from

Working-memory tasks, i.e. 0-back and 2-back on images of body parts (class 0 and 1), 0-back and 2-

back on face images (class 2 and 3), 0-back and 2-back on place images (class 4 and 5), 0-back and 2-

back on images of tools (class 6 and 7). Best visualization was provided by t-SNE. Two different

decoding models were evaluated, including ChebNet-K5 (A) and ChebNet-K1 (B). The ChebNet-K5

model showed higher distinctions among eight WM task conditions.
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Figure 6-S2. Layer representations of the ChebNet-K5 on the Motor task.

Both raw fMRI data and layer representations of each ChebNet layer were projected onto 2-

dimensional space by using t-SNE. No clear structure of task conditions was observed in the raw

fMRI data (A), which slightly improved in the low-level representations, e.g. 1st and 2nd ChebNet

layer (C). Since the 4th ChebNet layer, the tongue movement (in red) was easily distinguished from

other motor tasks in the representations but still showed a mixture effect between left and right

movements. In the last ChebNet layer, the representations for the five types of body movements were

highly clustered and easily separated from each other (task segregation index Q =0.60). Similar level

of task segregation in the last ChebNet layer when using different K-orders in ChebNet, but a faster

convergence speed was detected in the ChebNet-K5 model (B). The Motor task data includes five

types of body movements, i.e. the movement of right foot (class 0, in purple), left foot (class 1, in

green), right hand (class 2, in cyan), left hand (class 3, in orange), and tongue (class 4, in red).
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Figure 7-S1. Modularity scores in the state-transition graph significantly correlated with the

reaction time of Working-memory tasks.

The modularity score was calculated based on the state-transition graph of each subject, as proposed

by (26). We found significant correlations between the modularity scores of graph representations (A)

and average reaction time during working-memory task (1st panel), 0back task conditions (2nd panel)

and 2back task conditions (3rd panel). Much weaker associations were detected in the raw fMRI data

(B). The blue lines indicated the linear regression models between the modularity score of the state-

transition graph and the reaction time during task performance. The analysis was done among all

subjects from HCP S1200 release, with complete records of behavioral and imaging data for working

memory tasks (N=1074).
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Supplementary Tables

Table S1. Scanning parameters and experimental designs of HCP task-fMRI dataset.

The entire dataset includes in total of 14,895 functional runs across the six cognitive domains, and

resulted in 138,662 data samples of fMRI signals when using a 10s time window (i.e. 15 functional

volumes at TR=0.72s)

Task
Domains

#Subjects #Runs #Volumes
per run

#Trials
per run

#Conditions Minimal
duration
per block
(sec)

Working
memory

1085 2 405 8 8 25

Motor 1083 2 284 10 5 12

Language 1051 2 316 8 2 10

Social
Cognition

1051 2 274 5 2 23

Relational
processing

1043 2 232 6 2 16

Emotion 1047 2 176 6 2 18
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Table S2. Decoding accuracy from the single-domain decoders.

Six single-domain decoders were trained by using fMRI responses from each cognitive domain

exclusively and to predict the cognitive states on a trial basis. Different temporal durations were used,

according to the maximum length of event trials on the target cognitive domain, for instance 12s for

MOTOR tasks and 25s for WM tasks.

Task
Domains

#Subjects #Samples
(single trials)

#Conditio
n

Time
windows
(sec)

Decoding
accuracy
(F1-score)

Working
memory

1085 17,360 8 25 0.9451

Motor 1083 21,660 5 12 0.9938

Language 1051 16,816 2 10 0.9845

Social
Cognition

1051 10,510 2 23 0.9658

Relational
processing

1043 12,516 2 16 0.9079

Emotion 1047 12,564 2 18 0.9952
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Table S3: Comparison of decoding performance between different models.

We reported the best performance for the baseline models after a grid search of the hyperparameters.

For SVC approaches, we used the one-vs-rest (‘ovr’) decision function to handle multi-classes and

reported the highest accuracy after the grid search for the hyper-parameter (C =

[0.0001,0.001,0.1,1,10,100]). For Random Forest, we reported the highest accuracy after evaluating

different settings of the classifier including depth of trees: [4,16,64,256,1024] and number of trees:

[100,2000]. For MLP (multilayer perceptron), GCN (using first-order graph convolution, (17)) and

ChebNet (using 5-order graph convolution), we reported the mean and standard deviation of the

decoding accuracies among 10 fold cross-validation with shuffle splits. All models were evaluated on

the task of decoding 21 task states by using 10s of fMRI signals (in total of 138,662 data samples).

Models Train Accuracy Validation Accuracy Test Accuracy

SVC-linear 67.2% 63.3% 64.1%

SVC-rbf 99.7% 73.5% 73.8%

Random Forest 100% 48.0% 47.5%

MLP(256-64) 87.9%(+/-1.83%) 83.2%(+/-3.28%) 76.1%(+/-0.41%)

GCN 96.3%(+/-0.42%) 90.2%(+/-0.21%) 90.7%(+/-0.20%)

ChebNet 90.91%(+/-0.18%) 92.73(+/-0.12%) 93.43(+/-0.44%)
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Table S4: Heritability analysis of brain responses and behavioral scores.

Heritability estimates were conducted for both representations of brain responses and behavioral

performance in-scanner, associated with WM tasks, after controlling for confounding effects of age,

gender, handedness and head motion. The average accuracy (Acc) and reaction time (RT) showed

high heritability estimates of additive genetic effects. For graph representations and raw fMRI signals,

the high-dimensional data was first projected onto a 2-dimensional space using t-SNE and then the

task segregation effect was estimated based on individual state-transition graph (see Method section).

Significant heritability estimates were also detected in the ChebNet graph representations but not in

raw fMRI signals.

Traits �� SE p-value
FDR
corrected
p-value

Covariance

Explained

ChebNet graph

representations
0.2882 0.0588 3.00E-07 3.43E-07 0.0017

Raw fMRI signals 0.0008 0.0545 0.4935 0.4935 0.0029

WM_Task_Acc 0.5624 0.0435 8.56E-27 3.42E-26 0.0434

WM_Task_2bk_Acc 0.5887 0.0425 6.97E-29 5.58E-28 0.0446

WM_Task_0bk_Acc 0.3215 0.0564 6.21E-09 8.29E-09 0.0222

WM_Task_RT 0.4118 0.0560 4.01E-13 8.01E-13 0.0105

WM_Task_2bk_RT 0.4534 0.0556 5.40E-15 1.44E-14 0.0094

WM_Task_0bk_RT 0.3294 0.0583 6.06E-09 8.29E-09 0.0085

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.26.453914doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453914
http://creativecommons.org/licenses/by-nd/4.0/

