
Modular assembly of dynamic models in systems biology

Michael Pan1,2,3*, Peter J. Gawthrop1, Joseph Cursons4, Edmund J. Crampin1,2,3,5†

1 Systems Biology Laboratory, School of Mathematics and Statistics, and Department

of Biomedical Engineering, University of Melbourne, Victoria, Australia

2 ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Faculty of

Engineering and Information Technology, University of Melbourne, Victoria, Australia

3 School of Mathematics and Statistics, Faculty of Science, University of Melbourne,

Victoria, Australia

4 Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery

Institute, Monash University, Melbourne, VIC 3800, Australia

5 School of Medicine, University of Melbourne, Victoria, Australia

†Deceased

* pan.m@unimelb.edu.au

Abstract

It is widely acknowledged that the construction of large-scale dynamic models in

systems biology requires complex modelling problems to be broken up into more

manageable pieces. To this end, both modelling and software frameworks are required

to enable modular modelling. While there has been consistent progress in the

development of software tools to enhance model reusability, there has been a relative

lack of consideration for how underlying biophysical principles can be applied to this

space. Bond graphs combine the aspects of both modularity and physics-based

modelling. In this paper, we argue that bond graphs are compatible with recent

developments in modularity and abstraction in systems biology, and are thus a desirable

framework for constructing large-scale models. We use two examples to illustrate the

utility of bond graphs in this context: a model of a mitogen-activated protein kinase
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(MAPK) cascade to illustrate the reusability of modules and a model of glycolysis to

illustrate the ability to modify the model granularity.

Author summary

The biochemistry within a cell is complex, being composed of numerous biomolecules

and reactions. In order to develop fully detailed mathematical models of cells, smaller

submodels need to be constructed and connected together. Software and standards can

assist in this endeavour, but challenges remain in ensuring submodels are both consistent

with each other and consistent with the fundamental conservation laws of physics.

In this paper, we propose a new approach using bond graphs from engineering. In

this approach, connections between models are defined using physical conservation laws.

We show that this approach is compatible with current software approaches in the field,

and can therefore be readily used to incorporate physical consistency into existing

model integration methodologies. We illustrate the utility of this approach in

streamlining the development of models for a signalling network (the MAPK cascade)

and a metabolic network (the glycolysis pathway).

The advantage of this approach is that models can be developed in a scalable

manner while also ensuring consistency with the laws of physics, enhancing the range of

data available to train models. This approach can be used to quickly construct detailed

and accurate models of cells, facilitating future advances in biotechnology and

personalised medicine.

Introduction

Over the past few decades, advances in both data generation and computational

resources have enabled the construction of large-scale kinetic models in systems biology,

including whole-cell models that represent every known biomolecule in the cell [1]. An

accurate and robust whole-cell model can provide several benefits to the community:

data on specific organisms can be cross-evaluated and reconciled [2]; simulations could

be used to rule out fruitless experiments and clinical trials; the models themselves could

be used as a basis for designing novel circuits in synthetic biology; and fundamental
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questions about biology may be addressed in a holistic and systematic manner [3, 4].

The first comprehensive whole-cell model was developed in the Mycoplasma

genitalium [1] and there are ongoing efforts to develop whole-cell models of Escherichia

coli [5] and human cells [6]. However, it has been acknowledged that the highly manual

practices used in the development of the initial model of M. genitalium are unlikely to

scale up to more complex organisms. The biomodelling community has identified

several potential roadblocks to whole-cell modelling, including the lack of sufficient

biological knowledge and data, model incompatibility, inadequate model development

tools, inadequate model formats and parameter uncertainty [4, 6].

This paper addresses the issue of approaching model development in a modular

manner. Typical requirements for such model development strategies involve reusing and

integrating submodels together into more comprehensive models, and swapping between

alternative models of the same system for benchmarking and comparison [7–9]. There

have been several software-related developments in the systems biology community

focussing on improving the reusability of models, some of which are beginning to be

used in whole-cell modelling [10]. However, ensuring the reusability of fully integrated

cell models remains a challenge [11]. While adequate software frameworks are essential

to the modular development of large-scale kinetic models, an understanding of the

physics of biological systems is also necessary to address issues in model compatibility

and provenance. While the whole-cell modelling community has emphasised the need to

use physically measurable parameters, it is only recently that the importance of

thermodynamics in these models has been acknowledged [5]. This paper argues that the

concepts of module interconnection from physics and thermodynamics are consistent

with current model development practices in systems biology, and we suggest the use of

bond graphs (from the discipline of engineering) as a framework for unifying

developments from both software development and biological thermodynamics.

We begin by defining modularity in systems biology and arguing that an improved

understanding of biophysics can contribute to this area. We then use biochemical

examples to illustrate how bond graphs incorporate physical constraints into a modular

framework for systems biology. In the Results section, we illustrate the benefits of this

approach by applying the principles of modular development to bond graph models of

the mitogen-activated protein kinase (MAPK) cascade and glycolysis. Finally, we
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summarise ongoing developments in unifying modularity and thermodynamics in

systems biology and conclude with some suggestions to enable the development of fully

detailed models of cells.

Methods

Modularity in systems biology

Due to their complexity, large-scale models in systems biology need to be constructed

by dividing the problem into manageable submodels. Early notions of modularity in

biomodelling were borrowed from principles in engineering and software

development [12,13]. In those disciplines, modules can be defined as parts of a system

that (a) retain their own identity and are often developed and operated independently,

but interact with other parts of the system and (b) hide the details of their

implementation from the rest of the system, except through pre-defined interfaces [9].

Using this notion of modularity, the parts of a module that are available for connection

and communication are said to be “exposed”.

However, the definition above – which is also known as “black-box” modularity – is

not conducive to the incremental accumulation of knowledge that occurs in biology.

Advancements in our understanding of biology may force modellers to interface with

previously hidden components within existing models [7, 9]. It is becoming increasingly

apparent that modules in biological modelling need to be more flexible than engineering

modules. As a result, the notion of modularity in systems biology is far less clear than

in the established disciplines of engineering and software development. In recent years,

systems biology has favoured the use of a “white-box” approach to modularity in which

modules do not completely hide the details of their implementation, but instead allow

individual variables and components to be exposed as required [14].

Broadly speaking, notions of modularity used in systems biology can be categorised

into computational modularity, the ability for models to communicate and interact with

each other in a physically consistent manner; and functional (or behavioural) modularity,

the ability of modules to be isolated from the effects of other modules. This paper will

focus on computational modularity. The role of functional modularity is pivotal to
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and interfaces

4. Updating models and
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Fig 1. The importance of modularity in models for systems biology.
Modularity can facilitate the construction of whole-cell models by (1) providing
unambiguous and flexible interfaces for submodels to communicate; (2) allowing model
development and unit testing to be done on individual submodels; (3) separating the
description of the model from its implementation; (4) allowing models to be iteratively
updated with a record of how the equations and parameters were derived; and (5)
allowing repeated motifs to be abstracted into reusable structures.

systems and synthetic biology and continues to be debated within the community, but

can only be analysed and designed through the lens of computational modularity [15].

If handled correctly, modular model development can provide a number of benefits

to modellers (see Fig. 1), including:

1. Enabling large-scale models to be built from smaller submodules that

communicate through clear and unambiguous interfaces.

2. Providing a framework for models to be developed, tested and validated in

isolation before incorporating them into larger models.

3. Separating the description of model equations from the software implementation

of the model (including simulation).

4. Allowing incremental changes to be made to existing models in light of new

measurements or knowledge, and allowing the provenance of models to be tracked.

5. Enabling the abstraction of important modules, providing the means to
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instantiate multiple copies of repeated motifs and swapping out a submodel for

another model with a different level of granularity.

Thus, modularity can facilitate collaborative efforts to build whole-cell models, allows

models to be updated where necessary and enhances the usefulness of models beyond

their initial publication.

Current approaches to model reuse and integration in systems biology can be

broadly categorised into three approaches, ordered by increasing flexibility:

1. Standard model description formats. To enable the reuse of biomodels by

different research groups, biomodellers have developed standards for describing

models. Of these, the Systems Biology Markup Language (SBML) [16] and

CellML [13] are two prominent examples. Once encoded within such standard

model descriptions, analysis and simulation can be run on separately developed

software such as OpenCOR (CellML) and COPASI (SBML) [17,18]. The

simulation protocols can themselves be specified using the simulation experiment

description markup language (SED-ML) [19].

2. Biological modularity. Biological-level modularity introduces white-box

modularity to systems biology by annotating model variables and parameters with

standardised, machine-readable ontological terms [9]. This enables a strategy

where software can automatically compose separately developed models

together [9, 14]. SemGen and semanticSBML are two software tools that

implement biological-level modularity [14,20].

3. Programmatic approaches. The “programmatic approach” to modelling was

developed to allow models to integrate together in a flexible manner, but also to

address the relative inflexibility of standard modelling languages. In the

programmatic approach, models are treated as declarative programming objects

rather than mathematical equations [7]. Using this approach, models can be

embedded within programming languages such as Python. This approach

automates model construction by allowing models to be defined at different

hierarchical levels, for example by generating equations through the specification

of macros for repeating motifs. Two implementations of the programmatic
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approach are little b [7] and PySB [21]. More recently, the BondGraphTools

package has been developed to introduce thermodynamics into such an

approach [22].

Note that these approaches are not independent of each other, and many modelling

frameworks use several of these approaches [23,24].

Despite recent computational advances in enabling the modular development of

biomodels, there remain key limitations in current approaches:

1. There is no guarantee that the integrated model will be consistent with basic

physical principles such as conservation of mass, charge, energy.

2. It remains difficult to resolve points of conflict between models, such as conflicts

between parameters and assumptions.

3. There is limited scope for dealing with multi-physics systems that arise in

electrophysiology and mechanochemistry.

Resolving these issues requires the conservation laws of physics to be embedded within

computational modules. Network Thermodynamics, using bond graphs, is a modelling

framework that fits with the requirement of developing physically consistent models,

while retaining compatibility with existing approaches.

Bond graphs

Bond graphs provide a modular framework for constructing physically and

thermodynamically consistent models in systems biology. The framework was first

applied to biology by Oster, Perelson and Katchalsky in the context of Network

Thermodynamics, as a method for incorporating the laws of thermodynamics into

theoretical models of living systems [25,26]. This work followed in the tradition in

physics and engineering that if you “get the physics right”, “the rest is

mathematics” [27,28]. Bond graph models are defined by combining constitutive

relations with physical conservation laws, giving rise to a declarative model structure.

This confers some advantages from a modelling perspective:

1. Models can be specified in terms of physical connections between components,
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giving rise to a graphical representation of the model equations, which are

consistent with the conservation laws of physics.

2. Bond graphs inherently support modular modelling, as components can easily be

swapped in and out without affecting the high-level model structure.

3. Due to the fundamental nature of energy in all physical systems, a

thermodynamic approach can be used to link together models of systems from

different physical domains such as the electrical, mechanical, chemical and

hydraulic domains. Therefore, bond graphs models can be constructed for a wide

range of multi-physical biological systems, including electrophysiology and

mechanobiology [29–31].

There has been a long history of thermodynamic modelling for biochemical reaction

networks [5,32,33]. In this section, we introduce bond graphs as an intuitive method for

embedding such approaches within a modular framework.

An explicit graphical representation of biochemical systems

We first use simple example to illustrate the how the structure of a bond graph encodes

differential equations [26,34,35]. Consider the enzyme-catalysed reaction in Fig. 2A,

noting that all chemical reactions are thermodynamically reversible. Assuming that the

reactions follow the law of mass action, the system can be described using the

differential equations

dxE
dt

= −v1 + v2 (1a)

dxC
dt

= v1 − v2 (1b)

dxS
dt

= −v1 (1c)

dxP
dt

= v2 (1d)

where the fluxes through the reactions v1 and v2 are given by

v1 = k+1 xExS − k
−
1 xC (2a)

v2 = k+2 xC − k
−
2 xExP . (2b)
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S

E

P

C

re1 re2

Species

Reactions

Common potential, 
Mass conservation

Common flow,
Potential conservation

Symbols

 - Chemical potential (J/mol)

v - Molar flow rate (mol/s)

Variables

A

Chemical reactions

B
Graph representation

C
Network thermodynamics representation

E

re1 re2

S P

C

E+S ⇌ C ⇌ E+P

Fig 2. The energetics of an enzyme-catalysed reaction. (A) Chemical reaction
scheme. (B) A graph representation of the reaction scheme typically seen in systems
biology. Species are represented as circles and reactions are represented as squares. The
grey arrows indicate the flow of mass. (C) A bond graph representation of the network.
Note that in contrast to the graph representation in (B), additional elements have been
added to the representation to represent conservation of mass (closed circles • ) and
conservation of energy (triangles H). The arrows here represent the molar flow rate
(green) and the associated chemical potential (blue), thus the flow of both mass and
energy is accounted for. The arrowheads indicate the direction of positive flux, but all
reactions can proceed in the reverse (negative) direction as well.
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In the above equations, the rate parameters k+1 , k−1 , k+2 and k−2 are defined in Fig. 2A,

and xE , xC , xS , xP are the concentrations (or molar amounts) of E, C, S and P

respectively.

Because it is often useful to consider rate laws independently from the stoichiometry

of the system, systems biologists may favour an expanded representation of the network

as shown in Fig. 2B, where the reactions and species reside in their own components.

This representation is similar to the Systems Biology Graphical Notation (SBGN) [36].

The bond graph representation in Fig. 2C is a further expansion of the diagram in

Fig. 2B. This representation firstly adds two physical variables to the edges: a chemical

potential µ [J/mol] (blue variables) and molar flux v [mol/s] (green variables). Since µ

and v multiply to give power P [J/s], each connection transfers energy between

components. In addition, separate nodes (• and H) are used to model mass and energy

conservation laws inherent within these systems, discussed further below.

Every component (node) within the system contains its own independent set of

equations and parameters. Each chemical species (open circles © in Fig. 2C) is

associated with a chemical potential µ. In dilute systems at constant temperature and

pressure, this quantity is related to abundance x by

µ = RT ln(Kx) (3)

where x [mol] is the amount of the species, K [mol−1] is the thermodynamic parameter

for that species, R = 8.314 JK−1mol−1 is the ideal gas constant and T [K] is the

absolute temperature. Similarly, the rate of each reaction (squares � in Fig. 2C) is

given by a constitutive relationship between reaction rate v and the thermodynamic

potentials. For example, the thermodynamic Marcelin-de Donder equation represents

reversible mass action kinetics [35]:

v = κ

[
exp

(
Af

RT

)
− exp

(
Ar

RT

)]
(4)

where Af (Ar) is the forward (reverse) affinity, or the sum of chemical potentials within

the reactants (products). We note that while we have used K and κ as our parameters,

these values can also be expressed in terms of energetic quantities such as the free
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energy of formation (see Appendix A.1 in S1 Text).

Therefore, the species in Fig. 2C encode the relationships

µE = RT ln(KExE) (5a)

µC = RT ln(KCxC) (5b)

µS = RT ln(KSxS) (5c)

µP = RT ln(KPxP ) (5d)

and the reactions encode the relationships

v1 = κ

[
exp

(
Af1
RT

)
− exp

(
Ar1
RT

)]
(6a)

v2 = κ

[
exp

(
Af2
RT

)
− exp

(
Ar2
RT

)]
. (6b)

To obtain the correct fluxes for each reaction, the chemical potentials µ of the

species need to be correctly mapped onto the reaction affinities Af and Ar. Because

reactions 1 and 2 are connected directly to µC in Fig. 2C, it is clear that

Ar1 = Af2 = µC . (7)

However, conservation of chemical potential (energy per mole) needs to be considered

when determining Af1 and Ar2. These affinities are related to the species potentials

through the relationships

Af1 = µS + µE (8a)

Ar2 = µP + µE . (8b)

The above energy conservation equations are encoded within triangular (H)

components (Fig. 2C), which constrain the model such that the sum of potentials of the

edges directed into the triangles is equal to those directed outwards. Note also that

fluxes v of the connected edges are equal as each reaction consumes reactants and

produces products at the same rate. These common flow junctions are analogous to
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Kirchhoff’s voltage law in electrical circuits.

Finally, the fluxes through the reactions are related back to the rates of change in

species through the conservation of mass components represented by the closed circles

(•) in Fig. 2C. These components constrain the fluxes such that the sum of fluxes into

the component is equal to the sum of fluxes out of the component. These encode the

mass balance equations in Eq. 1. The common potential junction is analogous to

Kirchhoff’s current law in electrical circuits.

Once Eqs. 1,5–8 are combined, one can derive the differential equations

dxE
dt

= −κ1KEKSxExS + κ1KCxC + κ2KCxC − κ2KEKPxExP (9a)

dxC
dt

= κ1KEKSxExS − κ1KCxC − κ2KCxC + κ2KEKPxExP (9b)

dxS
dt

= −κ1KEKSxExS + κ1KCxC (9c)

dxP
dt

= κ2KCxC − κ2KEKPxExP . (9d)

This thermodynamic formulation has the same form as the kinetic formulation

(Eqs. 1–2) with the parameters redefined as

k+1 = κ1KEKS (10a)

k−1 = κ1KC (10b)

k+2 = κ2KC (10c)

k−2 = κ2KEKP . (10d)

While the thermodynamic formulation contains more parameters (6) than the kinetic

formulation (4), they overcome a limitation of kinetic parameters. Whereas kinetic

parameters are not free to be independently specified and require detailed balance

constraints to be thermodynamically consistent, thermodynamic parameters can be

chosen independently. Systems biologists have previously used thermodynamic

parameters to avoid thermodynamically inconsistent model behaviour [33,37]. More

recently, the approach has been suggested for whole-cell modelling as a method for

resolving points of conflict between data [5].

Thus, a strength of bond graph models in this context is that the differential
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equations of a biological network can be directly derived from the network structure,

which paves the way for the modular construction of such models.

A remark on notation: Traditionally, the bond graph representation uses a textual

notation for components rather than the graphical notation used in this paper.

Specifically, species (©) are represented as C components, reactions (�) as Re

components, common potentials (•) as 0-junctions and common flows (H) as

1-junctions. Furthermore, bonds are depicted using half-arrows rather than full arrows.

However, in light of recent efforts to “modernise” the bond graph representation [38], we

have depicted components in shapes rather than letters to make the representation

closer to conventions seen in systems biology.

A modular representation for enzymes

In systems biology, there are often several plausible equations for modelling

enzyme-catalysed reactions. A modular approach is desirable in allowing one enzyme

model to be swapped out for another [39]. We illustrate this by considering a modular

version of the enzyme-catalysed reaction of Fig. 2. The system can be represented using

the diagram in Fig. 3A, where S and P are connected via a yet-to-be-defined module

shown by the light blue box. This arbitrary module can then be substituted for any

component describing a plausible reaction mechanism.

Enzyme-catalysed reactions can be described by rate laws (Fig. 3B). The simplest of

these is the law of mass action in Eq. 4 (Fig. 3B; white box). This can be substituted

for more complex kinetics, for example, the reversible Michaelis-Menten equation

(orange box)

v = κ̄e0
eµS/RT − eµP /RT

1 + eµS/RT

Rb0
+ eµP /RT

Rb1

(11)

with the parameters κ̄ (rate constant [s−1]), Rb0 (binding constant of the substrate

[dimensionless]), Rb1 (binding constant of the product [dimensionless]) and e0 (total

amount of enzyme [mol]) [35]. Thus, a bond graph approach allows alternative rate laws

to be easily swapped for one another while retaining thermodynamic consistency. It is

worth noting that the Michaelis-Menten rate law can be derived as a simplification of a

more complex mass action model [40,41].
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Generalised rate laws
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C
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= Mass action

Michaelis-Menten

Fig 3. Representation of enzymes as interchangeable modules. (A) A modular representation of an enzyme. The
module representing the enzyme, shown as a blue module, can be swapped depending on model requirements. (B) and (C)
describe possible contents of the blue module. (B) Rate law representations of the enzyme, including mass action (white box)
and the Michaelis-Menten equation (orange box). (C) Detailed multi-state representations of the enzyme, including the full
two-state representation of the Michaelis-Menten enzyme (left) and a three-state representation with an explicit step for the
conversion of substrate to product.
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In some cases, the full dynamics of the enzymatic reaction need to be considered.

The advantage of a modular representation is that groups of reactions can be

encapsulated into a model component. The diagram in Fig. 3A can be converted into a

simple two-state mechanism by defining the light blue box as the network in the left

panel of Fig. 3C; this is the same system as seen in Fig. 2. Alternatively, to consider the

conversion of substrate-bound enzyme to product-bound enzyme, the module defined in

the right panel of Fig. 3C could be used.

As seen in the above examples, parts of a module can be exposed by leaving open

one end of a connection, which imposes a boundary condition on the model, allowing it

can be connected to an external component. This is analogous to leaving ports open in

electrical circuits. This kind of modularity provides tools for managing model

complexity: generic modules are easily replicated and reused for different reactions that

use the same mechanism, and the internal details of complex enzymatic mechanisms can

be hidden. We now illustrate these ideas through the modular development of a MAPK

signalling cascade model, and then by considering the glycolytic metabolic pathway

modelled using different reaction rate laws.

Results

Modular development of a model of the MAPK cascade

The MAPK cascades are a family of biochemical signalling pathways that regulate

important biological processes including growth, proliferation, migration and

differentiation [42]. These systems are composed of a series of phosphorylation events in

which the phosphorylated substrate at one level of the cascade catalyses reactions at the

next level, leading to signal amplification. From a modelling perspective, MAPK

cascades contain a number of repeated motifs and therefore serve as interesting case

studies for modular model development.

There are multiple MAPK cascades that naturally occur in eukaryotic cells. In this

paper, we deal with the Mos/MAPK pathway found in Xenopus oocytes, a key regulator

of maturation in these cells [43, 44]. Relevant MAPK cascades in human cells include

the ERK-MAPK, c-Jun N-terminal kinase (JNK) and p38 MAPK pathways, which are
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of clinical relevance as they are implicated in many cancers [45]. While the kinetic

properties may differ between pathways, a strength of taking a modular approach is

that one can use similar network structures to account for many MAPK cascades.

Core model

Here we construct a model of the Mos/MAPK cascade in a modular fashion using bond

graphs. The core MAPK cascade model we considered was based on a study by Huang

and Ferrell [43]. We chose this model in particular as it accounts for the elementary

mass-action between enzyme states, which is essential when dealing with systems with

coupled enzymatic reactions [46].

The presence of repeated network motifs consisting of kinases and phosphatases

motivates an approach where generic modules corresponding to the kinases and

phosphatases are first constructed, and then assembled into a model of the MAPK

cascade. This gives rise to a model with a hierarchical structure. The modules for the

kinase and phosphatase are defined in Fig. 4A,B. These use mechanisms similar to the

Michaelis-Menten model in the left panel of Fig. 3C, but the free enzyme E, ATP, ADP

and Pi need to be shared between modules and are therefore represented as external

connections. X and XP are generic labels referring to the unphosphorylated and

phosphorylated substrate respectively.

In the Methods section, it was clear how components were connected to the ports of

each module. However, the increased number of ports in this example demands a more

precise method of specifying external connections. For each module, each port is

labelled in parentheses, i.e. (label). These port labels are then used to define the

connections to external components when the module is reused in a larger system – as

indicated by the labels in red parentheses in Fig. 4C,D. Using this notation, the kinase

and phosphatase modules are combined into a generic model of a phosphorylation cycle

(Fig. 4C). Note that X and XP have been linked through a conservation of mass

relationship, but the ports are otherwise exposed because all quantities are shared

between modules in the full MAPK cascade model. In cases where there are multiple

kinases and phosphatases operating in parallel, modules for these additional enzymes

are easily added and connected to the mass conservation junction.

An advantage of defining generic modules is that multiple copies of these modules
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Fig 4. A hierarchical and thermodynamic model of the MAPK cascade. Generic modules can be made for (A)
kinases and (B) phosphatases. (C) These modules can then be assembled into larger modules defining phosphorylation loops.
To ease biological interpretation, the specific biological names are given in green where known. (D) Multiple copies of
phosphorylation loops can be reused and connected to form a model of the MAPK cascade. For clarity, ATP, ADP and Pi
have been omitted in (D).
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Fig 5. Simulations of the model of the MAPK cascade. (A) The activation of kinases over time. Activation is
defined as the percentage of each kinase in its active state, i.e. the phosphorylated forms of MAP3K and the biphosphorylated
form of MAP2K and MAPK. (B) The effect of input concentration on the steady-state concentrations of each of the
activated kinases. Each curve is normalised to the highest concentration achieved for that species. (C) The activation curve
in (B), but with reduced (80%) energy from ATP hydrolysis. The model was simulated with the initial conditions
xMAP3K = 3 nM, xMAP2K = 1.2 µM, xMAPK = 1.2 µM, xMAP3K-Pase = 0.3 nM, xMAP2K-Pase = 0.3 nM,
xMAPK-Pase = 0.12 µM. In (A), we initially set xMAP4K = 0.03 nM, whereas this initial condition was varied for (B) and (C).
All other species had an initial concentration of zero.

can be constructed and connected together. Since the MAPK cascade consists of

multiple phosphorylation cycles, copies of the phosphorylation cycle module can be

coupled together into a model of a full MAPK cascade (Fig. 4D). Here, specific

biomolecules are now assigned to the previously generic X and XP ports of the

phosphorylation cycles. The multiple levels of the cascade are coupled by connecting

the phosphorylated substrate in one level to the kinase port of the next cascade. We

chose model parameters to match the Huang and Ferrell [43] model as closely as

possible. Because in that model the energetics of ATP hydrolysis were ignored and

irreversible reactions were used, we reformulated the model to reintroduce both the

effects of ATP hydrolysis and reversibility (details in Appendix A.2 of S1 Text, with

parameters given in S1 Table). Because the Huang and Ferrell model used irreversible

reactions, an exact fit was impossible. Nonetheless, the reformulated model behaves

almost identically to the original model (Figure S1, Appendix A.2) under comparable

physiological conditions.

Simulations of the model were run using BondGraphTools [22], and the results are

shown in Fig. 5A, which plots the percentage of the activated kinase at each level of the

cascade. We found that the concentrations settled to steady-state concentrations. These

concentrations were recorded for different concentrations of input, resulting in the

signal-response curves in Fig. 5B. Under different input concentrations, the response of
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each substrate was sigmoidal. As expected from existing modelling studies [43], there

was an amplification effect as the steepness of the transition from inactivated to

activated forms became more pronounced towards the end of the cycle. When the

energy supplied by ATP hydrolysis was reduced, a greater concentration of input was

required to activate each of the kinases, with the effects being amplified at the lower

levels of the cascade (Fig. 5C).

While this approach took a black-box approach to modularity in this example, recent

developments in bond graph modelling have enabled a more flexible white-box approach

to modularity [47]. In Appendix B, we outline how this model could be constructed

using such an approach where each module is itself a simulatable model.

Incorporation of feedback

An advantage of using a graphical and modular representation is that it is relatively easy

to make incremental changes to models. We demonstrate this by modifying the model

in Fig. 4D – which we will now refer to as the “core” model – to include the effects of

feedback. Both positive and negative feedback loops exist in MAPK cascades, but these

often operate on molecules upstream of the cascade represented here [48]. To keep the

model simple, we incorporate the effects of feedback with a generic mechanism assuming

that the feedback operates on the input molecule MAP4K, and that the feedback occurs

due to a phosphorylation event that either activates or inactivates the kinase.

To incorporate feedback, the core model of the MAPK cascade is rewired so that the

input MAP4K and output MAPKPP are connected through a feedback module

(Fig. 6A). Because feedback is through a phosphorylation event, we model feedback by

reusing the phosphorylation cycle module in Fig. 4C. The new model contains the

MAP4K-I species, representing the inactive form of MAP4K. Note that in Fig. 6A, the

feedback ports that the input and output species connect to (referred to as X1 and X2)

determine whether positive or negative feedback results. In the case of positive feedback,

the active form of MAP4K is the phosphorylated form, i.e. X1 = XP and X2 = X

(Fig. 6B). For negative feedback, the active form of MAP4K is the unphosphorylated

form, i.e. X1 = X and X2 = XP (Fig. 6C).

Simulations of the MAPK cascade with feedback to steady-state are shown in

Fig. 6D, along with the corresponding simulation of the model without feedback for
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Fig 6. Feedback within the MAPK cascade. (A) Feedback can be added by modifying the core model of the MAPK
cascade such that the input (MAP4K) and output (MAPKPP) are connected through a feedback module, which is
implemented using the phosphorylation cycle defined in Fig. 4C. The nature of the connections can give rise to both positive
and negative feedback loops. ATP, ADP and Pi have been omitted for clarity. (B) For positive feedback, the active form of
MAP4K is the phosphorylated species; (C) whereas for negative feedback, the active form of MAP4K is the
dephosphorylated species. (D) The steady-state response (MAPKPP) of each system in response to changing input. (top) No
feedback; (middle) positive feedback; (bottom) negative feedback. The initial conditions are the same as in Fig. 5. The model
with positive feedback is bistable, and the upper curve is obtained by setting the initial conditions for MAP3K, MAP2K and
MAPK to zero, and instead using xMAP3KP = 3 nM, xMAP2KPP = 1.2 µM, xMAPKPP = 1.2 µM.
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comparison. As has been predicted previously, negative feedback reduced

ultrasensitivity [49,50]. As discussed in Gawthrop and Crampin [15], when viewed as an

amplifier, negative feedback can increase the range of usable input concentrations at the

expense of reduced gain. The model with positive feedback exhibited bistability, a

property seen in previous models of the MAPK cascade [48]. When the model was

initialised in an active state, the response curve was virtually identical to the system

without feedback. However, when the model was initialised to an inactive state, the

response curve remained inactive for a wide range of input concentrations and only

activated at high input concentrations.

Benchmarking rate laws in a model of glycolysis

Kinetic models of metabolic systems make use of numerous rate laws, such as mass

action, Michaelis-Menten and Hill equations. However, in many cases, these rate laws

are not thermodynamically consistent. The bond graph approach builds on existing

work by using thermodynamically independent parameters to ensure that rate laws are

thermodynamically consistent [33,37,41]. In this section, we use glycolysis as an

example to demonstrate the ability of bond graphs to swap out rate laws for one

another and to benchmark the performance of alternative rate laws.

One can create a model of glycolysis by using the stoichiometry to define a high-level

reaction structure with swappable modules for each enzyme, and then choose an

appropriate rate law for each enzyme, depending on the fit to data (Fig. 7). Indeed, this

approach was taken by Gawthrop et al. [41].

A detailed rate law, used by Mason and Covert [5], is given by the equation

v = κ̄e0
eA

f/RT − eAr/RT

−1 +
∏
s∈S

(
1 + eµs/RT

Rb,s

)
+
∏
p∈P

(
1 + eµp/RT

Rb,p

) (12)

where κ̄ is a rate parameter, S is the set of all reactants, P is the set of all products and

Rb,z is the binding parameter associated with the substrate z. In the case of multiple

stoichiometries, each binding site has a separate parameter Rb,z; S and P include

multiple instances of such species (distinguished by numerical indices) in this scenario.

For reactions where all reactants and products have a stoichiometry of one, the rate law

is identical to convenience kinetics [37]. However, when multiple stoichiometries are
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Fig 7. Modelling of enzymes within the glycolysis pathway. (A) A network-level representation of the system,
where the blue modules are free to be swapped depending on the rate law. Species without circles are considered to be
external to the system, and in cases where they occur more than once, they are connected by equal potential components (•,
omitted for compactness) to ensure mass conservation. (B) For illustrative purposes, we show the rate laws for the pgk
enzyme. (C) The enzyme can be modelled using the mass action (top), Michaelis-Menten (middle) or generalised kinetics
(bottom) rate laws. The notation for the mass action and Michaelis-Menten components are defined in Fig. 3B. Note that
since generalised kinetics rate laws depend on the chemical potentials of all substrates (and not just their sums), they cannot
be decomposed into smaller modules.
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Fig 8. Response of glycolysis models to perturbations to internal species. Each of the species (column titles) had
its concentration instantaneously increased by 30% from steady state. Top row: response times; bottom row: change in [PEP]
over time. The colour key is blue: generalised kinetics (GK), green: Michaelis-Menten (MM), red: mass action (MA). In cases
where the curve for the generalised kinetics model is not visible, it matches with the Michaelis-Menten model.

involved (for example, in the enzyme pps, Fig. 7A), this contains additional parameters.

For this reason, we will refer to this rate law as the “generalised kinetics” (GK) rate law.

In many cases, it can be helpful to substitute complex rate laws with simpler ones,

for example, to ease parameter estimation or to make mathematical analyses more

tractable [51]. Thus, we constructed simplified versions of the generalised kinetics model

(with parameters taken from Mason and Covert [5]) using both Michaelis-Menten

kinetics (Eq. 11) and mass action kinetics (Eq. 4). In brief, the parameters were chosen

to match the steady state of the generalised kinetics model. In the case of

Michaelis-Menten kinetics, the binding parameters were chosen to match the behaviour

of the enzyme to internal species where possible. Details of how parameters were

derived for the simplified models are given in Appendix A.3 of S1 Text, with parameters

in S2 Table.

In order to obtain nonzero steady-state flows through the system, we assume that

certain species (G6P, PYR, NAD, NADH, ATP, ADP, AMP, Pi, H, H2O) have a zero

rate of change, modelling their replenishment through the environment. These are the

external species, or “chemostats” in bond graph terminology [40].

Transient perturbations

We firstly tested each of the models by perturbing the concentrations of each of the

internal species, causing transient shifts away from the reference steady state (Fig. 8).

The responses of the simplified models were firstly compared against the original
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generalised kinetics model by calculating the response time, which was defined as the

time required for the system to return to within 5% of its maximum deviation. Distance

from the reference steady state was calculated using the Euclidean norm

d =

√∑
s∈Si

(xs − xs,ss)2 (13)

where Si = {F6P,F16P,DHAP,GAP, 13DPG, 3PG, 2PG,PEP} is the set of all internal

species and xs,ss is the concentration of s at the reference steady state. The response

times are plotted in the top row of Fig. 8. We also compared the models by plotting the

concentration of PEP, the most downstream internal species against time (Fig. 8;

bottom row).

As seen in all perturbations, the Michaelis-Menten model matched with the original

generalised kinetics model extremely well. This was expected as the Michaelis-Menten

model was parameterised to match the behaviour of the generalised kinetics models

with respect to the internal species. The minor differences between the models stem

from the fba enzyme, which has two products and therefore could not be exactly

matched to the generalised kinetics model (see Appendix A.3 of S1 Text).

The mass action model behaved substantially differently from the generalised

kinetics model with respect to the perturbations, notably having a faster response time.

Additionally, the concentration of PEP had a greater maximum deviation from its

steady-state value in response to perturbations of the more upstream species. Unlike

the other rate laws, the law of mass action does not account for the rate-limiting step of

enzyme complexes releasing product. Thus, these observations could potentially be

attributed to the lack of saturation in the mass action rate law, causing increased

reaction fluxes.

Steady-state perturbations

We also tested the response of the models to prolonged perturbations with external

species, which caused the models to move to different steady states (Fig. 9). Once again,

the models were compared using the response time (top row) and concentration of PEP

(bottom row). We also quantified the magnitude of the shift in steady state using the

Euclidean norm (middle row).
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Fig 9. Response of glycolysis models to prolonged perturbations to external species. Each of the species
(column titles) had its concentration instantaneously increased by 30% from steady state. Top row: response times; middle
row: steady state deviation; bottom row: change in [PEP] over time. The colour key is blue: generalised kinetics (GK), green:
Michaelis-Menten (MM), red: mass action (MA). The response of the model to NADH was omitted as there was a negligible
change in steady state.

While the Michaelis-Menten model still qualitatively resembled the generalised

kinetics model, differences started to emerge when external species were perturbed, as

there were insufficient parameters to match the behaviour in response to external

species. These differences appeared to be most significant for perturbations to NAD,

ATP and Pi. In general, the response time for the Michaelis-Menten model was slightly

longer than the full model.

Following the trend for internal perturbations, the mass action model behaved

significantly differently from the original model. The mass action model had a shorter

response time and reached a different steady state in many cases.

These results would appear to suggest that saturation is an important property to

consider when modelling the dynamic behaviour of metabolic networks, mirroring

results from previous studies [52, 53]. Comparisons between the generalised kinetics and

Michaelis-Menten models illustrate that while quantitative differences arise from

simplifying out the complex binding properties of enzymes, simpler models may

nonetheless be useful in studying the qualitative behaviour of metabolic networks,

particularly under conditions where appropriate assumptions are satisfied.
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Energetics of the glycolysis pathway

In addition to exploring fluxes and concentrations, bond graph models can be used to

study the energetics of metabolic pathways, allowing modellers to incorporate

thermodynamic measurements into methodologies for model parameterisation and

validation. In some cases, analysing the transduction and dissipation of energy can

result in novel insights and predictions [47].

The glycolysis pathway contains two points (fba/fbp and pyk/pps) at which carbon

species are cycled by two enzymes while dissipating energy. These futile cycles (or

“Cyclic Flow Modulation” [54]) are critical points of control, allowing the system to

switch between glycolysis and gluconeogenesis [55,56]. Much of this regulation is

performed by allosteric regulation, which is not accounted for in this model.

Nonetheless, the enzyme concentrations e0 can be changed to model the effects of

allosteric regulation.

We analyse the energetics of the generalised kinetics model of glycolysis in this

section. To simplify our analysis, we switch off the fbp and pps enzymes (generally

associated with gluconeogenesis) by setting e0 to zero. The remaining reactions form a

pathway, which we analyse at steady state. Using the methods of Gawthrop and

Crampin [57], the glycolysis pathway can be defined as the sum of reactions

pgi + pfk + fba + tpi + 2gap + 2pgk + 2gpm + 2eno + 2pyk. (14)

This pathway has the overall reaction

G6P + 3ADP + 2NAD + 2Pi
 2PYR + 3ATP + H + 2NADH + 2H2O. (15)

Thus we can calculate the overall affinity of the pathway to be

Aglycolysis = µG6P + 3µADP + 2µNAD + 2µPi

− 2µPYR − 3µATP − µH − 2µNADH − 2µH2O (16a)

= Apgi +Apfk +Afba +Atpi + 2Agap + 2Apgk + 2Agpm + 2Aeno + 2Apyk.

(16b)
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Table 1. Distribution of free energy changes in the glycolysis pathway. The
total free energy corresponds to the overall reaction
G6P + 3ADP + 2NAD + 2Pi
 2PYR + 3ATP + H + 2NADH + 2H2O.

Reaction Affinity (kJ/mol)

pgi 43.4
pfk 81.0
fba 14.6
tpi 8.4

gap 51.5 (×2)
pgk 23.9 (×2)

gpm 13.5 (×2)
eno 45.1 (×2)
pyk 17.0 (×2)

Total 449.4

The energy-based approach reveals a more detailed picture of how energy is

dissipated throughout the pathway. Using the concentrations of each metabolite at

steady state, one can calculate the affinity of each individual reaction. As expected,

when scaled by the contribution of each reaction to the pathway, the affinities of the

reactions add up to the total affinity (Table 1).

The total pathway affinity predicted by the model is higher than the experimentally

measured values [58]. Furthermore, all reactions contribute significantly to the overall

affinity, which differs from experimental measurements finding that the pfk and pyk are

the predominant contributors to overall affinity, with the other reactions near

equilibrium [58]. We note that for this particular model, the parameters were derived in

the absence of standard free energies of formation [5]. Thus, a natural improvement to

the model would be to use these values to parameterise models [59], which would likely

improve the fit to experimental data.

Discussion

It is widely accepted that a modular approach is essential to developing large-scale

models in systems biology. While significant progress has been made in using

computational resources to support modular modelling, it remains challenging to ensure

the integrated models are consistent with the laws of physics. In this paper, we have

illustrated that bond graphs are both modular and physically consistent, allowing them

to unify developments from both software and thermodynamical modelling. These
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principles were demonstrated by constructing physically consistent models of two

well-studied systems using the modular properties of bond graphs.

To construct the model of the MAPK cascade, we took advantage of the ability of

bond graphs to embed modules into reusable templates. Due to the presence of

repeating motifs, the development of the model was substantially simplified, illustrating

how similar concepts may be usable in streamlining the development of models of more

complex systems. As demonstrated in Appendix B of S1 Text, this approach can be

extended to use white-box modules with flexible interfaces. Furthermore, the merging of

models can be automated through the use of semantic annotations, and bond graphs

have shown great potential in this space due to their biophysical detail [60].

In addition to embedding multiple components into a module, bond graphs also

enable reactions to be modelled by a wide array of thermodynamically consistent rate

laws. Using a network-level representation of glycolysis as a template, we showed how

parts of a bond graph can be substituted for rate laws of varying complexity. This

enabled a principled approach for benchmarking and comparing models of glycolysis

with different levels of complexity. While not explored in this paper, a strength of this

approach is that different parts of a model can be represented at different levels of

granularity. This modular approach would allow one to study subsystems of interest

using highly detailed models while using more manageable coarse-grained

representations for the rest of the model.

Because bond graphs are inherently a modular and declarative representation, they

are well suited for taking advantage of developments in programmatic modelling where

models are constructed through a series of instructions from the software [7, 21]. Indeed,

the models in this paper were constructed using the BondGraphTools Python

package [22], a highly flexible and automatable approach for model construction that

mirrors the approach of existing packages used within the systems biology

community [21]. Embedding bond graphs within a programmatic environment allows

models to be constructed using higher-level descriptions. Previous work has shown that

bond graphs can be constructed from a series of reactions [41], and further work will

focus on incorporating rule-based modelling for constructing models of highly complex

interactions between proteins, ligands and receptors [61].

In conjunction with the programmatic approach, bond graphs provide a useful
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framework for updating models and recording their provenance. In the development of

the model of the MAPK cascade, we showed that incremental changes could be made to

incorporate feedback. Through a modular approach, these changes were made by

changing the components and connections within the network rather than deriving new

equations entirely. Furthermore, these incremental changes can be recorded within the

code used to construct such models, which could potentially enable an automated

framework for profiling model provenance in the future.

In order to develop comprehensive models of cells, ongoing and future work will

focus on expanding the range of cellular processes that bond graphs can represent.

While significant progress has been made in metabolic modelling and transport

processes, how to model gene regulation and signalling in an energy-based framework

remains an open question. Modelling such processes will likely require theoretical

groundwork to be established for:

1. modelling discrete and stochastic systems

2. choosing an appropriate level of model granularity to model each biological process

3. dealing with the properties of macromolecules in a modular manner, so that the

number of associated parameters remains manageable

While the Network Thermodynamics approach implemented using bond graphs

requires modellers to take more care in their models in the short term, we believe taking

this approach will make large-scale models more robust, reusable and ultimately more

useful to the systems biology community in the years to come.

Data availability: The code for this manuscript is available at

https://github.com/mic-pan/Modularity-SysBio

Supporting information

S1 Text Supplementary material. Appendix A: Details of parameter

identification for the MAPK cascade and glycolysis. Appendix B: Outline of a

white-box approach to modelling the MAPK cascade.
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S1 Table. Parameters for the MAPK cascade. S1A: Core model. S1B: Positive

feedback. S1C: Negative feedback.

S2 Table. Parameters for the glycolysis model. S2A: Species parameters. S2B:

Reaction parameters.
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