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25 Abstract

26 α-galactosidase (α-GAL) and α-N-acetylgalactosaminidase (α-NAGAL) are two glycosyl 

27 hydrolases responsible for maintaining cellular homeostasis by regulating glycan substrates 

28 on proteins and lipids. Mutations in the human genes encoding either enzyme lead to 

29 neurological and neuromuscular impairments seen in both Fabry- and Schindler/Kanzaki- 

30 diseases. Here, we investigate whether the parasitic blood fluke Schistosoma mansoni, 

31 responsible for the neglected tropical disease schistosomiasis, also contains functionally 

32 important α-GAL and α-NAGAL proteins. As infection, parasite maturation and host 

33 interactions are all governed by carefully-regulated glycosylation processes, inhibiting S. 

34 mansoni’s α-GAL and α-NAGAL activities could lead to the development of novel 

35 chemotherapeutics. Sequence and phylogenetic analyses of putative α-GAL/α-NAGAL protein 

36 types showed Smp_089290 to be the only S. mansoni protein to contain the functional amino 

37 acid residues necessary for α-GAL/α-NAGAL substrate cleavage. Both α-GAL and α-NAGAL 

38 enzymatic activities were higher in females compared to males (p<0.05; α-NAGAL > α-GAL), 

39 which was consistent with smp_089290’s female biased expression. Spatial localisation of 

40 smp_089290 revealed accumulation in parenchymal cells, neuronal cells, and the vitellaria 

41 and mature vitellocytes of the adult schistosome. siRNA-mediated knockdown (>90%) of 

42 smp_089290 in adult worms significantly inhibited α-NAGAL activity when compared to 

43 control worms (siLuc treated males, p<0.01; siLuc treated females, p<0.05). No significant 

44 reductions in α-GAL activities were observed in the same extracts. Despite this, decreases in 

45 α-NAGAL activities correlated with a significant inhibition in adult worm motility as well as in 

46 egg production. Programmed CRISPR/Cas9 editing of smp_089290 in adult worms confirmed 

47 the egg reduction phenotype. Based on these results, Smp_089290 was determined to act 
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48 predominantly as an α-NAGAL (hereafter termed SmNAGAL) in schistosome parasites where 

49 it participates in coordinating movement and oviposition processes. Pharmacological 

50 inhibition of SmNAGAL may lead to the development of a novel anthelmintic class of 

51 compounds.
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68 Author summary

69 Schistosomiasis is a parasitic disease caused by infection with blood flukes, which 

70 leads to acute and chronic pathology in millions of infected individuals located in deprived 

71 tropical and subtropical regions. Elucidating the function of schistosome genes has provided 

72 a clearer view on their roles in various molecular pathways, which are critical to successful 

73 parasitism. This information is invaluable when progressing novel drug and vaccine 

74 candidates. Here, we add to the existing knowledge of the Schistosoma mansoni parasitic 

75 glycan processing and modification machinery by functionally characterising a glycosyl 

76 hydrolase (S. mansoni α-N-acetylgalactosaminidase, SmNAGAL). We demonstrate that this 

77 protein is enzymatically active and important in coordinating parasite movement in adult 

78 male and female schistosomes. Additionally, we provide evidence that this protein regulates 

79 pathways associated with egg production in female schistosomes, which is responsible for 

80 inducing pathological reactions. Developing drugs that inhibit SmNAGAL enzymatic activity 

81 could provide a novel approach for controlling schistosomiasis.
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91 Introduction

92 Schistosomiasis is a parasitic disease caused by infection with blood flukes of the 

93 genus Schistosoma and is estimated to affect more than 250 million people worldwide [1]. 

94 With up to 200,000 deaths per annum, schistosomiasis is considered one of the most 

95 devastating neglected tropical diseases (NTDs) of resource poor communities within 

96 developing countries [2]. Currently, the primary method used to control schistosomiasis is 

97 mediated by praziquantel chemotherapy [3] with recent data suggesting that this drug targets 

98 transient receptor potential (TRP) channels expressed in adult schistosomes [4, 5]. The 

99 continued use of praziquantel in mass drug administration (MDA) programmes has given rise 

100 to the fear of possible drug resistant blood flukes developing. Indeed, multiple studies have 

101 demonstrated that praziquantel insensitive schistosomes can be generated in the laboratory 

102 [6-8]. These findings, thus, highlight the need for the development of novel anti-schistosomal 

103 drugs, which can act as praziquantel replacements if praziquantel-resistant schistosomes 

104 eventually arise. Identifying and inhibiting processes critical to schistosome developmental 

105 biology and/or host interactions presents a strategy that may contribute to this objective.

106 It is well established that schistosomes carefully regulate their production of specific 

107 glycans and glycan elements as they transition between diverse environmental niches 

108 including water, mammals and snails [9-12]. Some parasite glycans, as moieties of 

109 glycoproteins or glycolipids, are immunomodulatory in nature and contribute to host 

110 (snail/mammal) as well as dioecious (male/female schistosome) interactions [12-15]. 

111 Regardless of their significance in orchestrating these heterospecific, conspecific or 

112 developmental activities, the gene products responsible for schistosome glycoprotein and 

113 glycolipid anabolism and degradation are only slowly being characterised [16, 17]. One such 
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114 glycogene family, critical to glycosylation homeostasis in other eukaryotes, is the glycosyl 

115 hydrolases (or glycoside hydrolases, GH). These enzymes hydrolyse glycosidic bonds between 

116 monosaccharide residues in a carbohydrate chain or bonds between the carbohydrate and a 

117 non-carbohydrate moiety (such as a lipid or protein). According to the latest survey of 

118 glycogene diversity (Carbohydrate-Active enZYmes, CAZY, database [18]), the GHs are 

119 comprised of approximately 171 families (further segregated into clans [19]), each differing 

120 in substrate specificity and molecular mechanism. 

121 Within GH family 27 are the related lysosomal enzymes α-galactosidases (α-GAL) and 

122 α-N-acetylgalactosaminidases (α-NAGAL), which are clan D members responsible for the 

123 cleavage of terminal α-D-galactose or α-N-acetylgalactosamine residues from glycosylated 

124 substrates [20]. Molecular defects in Homo sapiens α-gal lead to a lysosomal storage 

125 condition called Fabry disease, which is characterised by a range of multi-organ pathologies 

126 due to an accumulation of galactose-containing substrates (mostly aberrant glycolipids) in 

127 tissues [21]. Mutations in H. sapiens α-nagal lead to a clinically heterogeneous lysosomal 

128 disorder called Schindler/Kanzaki disease, which can contribute to neuromuscular defects and 

129 skin disorders due to accumulation of both glycolipids and glycoproteins [22, 23]. While these 

130 data strongly support the indispensable nature of both α-GAL and α-NAGAL activities in H. 

131 sapiens, RNA interference (RNAi) – mediated knockdown studies of gana-1 (an ortholog of 

132 both H. sapiens α-gal and α-nagal) in Caenorhabditis elegans failed to demonstrate 

133 essentiality [24]. As the significance in loss of α-GAL and α-NAGAL activities may 

134 phenotypically vary among species, we initiated an investigation exploring the identification 

135 and characterisation of S. mansoni genes with similarity to these two members of GH family 

136 27. 
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137 Of the five putative S. mansoni α-GAL/α-NAGAL proteins identified, we present 

138 sequence-, bioinformatic, functional genomic- and enzymatic- based evidence suggesting that 

139 Smp_089290 is the only α-GAL/α-NAGAL ortholog present in the genome (v 7.0) of this blood 

140 fluke. In the adult schistosome, smp_089290 transcript abundance and enzymatic activity (α-

141 NAGAL > α-GAL) were both enriched in the female compared to the male. Spatial localisation 

142 of smp_089290 by whole-mount in situ hybridisation demonstrated accumulation to the 

143 vitellaria and vitellocytes in adult female schistosomes as well as diffuse distribution 

144 throughout parenchymal cells in both adult male and female parasites. Furthermore, RNAi-

145 mediated knockdown of smp_089290 led to a significant reduction in adult worm motility and 

146 egg production (confirmed by CRISPR/Cas9 genome editing). Collectively, our results predict 

147 that Smp_089290/SmNAGAL is a predominant α-NAGAL necessary for coordinated 

148 schistosome movement and oviposition processes. 
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161 Materials and methods

162 Ethics statement

163 All mouse procedures performed at Aberystwyth University (AU) adhered to the 

164 United Kingdom Home Office Animals (Scientific Procedures) Act of 1986 (project licenses PPL 

165 40/3700 and P3B8C46FD) as well as the European Union Animals Directive 2010/63/EU, and 

166 were approved by AU’s Animal Welfare and Ethical Review Body (AWERB). The use of mice at 

167 George Washington University Medical School was approved by The Institutional Animal Care 

168 and Use Committee (IACUC).

169

170 Parasite material

171 A Puerto Rican strain of S. mansoni (NMRI, Naval Medical Research Institute) was used 

172 in this study. Mixed-sex adult worms were perfused from percutaneously infected TO 

173 (HsdOla:TO, Envigo, UK), MF-1 (HsdOla:MF1, Envigo, UK) or Swiss Webster (CFW, Charles 

174 River Laboratories, USA) mice infected 7 wk earlier with 180 cercariae [25]. These parasites 

175 were cultured (10 sex-separated adults or five adult pairs per well in a 48 well tissue culture 

176 plate) at 37°C in DMEM (Sigma-Aldrich) supplemented with 10% foetal calf serum, 2 mM L-

177 glutamine and 100 µg/ml penicillin/streptomycin in an atmosphere of 5% CO2 with a 70% 

178 media exchange performed after 24 hr and 48 hr for adult male/adult pairs and female worms 

179 respectively. Cultured worms were subsequently used for RNA interference, CRISPR/Cas9 

180 genome editing, total RNA isolation/complementary DNA (cDNA) generation, dual RNA and 

181 genomic DNA (gDNA) extraction and enzyme assays. 

182
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183 Multiple sequence alignment and phylogenetic trees

184 The Pfam identifier PF16499 (melibiase-2) was used to identify S. mansoni, 

185 Schistosoma haematobium and Schistosoma japonicum GH family 27 orthologs of H. sapiens 

186 α-GAL and α-NAGAL enzymes using WormBase ParaSite [26]. Only those Schistosoma entries 

187 that contained >70% of the residues within the melibiase-2 domain identified by Pfam, 

188 UniProt and CAZypedia were retained [18, 27, 28]. These included S. mansoni Smp_170840 

189 (G4VLE1), S. haematobium MS3_10002 (A0A095A3Q8), S. haematobium MS3_10345 

190 (A0A095B3P1), S. mansoni Smp_179250 (G4VLD7), S. mansoni Smp_247760 (A0A5K4F2K9), 

191 S. mansoni Smp_247750 (A0A5K4F165), S. haematobium MS3_10001 (A0A095CF43), S. 

192 japonicum EWB00_005283 (A0A4Z2D326), S. japonicum EWB00_005285 (A0A4Z2D213), S. 

193 japonicum EWB00_005284 (A0A4Z2D211), S. haematobium MS3_11280 (A0A095BSM8) and 

194 S. mansoni Smp_089290 (G4VLE3). A multiple sequence alignment of these Schistosoma 

195 melibiase-2 domain containing proteins with human α-GAL (H. sapiens, Hs_GAL, P06280), 

196 human α-NAGAL (H. sapiens, Hs_NAGAL, P17050), chicken α-NAGAL (Gallus gallus, 

197 Gg_NAGAL, Q90744) and C. elegans α-NAGAL (Ce_GANA-1, Q21801) was generated using 

198 MUSCLE v3.8 [29]. Amino acids included in the alignment were based on the positions of 

199 ligand binding and catalytic aspartic acid (D) residues of the melibiase-2 domains of human α-

200 GAL and α-NAGAL [30-32].

201 Phylogenetic analysis of melibiase-2 domain containing proteins from a broad range 

202 of species across phyla was conducted using Bayesian inference and Maximum Likelihood 

203 approaches. MUSCLE v3.8 software was used to align proteins from S. mansoni, S. 

204 haematobium, S. japonicum (all noted previously) and additional sequences including H. 

205 sapiens Hs_GAL (P06280), H. sapiens Hs_NAGAL (P17050), Drosophila melanogaster 
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206 Dm_CG7997 (Q7K127), D. melanogaster Dm_CG5731 (Q8MYY3), C. elegans Ce_GANA-1 

207 (Q21801), Arabidopsis thaliana At_AGAL1 (Q9FT97), A. thaliana At_AGAL2 (Q8RX86), A. 

208 thaliana At_AGAL3 (Q8VXZ7), Schizosaccharomyces pombe Sp_MEL1 (Q9URZ0), Coffea 

209 arabica Ca_GAL (Q42656), G. gallus Gg_NAGAL (Q90744), Rattus norvegicus Rn_NAGAL 

210 (Q66H12), Mus musculus Mm_GAL (P51569) and M. musculus Mm_NAGAL (Q9QWR8). The 

211 alignment was submitted to Gblocks Server 0.91b which removed non-conserved regions to 

212 allow phylogenetic comparisons [33]. In total, 208 amino acid residues were used for this 

213 phylogenetic analysis. Bayesian inference analyses were performed using MrBayes v3.2.6 

214 [34], the WAG substitution model [35], 500,000 generations and a sample frequency of 100. 

215 As the analysis proceeded, log likelihood values were generated and plotted against the 

216 number of generations. The analysis was stopped upon examination of the average standard 

217 deviation of split frequencies indicating when the log likelihood values reached a stationary 

218 distribution. Maximum Likelihood analyses were performed using MEGA X [36] with the JTT 

219 model [37] and 500 bootstrap replicates. The final Bayesian consensus phylogram was 

220 generated using FigTree v1.4.3 [38]. The Bayesian inference tree was edited using Adobe 

221 Illustrator CS4 software where Bayesian posterior probability support values (outside 

222 parentheses) and Maximum Likelihood percentage bootstrap support values (inside 

223 parentheses) were superimposed on corresponding nodes.

224

225 Homology modelling of Smp_089290

226 The three-dimensional structure of Smp_089290 was derived by homology modelling 

227 using MODELLER [39]. The α-GAL/α-NAGAL template selected for Smp_089290 modelling was 

228 the three-dimensional structure of H. sapiens α-NAGAL (Protein Databank identification code 
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229 4DO4) [31]. The sequence identity between Smp_089290 and the human α-NAGAL was 40% 

230 with a sequence coverage of 97%, hence well within the acceptable range for comparative 

231 modelling [40]. The stereochemical quality of the Smp_089290 model was assessed by 

232 RAMPAGE (Ramachandran Plot Analysis) [41], ProSA-web (Protein Structure Analysis) [42] 

233 and Verify 3D [43].

234

235 Total RNA isolation and cDNA generation

236 S. mansoni total RNA was isolated using the Direct-zol RNA MiniPrep Kit (Zymo 

237 Research) with slight modifications. Briefly, worms were removed from culture, transferred 

238 to 2 ml Eppendorf tubes, and homogenised in QIAZOL reagent (Qiagen) with a 5 mm diameter 

239 stainless steel bead (Qiagen) for a total of 6 min (2 x 3 min with 1 min on ice in between 

240 homogenisations) at 50 Hz using a TissueLyser LT (Qiagen). Thereafter, the RNA was treated 

241 with DNase I to remove contaminating gDNA. RNA was eluted into collection tubes by adding 

242 30 µl of DNase/RNase-free H2O directly to the Direct-zol column matrix and subsequently 

243 centrifuged at 17,000 x g for 60 sec. Yields of total RNA samples were assessed using a 

244 NanoDrop ND-1000 UV-Vis spectrophotometer; RNAs were concentrated when necessary in 

245 a Concentrator plus (Eppendorf) and re-quantified. Schistosome cDNAs were reverse 

246 transcribed from the total RNAs using the SensiFAST cDNA Synthesis Kit (Bioline) according to 

247 the manufacturer’s instructions.

248

249 cDNA cloning and sequencing of smp_089290

250 PCR primers used to amplify the full coding sequence of Smp_089290 included 

251 forward (5´ – ATG GCT ACC GTA CCA CCG – 3´) and reverse (5´ – CTA TAA CAA TGT CTG AAA 
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252 CAG TCC ATC – 3´) pairs. PCR amplification utilised cDNA prepared from total RNA obtained 

253 from mixed-sex adult worms [44]. The amplification was performed in 25 µl containing Biomix 

254 reaction mix (Bioline) and ultra-stable Taq DNA polymerase (Bioline). Amplicons were 

255 subjected to electrophoresis through 1% w/v agarose, stained and visualised with SYBR Safe 

256 dye (Thermo Fisher Scientific) under UV light. Products of the predicted size of 1463 bp were 

257 ligated into pGEM-T Easy (Promega) after which α-Select Bronze Efficiency Competent Cells 

258 (Bioline) were transformed with the ligation products. Blue/white screening of E. coli colonies 

259 was accomplished on LB agar plates supplemented with 5-bromo-4-chloro-3-indolyl-β-D-

260 galactopyranoside (X-Gal) and Isopropyl β-D-1-thiogalactopyranoside (IPTG). Recombinant 

261 (white) clones were isolated from a 5 ml High Salt (HS) Luria Bertani (LB) culture containing 

262 ampicillin (50 μg/ml) using the QIAprep Spin Miniprep Kit (Qiagen). Inserts in pGEM-T Easy 

263 were sequenced at Aberystwyth University’s Translational Genomics Facility and the 

264 sequence trace was analysed using FinchTV 1.4.0 software [45]. The full coding sequence of 

265 Smp_089290 is deposited under the GenBank accession number MZ508282.

266

267 DNA microarray analysis

268 The S. mansoni long oligonucleotide DNA microarray was designed and constructed 

269 by Fitzpatrick and colleagues [44]. The DNA microarray consists of 35,437 S. mansoni 

270 oligonucleotide 50-mers as well as 2,195 controls and is deposited in the ArrayExpress 

271 database under the accession number A-MEXP-830. S. mansoni lifecycle stages profiled by 

272 the DNA microarray included egg, miracidia, mother (2 day) sporocysts, daughter sporocysts, 

273 cercariae, 3 hr schistosomula, 24 hr schistosomula, 3 day schistosomula, 6 day schistosomula, 

274 3 wk worms, 5 wk worms, 7 wk worms, male 7 wk worms and female 7 wk worms. Normalised 
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275 fluorescence intensity values (available via ArrayExpress under the experimental accession 

276 number E-MEXP-2094), corresponding to 50-mers representing exons 2 and 3 of 

277 smp_089290, enabled the quantification of gene expression profiles across these 

278 developmental stages of the schistosome.

279

280 RNA-Seq meta data analysis

281 The RNA-Seq meta database was created by Lu and colleagues [46] by normalising 

282 gene expression values derived from RNA-Seq data produced by various publications. Gene 

283 expression values for each lifecycle stage were obtained from the following reports: Anderson 

284 et al. [47] for egg, Wang et al. [48] for miracidia and sporocysts, Protasio et al. [49] for 

285 cercariae, 3 hr and 24 hr schistosomula, Protasio et al. [50] for 21 day juvenile male, 21 day 

286 juvenile female, 28 day juvenile male, 28 day juvenile female, 35 day adult male, 35 day adult 

287 female, 38 day adult male and 38 day adult female and Lu et al. [51] for 42 day adult male 

288 and 42 day adult female. The normalised gene expression values for a gene of interest were 

289 obtained by entering the gene ID into the ‘schisto_xyz’ search engine [52] and subsequently 

290 plotted as a gene expression profile.

291

292 RNA interference (RNAi)

293 Small interfering RNA (siRNA) duplexes were designed (siSmp_089290: sense strand 

294 5’-CUA AUG AAA UCG UUG CAG A-3’; anti-sense strand 5’-UCU GCA ACG AUU UCA UUA G-3’) 

295 based on the cDNA sequence verified smp_089290 amplicon. An siRNA duplex designed for 

296 firefly luciferase (siLuc) without significant homology to gene products in the S. mansoni 

297 genome assembly (v7.0) served as a negative control [53]. Briefly, sets of 10 worms (sex-
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298 separated) or five adult pairs were transferred to 0.4 cm pathway electroporation cuvettes 

299 (Invitrogen) containing DMEM supplemented with 2 mM L-glutamine and 100 µg/ml 

300 penicillin/streptomycin. siRNA duplexes (5 µg) were subsequently added and worms were 

301 electroporated with a single pulse at 125 V (LV mode) for 20 ms using an ECM 830 Square 

302 Wave Electroporation System (BTX, Harvard Apparatus, Holliston, MA). Worms were 

303 subsequently transferred to a 48 well tissue culture plate and cultured for up to seven days.

304

305 Preparation of CRISPR/Cas9 plasmid constructs

306 Two CRISPR target sites (single guide RNA; sgRNA sequence) for Cas9-catalysed gene 

307 editing for smp_089290 were designed by Breaking-Cas [54] with default parameters 

308 compatible for the protospacer adjacent motif (PAM) of Cas9 from Streptococcus pyogenes 

309 (NGG) [55, 56]. Two sgRNAs targeting the coding regions exons 1 (SmNAGALX1: 5´ – CUA CCG 

310 UAC CAC CGA UGG GU – 3´) and 2 (SmNAGALX2: 5´ – UUG UAA UCU AUG GCG UAU GC – 3´) 

311 were used in this study. The sgRNAs contained >40% GC-content, no self-complementarity 

312 and no off-target sites against the S. mansoni genome assembly (v7.0) as predicted by 

313 Breaking-Cas software. A 20 nucleotide (nt) ‘Scramble’ sgRNA designed with low homology to 

314 the S. mansoni genome assembly (v7.0) and lack of an adjacent PAM site (necessary for Cas9 

315 function) served as a non-targeting control (5´ – GCA CUA CCA GAG CUA ACU CA – 3´). 

316 CRISPR/Cas9 plasmid constructs were assembled using the pLenti-Cas-Guide construction Kit 

317 (GE100010, OriGene, Maryland, USA) and each sgRNA was ligated into the pLenti-Cas-sgRNA 

318 backbone as per the manufacturer’s instructions. Expression of the sgRNA (SmNAGALX1, 

319 SmNAGALX2 or Scramble containing plasmids) was driven by the mammalian U6 promoter 

320 and expression of Cas9 from S. pyogenes with nuclear localisation signals was driven by the 
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321 human cytomegalovirus (CMV) promoter. Each CRISPR/Cas9 plasmid construct was 

322 independently transformed into DH5-α Chemically Competent Cells (GoldBio) with 

323 chloramphenicol (25 µg/ml) as drug selection. The chloramphenicol resistant transformants 

324 were confirmed for corrected orientation of sgRNA in the vector backbone by Sanger direct 

325 sequencing. To amplify the plasmid DNA, the transformants were first cultured in a 10 ml 

326 HSLB culture containing chloramphenicol (25 µg/ml) in a shaking incubator at 37°C, 225 rpm 

327 for approximately 7 hr. Thereafter, 10 ml of the culture was added to 240 ml of fresh HSLB 

328 culture containing chloramphenicol (25 μg/ml) and cultured overnight, as above. Plasmid DNA 

329 was recovered from 150 ml of this overnight culture using the GenElute™ HP Plasmid 

330 Midiprep Kit (Sigma-Aldrich) as per the manufacturer’s instructions except for a modified 

331 elution step; here, accomplished with 800 µl of nuclease-free H2O. Plasmid DNAs were 

332 quantified using the NanoDrop ND-1000 UV-Vis spectrophotometer (Thermo-Fisher 

333 Scientific), after which the DNA was precipitated and subsequently dissolved in Opti-MEM™ 

334 Reduced Serum Medium (Thermo-Fisher Scientific) and stored at -20°C. 

335

336 CRISPR/Cas9 mediated genome editing

337 A mixture of 24 µg of CRISPR/Cas9 plasmid DNA (either SmNAGALX1, SmNAGALX2 or 

338 Scramble) reconstituted in a total volume of 400 µl Opti-MEM™ Reduced Serum Medium was 

339 dispensed into a 0.4 cm pathway electroporation cuvette (Invitrogen). Five pairs of worms 

340 were transferred to the cuvettes, which had been chilled on wet ice, and subjected to square 

341 wave electroporation with a single pulse of 125 V (LV mode) for 20 ms (BTX, Harvard 

342 Apparatus). Worms were subsequently transferred to a 48 well tissue culture plate and 

343 cultured for up to seven days at 37°C in an atmosphere of 5% CO2. Upon completion of the 
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344 seven day experiment, RNA and gDNA was extracted from adult male and female worms using 

345 both RNAzol reagent (Sigma-Aldrich) and DNAzol reagent (Invitrogen) based on the 

346 manufacturer’s instructions. One ml of RNAzol reagent was added to the parasite material, 

347 then subsequently homogenised four times with a 5 mm diameter stainless steel bead 

348 (Qiagen) for 3 min at 50 Hz using a TissueLyser LT (Qiagen) with 1 min incubation on ice in 

349 between homogenisations. Once the tissues of the schistosomes were completely disrupted, 

350 the protocol steps were followed until completion. RNA samples were immediately used for 

351 cDNA synthesis, as above. gDNA samples were amplified by PCR using primers encompassing 

352 the programmed double-strand break (DSB) site at exon 1 (Forward: 5´ – CTT ATA GGT GTG 

353 CCA TAT TAA CGA T – 3´, Reverse: 5´ – ATG CAC TAC ATT CGA AAG ACA – 3´) or exon 2 

354 (Forward: 5´ – AGT GTT CTC ATG CAG TTA TCC T – 3´, Reverse: 5´ – TCC ATG TCA GCT GAG ATC 

355 A – 3´) of smnagal. Correct amplification was verified by 1% w/v agarose gel electrophoresis. 

356 Thereafter, amplicons were subjected to the QIAseq 1-Step Amplicon Library Kit (Qiagen) for 

357 Illumina compatible next generation sequencing (NGS) library construction with GeneRead 

358 DNAseq Targeted Panels V2 (Qiagen) as per the manufacturer’s instructions. Amplicon size of 

359 each NGS library was verified using a 2100 Bioanalyzer (Agilent, Santa Clara, CA). The NGS 

360 libraries were quantified using the GeneRead Library Quant Kit (Qiagen). NGS libraries were 

361 pooled at the Genewiz NGS facility (Genewiz, NJ) and processed with a MiSEQ configuration 

362 of 2x250 bp. The demultiplexing data generated by the Genewiz NGS facility was exported as 

363 Fastq files (.qz format). The mutations around the cut sites were analysed by CRISPResso2 

364 software using default parameters [57, 58]. Background mutations (i.e. mutations not 

365 attributable to genome editing) were inferred by identifying mutations present in the control 

366 samples and the treatment samples. The unique mutations around the programmed DSB sites 

367 only reported in the high quality sequence reads of the target sample were designated as 
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368 CRISPR/Cas9-induced mutations. The software analysed and reported the percentage of 

369 indels (insertions and deletions) and substitutions in the target sample (inferred by the 

370 number of reads that are modified in comparison to the total reads), the percentages of each 

371 mutation type and a list of each specific mutation showing which nts have been altered. 

372 Sequence reads from the NGS libraries are available at the Sequence Read Archive (SRA) 

373 under BioProject ID PRJNA743897.

374

375 Quantitative reverse transcription (RT) – PCR (qRT-PCR) analysis

376 cDNAs synthesised from freshly perfused, siRNA treated or CRISPR/Cas9 plasmid 

377 treated schistosomes were used as templates for qRT-PCR to analyse transcript abundance. 

378 smp_089290 transcript levels were quantified relative to α-tubulin (smat1) using a 

379 StepOnePlus Real-Time PCR System (Applied Biosystems) and SensiFAST SYBR Hi-ROX mix 

380 (Bioline). Total reaction volume was 10 µl with 150 nM of each primer, 5 µl of SensiFAST SYBR 

381 Hi-ROX mix, 2 µl of cDNA template and 2.7 µl of nuclease-free H2O. qRT-PCR primers for 

382 smp_089290 were designed based on the sequence verified smp_089290 amplicon and 

383 included forward (5’-CAC GAC TGA TGG TGG TGG-3’) and reverse (5’-CTC GAT ACA TCA TTA 

384 TCC CGC T-3’) pairs. smat1 primers included forward (5’-GGC GGT GGT ACT GGT TCT GGG-3’) 

385 and reverse (5’-CAT TTA GCG CAC CAT CGA AGC-3’) pairs. To determine smp_089290 

386 knockdown (KD) in adult worms following RNAi and CRISPR/Cas9 programmed knockout, 

387 smp_089290 transcript levels in siRNA treated samples (at 48 hr post electroporation) and 

388 CRISPR/Cas9 plasmid treated samples (at seven days post electroporation) were quantified 

389 relative to smat1 as described previously [59]. The same calculations were used to quantify 

390 smp_089290 transcript levels in freshly perfused male and female schistosomes. Melting 
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391 curves (dissociation curves) were generated for each qRT-PCR analysis to verify the 

392 amplification of one product only. A two-tailed student’s t-test was used to test for 

393 significance between siRNA treatments. A Kruskal-Wallis ANOVA with Dunn post-hoc 

394 comparisons was used to test for significance between CRISPR/Cas9 plasmid treatments. A 

395 two-tailed student’s t-test was used to test for significance between freshly perfused adult 

396 male and female worms.

397

398 Whole mount in situ hybridisation (WISH) 

399 The full coding sequence of Smp_089290 was amplified using forward (5´ – ATG GCT 

400 ACC GTA CCA CCG – 3´) and reverse (5´ – CTA TAA CAA TGT CTG AAA CAG TCC ATC – 3´) primer 

401 pairs. The PCR products were subsequently cloned into the pJC53.2 vector [60] using standard 

402 cloning methods as mentioned previously. These recombinant plasmids were subsequently 

403 used to generate digoxigenin-labelled riboprobes using the Riboprobe System (Promega) with 

404 SP6 or T3 RNA polymerases and digoxigenin-labelled Uracil triphosphate (Roche) [61]. 

405 Antisense treatment riboprobes (generated by SP6 polymerase) and sense control riboprobes 

406 (generated by T3 polymerase) were processed as described [61] and stored at -20°C until 

407 needed for the WISH staining protocol. Riboprobes were used within 2 wk of their initial 

408 storage at -20°C.

409 Adult male and female worms were relaxed and separated by incubation (15 min) in 

410 a 0.25% solution of the anaesthetic ethyl 3-aminobenzoate methanesulphonate (Sigma-

411 Aldrich) dissolved in DMEM. Relaxed parasites were subsequently killed in a 0.6 M solution of 

412 MgCl2 (1 min) and fixed for 4 hr in 4% formaldehyde in PBSTx (PBS + 0.3% Triton X-100). Fixed 

413 parasites were dehydrated in MeOH and stored at -20°C until needed. Parasite samples were 
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414 rehydrated in 1:1 MeOH:PBSTx (5-10 min) followed by incubation in PBSTx (5-10 min). 

415 Rehydrated parasite samples were bleached in formamide bleaching solution (0.5% v/v de-

416 ionised formamide, 0.5% v/v SSC and 1.2% w/w H2O2, brought to a final volume of 10 ml with 

417 diethyl pyrocarbonate H2O) for 90 min, rinsed twice in PBSTx, treated with proteinase K 

418 (10 μg/ml, Invitrogen) for 45 min at room temperature and post-fixed for 10 min in 4% 

419 formaldehyde in PBSTx. Parasite samples were processed as previously described [60, 61] 

420 with several modifications. Antisense treatment riboprobes and sense control riboprobes 

421 were mixed with hybridisation solution (50% v/v de-ionised formamide, 10% w/v dextran 

422 sulphate, 1.25% v/v SSC, 1 mg/ml yeast RNA, 1% v/v Tween-20, brought to a final volume of 

423 40 ml with diethyl pyrocarbonate H2O) and hybridised overnight at 52°C. Parasite samples 

424 were transferred to fresh colorimetric developing solution consisting of alkaline phosphatase 

425 buffer (100 mM Tris pH 9.5, 100 mM NaCl, 50 mM MgCl2, 0.1% v/v Tween-20, brought to a 

426 final volume of 10 ml with 10% polyvinylalcohol solution) supplemented with 4.5 µl/ml NBT 

427 (Roche) and 3.5 µl/ml BCIP (Roche). All parasite samples treated with the antisense treatment 

428 riboprobe were developed at room temperature in the dark until the desired level of purple 

429 signal was reached (male samples = 2 hr, female samples = 45 min). In parallel, all parasite 

430 samples treated with the sense control riboprobe were developed for the same length of 

431 time. Once the desired level of signal was reached, the colorimetric developing solution was 

432 removed and worms were rinsed twice in PBSTx to stop any further development from 

433 occurring. Worms were dehydrated in 100% ethanol for 5 min and subsequently submerged 

434 in 80% glycerol in 1x PBS and incubated overnight at 4°C. Thereafter, stained worms were 

435 mounted onto microscope slides and examined with a light microscope (Leica LMD6000 Laser 

436 Microdissection Microscope).

437
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438 Single-cell RNA-Seq (scRNA-Seq) analysis

439 Localisation of smp_089290 (smnagal) found within the 68 adult worm clusters 

440 generated from available scRNA-Seq data [62] was depicted as uniform manifold 

441 approximation and projection (UMAP) plots using Seurat V3 [63].

442

443 α-GAL/α-NAGAL enzymatic activity measurements

444 Soluble worm antigen preparation (SWAP) was derived from worms (freshly perfused 

445 or electroporated with siRNAs) removed from culture after 1 wk. Worms were homogenised 

446 with a 5 mm diameter stainless steel bead (Qiagen) for 4 min at 50 Hz in 100 µl of 0.15 M 

447 McIlvaine buffer pH 4.6 [64] with EDTA-free protease inhibitors (Sigma-Aldrich) using a 

448 TissueLyser LT (Qiagen). After homogenisation, tubes were centrifuged at 21,100 x g for 30 

449 min at 4°C and SWAP was collected and quantified by the Bradford method (Sigma-Aldrich). 

450 The enzymatic activity of SWAP derived from freshly perfused adult male and female worms, 

451 siLuc treated and siSmp_089290 treated adult male and female worms was measured using 

452 4-Nitrophenyl α-D-galactopyranoside (α-GAL colorimetric substrate) and 4-Nitrophenyl N-

453 acetyl-α-D-galactosaminide (α-NAGAL colorimetric substrate) in separate reactions. Differing 

454 concentrations of human α-GAL (Fabrazyme, kindly provided by the Leiden University Medical 

455 Centre, LUMC) and commercially sourced α-NAGAL cloned from Chryseobacterium 

456 meningosepticum and expressed in E. coli (New England Biolabs, Ipswich, MA) were measured 

457 with corresponding substrates. 

458 Enzyme assays were performed in standard flat-bottomed 96 well plates (STARLAB). 

459 α-GAL/α-NAGAL assays consisted of 100 µl of α-GAL or α-NAGAL substrate dissolved in 0.15 

460 M McIlvaine buffer (pH 4.6) with the addition of differing concentrations of α-GAL or α-NAGAL 
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461 and 0.15 M McIlvaine buffer pH 4.6 to give a final volume of 125 µl per well. Concentrations 

462 of α-GAL used to generate a standard curve of activity were as follows: 0.95, 0.475, 0.19, 

463 0.0475, 0.0095, 0.00475 and 0.0019 µg/ml. Concentrations of α-NAGAL used to generate a 

464 standard curve of activity were as follows: 20, 15, 10, 5, 2 and 1 µg/ml. SWAP reactions were 

465 set-up in the same way but α-GAL/α-NAGAL enzymes were replaced with different quantities 

466 of sample specific SWAP and incubated with both α-GAL and α-NAGAL substrates. For 

467 untreated adult male and female worms, 5 µg of SWAP was used per well to enable 

468 comparison between gender. For siLuc treated and siSmp_089290 treated adult male and 

469 female worms, 6.45 µg and 2.44 µg of SWAP was used per well to enable comparison between 

470 siRNA treatments, respectively. Reaction proceeded for 60 min at 37°C and terminated by the 

471 addition of 70 µl of 0.4 M glycine (pH 10.4) [64]. Final absorbances were quantified at 410 nm 

472 using a POLARstar Omega microplate reader (BMG Labtech). Absorbance values produced 

473 from different SWAP treatments were compared to α-GAL/α-NAGAL standard curves to 

474 calculate α-GAL and α-NAGAL activities (µg/ml). A two-tailed student’s t-test was used to test 

475 for significance between siRNA treated samples or between genders.

476

477 Motility analysis quantified by WormAssayGP2 and adult worm 

478 scoring matrix

479 The digital image processing-based system known as WormAssayGP2 was derived 

480 from Marcellino et al. [65] and implemented by us as previously described [66]. Individual 

481 wells containing up to 10 adult worms were recorded for 60 sec each day and analysed by the 

482 Lucas-Kanade algorithm. Once recording was completed, the data were quantified and stored 

483 as a .csv file which was further processed to calculate the mean motility for the control and 
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484 treatment groups. In parallel, adult worm motility was also scored using the WHO-TDR scoring 

485 matrix [67]. All worms were scored daily from two days after electroporation until seven days 

486 after electroporation. Worms were ranked between 4 – 0 based on their motility; 4 = normal 

487 active/paired up, 3 = full body movement but slowed activity, 2 = minimal activity, occasional 

488 movement of head and tail only, 1 = movement in the suckers only or slight contraction of 

489 the body and 0 = total absence of motility. For both motility analyses, a General Linear Mixed-

490 Effects Model was fitted to each dataset (‘NLME’ package) and statistical differences were 

491 determined by performing pairwise comparisons of the estimated marginal means of each 

492 group per time point (‘EMMEANS’ package) in R. Video footage of adult worms was captured 

493 using a NexiusZoom stereo microscope (Euromex) and edited with ImageFocus 4 software 

494 (Euromex).

495

496 Enumeration of vitellocytes and egg volume measurements

497 The eggs released by adult female worms from RNAi and CRISPR/Cas9 genome editing 

498 experiments were collected and fixed in 1 ml 10% neutral buffered formalin solution (Sigma-

499 Aldrich) for 24 hr at 4°C. Thereafter, eggs were enumerated using a Sedgewick Rafter 

500 Counting Chamber [68]. Prior to visualisation by laser scanning confocal microscopy (LSCM), 

501 stored eggs from RNAi experiments only were immersed in PBS supplemented with DAPI (4',6-

502 diamidino-2-phenylindole, 2 μg/ml). Fluorescence images (10 eggs per treatment) were 

503 captured on a Leica TCS SP8 super resolution laser confocal microscope fitted with a 63 X 

504 (water immersion) objective using the Leica Application Suite X (LAS X). Green (egg 

505 autofluorescence) fluorescence was visualised with an argon or diode-pumped, solid state 

506 (DPSS) laser at 488 nm. DAPI was visualised using a 405 nm blue diode laser. The number of 
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507 vitellocytes (DAPI+ cells) and overall volume (mapped by the green autofluorescence) for 

508 individual eggs were calculated using IMARIS 7.3 software (Bitplane). A two-tailed student’s 

509 t-test was used to test for significance between siRNA treated samples with regard to the 

510 total number of eggs produced and individual egg volume. A Kruskal-Wallis ANOVA with Dunn 

511 post-hoc comparisons was used to test for significance between CRISPR/Cas9 plasmid treated 

512 samples with regard to the total number of eggs produced. IMARIS 7.3 software (Bitplane) 

513 was also used to create a video showing the 360° horizontal rotation of a representative egg 

514 from each siRNA treatment.

515

516

517

518

519

520

521

522

523

524

525

526

527
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528 Results

529 Schistosoma mansoni contains a single α-N-

530 acetylgalactosaminidase (SmNAGAL)

531 α-N-acetylgalactosaminidase (α-NAGAL) is a member of the glycosyl hydrolase (GH) 

532 27 family and contains both a melibiase-2 (PF16499) and a melibiase-2 C-terminal (PF17450) 

533 domain. As all enzymatically important (ligand binding and catalytic) amino acids are 

534 conserved within the melibiase-2 domain [32], we focused our interrogation of the S. mansoni 

535 genome (v7.0) for the presence of putative homologs that contained >70% of the residues 

536 within this domain. Our analysis revealed the presence of five schistosome members that met 

537 this criterion: Smp_170840, Smp_179250, Smp_247760, Smp_247750 and Smp_089290 (Fig 

538 1).

539

540 Fig 1. Schistosoma mansoni contains five GH27 family members, but only Smp_089290 

541 contains all residues necessary for α-NAGAL substrate binding and cleavage. A concatenated 

542 multiple sequence alignment of α-GAL and α-NAGAL proteins from H. sapiens (Hs), G. gallus 

543 (Gg), C. elegans (Ce), S. japonicum (EWB), S. mansoni (Smp), and S. haematobium (MS3) 

544 throughout the melibiase-2 domain (PF16499). Numbers located at the beginning of each 

545 sequence represent the amino acid position in the protein sequence. Ligand binding residues 

546 are highlighted green whereas non-conserved amino acids in the same position in other 

547 sequences are white. Catalytic aspartic acid (D) residues are highlighted light blue whilst non-

548 conserved amino acids in the same position in other sequences are highlighted red. Amino 

549 acid residues which are missing from ‘Ce_GANA-1’, ‘Smp_170840’ and ‘MS3_10001’ are 

550 indicated with - whereas N/A is used for the amino acid position.
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551

552 Among these five S. mansoni gene products, only one (Smp_089290, highlighted 

553 yellow, Fig 1) contained all 13 ligand binding residues (green shaded amino acids, Fig 1) as 

554 well as both catalytic aspartic acid residues (light blue Ds, Fig 1) critical for α-NAGAL activity 

555 [31]. MS3_11280 (S. haematobium homolog) and EWB00_005284 (S. japonicum homolog) 

556 also shared these diagnostic characteristics. Furthermore, while two additional S. japonicum 

557 homologs (EWB00_005283 and EWB00_005285) contained both catalytic aspartic acid 

558 residues, they did not possess all 13 ligand binding residues. These five schistosome proteins, 

559 containing the essential catalytic aspartic acid residues, clustered into a separate clade 

560 discrete from other putative schistosome GH27 family members (Fig 2).

561

562 Fig 2. Schistosoma melibiase-2 domain containing proteins with conserved catalytic aspartic 

563 acid residues cluster in a distinct clade of GH27 family members. Phylogenetic analyses were 

564 conducted using a concatenated multiple sequence alignment of Schistosoma proteins that 

565 contained >70% of the residues within the melibiase-2 domain and α-GAL/α-NAGAL protein 

566 types across phyla. Proteins were analysed using both Maximum Likelihood and Bayesian 

567 inference approaches. Branch lengths (indicated by scale bar) represent distance among 

568 different taxa as predicted by the Bayesian inference approach. Node labels outside 

569 parentheses represent Bayesian posterior probability support values whilst those within 

570 parentheses represent percentage bootstrap support values from Maximum Likelihood 

571 analysis. Schistosoma proteins conserving catalytic aspartic acid residues are highlighted in 

572 the blue dashed box. The phylogram includes protein sequences from S. mansoni (Smp), S. 

573 haematobium (MS3), S. japonicum (EWB), A. thaliana (At), C. arabica (Ca), C. elegans (Ce), D. 
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574 melanogaster (Dm), G. gallus (Gg), H. sapiens (Hs), R. norvegicus (Rn), M. musculus (Mm) and 

575 S. pombe (Sp).

576

577 The predicted three-dimensional structure of Smp_089290 was derived by homology 

578 modelling and passed all stereochemical quality assessments (S1 Fig). Homology modelling of 

579 Smp_089290 as a monomer (HsNAGAL functions as a homodimer [31]) revealed the 

580 positioning of these 13 ligand binding residues and two catalytic residues around the putative 

581 active site (purple, Fig 3). Despite the melibiase-2 C-terminal domain (red, Fig 3) not 

582 possessing any residues involved in ligand binding and substrate cleavage mechanisms, the 

583 predicted Smp_089290 model and H. sapiens α-NAGAL structure are consistent across this 

584 region. Both the predicted Smp_089290 model and H. sapiens α-NAGAL structure possess 

585 eight anti-parallel β-strands (Fig 3) [32]. Overall, the homology modelling analysis predicted 

586 that Smp_089290 likely possesses folding topology and spatial arrangements that closely 

587 resemble typical α-GAL and α-NAGAL proteins.

588

589 Fig 3. Comparisons of the catalytic active site pockets found in the Smp_089290 homology 

590 model and the crystal structure of human α-NAGAL. The grey dashed boxes depict a close-

591 up view of the catalytic active site pocket within the Smp_089290 homology model’s and H. 

592 sapiens α-NAGAL crystal structure’s melibiase-2 domain (purple). The close-up views label all 

593 13 ligand binding residues (green) and two catalytic Asp residues (light blue, underlined with 

594 double line) with their corresponding amino acid positions in each of the protein sequences 

595 shown. The red arrows show the location of the eight anti-parallel β-strands found near the 

596 C-terminus of the Smp_089290 homology model’s and the H. sapiens α-NAGAL crystal 
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597 structure’s melibiase-2 C-terminal domain (red). Black arrows show the locations of the N and 

598 C-termini of the model/structure.

599

600 Together, these data suggest that the S. mansoni genome encodes a single gene 

601 product (Smp_089290) containing all essential catalytic amino acid residues for hydrolysis and 

602 release of α-N-acetylgalactosamine from glycosylated substrates. Therefore, this putative 

603 schistosome α-N-acetylgalactosaminidase (SmNAGAL, Smp_089290) was taken forward for 

604 further transcriptional, enzymatic, and functional genomics studies.

605

606 Smnagal is developmentally regulated, female-enriched and 

607 localised to vitellaria, mature vitellocytes and parenchymal cells

608 To begin deciphering SmNAGAL function, both transcriptomic- and enzymatic-based 

609 approaches were initiated (Fig 4). Meta-analysis of historical DNA microarray data across the 

610 S. mansoni lifecycle [44] was facilitated by two 50-mer oligonucleotide probes that retained 

611 100% base-pair complementarity to exon 2 (CONTIG7235) and exon 3 (CONTIG6265), 

612 respectively, of smnagal (Fig 4A). For each of these two oligonucleotides, similar patterns of 

613 smnagal abundance were deduced. While smnagal expression was low in eggs, it increased 

614 in miracidia only to wane as schistosome development (sporocysts - cercariae) continued in 

615 the molluscan host (Fig 4B). Upon early intra-mammalian schistosome maturation (3 hr - 3 

616 day schistosomula), smnagal transcription remained invariably low, until day six post 

617 schistosomula transformation. At this point and extending into more developmentally mature 

618 lifecycle forms (3 wk – 7 wk schistosomes), smnagal expression increased, reaching peak 

619 abundance in 7 wk old schistosomes. Here, female-enriched smnagal expression was clearly 
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620 observed in adult schistosomes, which was independently confirmed by qRT-PCR (Fig 4C). 

621 Additionally, female-biased expression of smnagal was observed when interrogating S. 

622 mansoni RNA-Seq meta data (S2 Fig) [46]. Further support for female biased expression of 

623 smnagal was obtained from the analysis of α-N-acetylgalactosaminidase activity in adult 

624 worm protein extracts (Fig 4D). In a direct comparison, female protein extracts contained 

625 significantly higher levels of α-NAGAL activity when compared to males. This female biased 

626 trend was also observed with α-GAL activity measured in the same extracts (Fig 4D).

627

628 Fig 4. smnagal (smp_089290) expression and α-NAGAL/α-GAL activities are female-

629 enriched. (A) Diagrammatic representation of smnagal/smp_089290 gene structure with 50-

630 mer oligonucleotides mapped. Exons are depicted as red boxes, which are linked by lines 

631 representing introns. Numbers written inside each exon represent their position in the gene 

632 sequence. Numbers written below exons and above introns represent their length in base 

633 pairs. The 5′ and 3′ ends are shown above exon 1 and 3, respectively. The positions of 

634 oligonucleotide 50-mers corresponding to CONTIG7235 and CONTIG6265 are shown above 

635 exon 2 and 3 respectively. (B) DNA microarray analysis of smp_089290 expression across 15 

636 lifecycle stages. DNA microarray gene expression profile consisted of normalised mean 

637 fluorescence intensities of smnagal/smp_089290 transcript abundance derived from 

638 oligonucleotides CONTIG7235 and CONTIG6265 as described previously [44]. (C) 

639 smnagal/smp_089290 transcript levels in untreated adult male and female were quantified 

640 relative to smat1 to validate normalised mean fluorescence intensities produced in 7 wk male 

641 and 7 wk female schistosomes. Statistical significance is indicated (Student’s t-test, two tailed, 

642 unequal variance, * = p<0.05). (D) Equal quantities of SWAP (5 µg per well) were used for both 

643 sexes and measured for α-NAGAL and α-GAL activity on diagnostic α-NAGAL and α-GAL 
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644 substrates. Statistical significance is indicated (Student’s t-test, two tailed, unequal variance, 

645 * = p<0.05 and ** = p<0.01).

646

647 Expanding these temporal investigations of smnagal abundance and enzymatic 

648 activities to spatial localisation, by WISH and scRNA-Seq, in adult worms revealed additional 

649 gender-specific traits. An antisense RNA probe spanning the full length coding sequence of 

650 smp_089290 was used for each WISH localisation experiment (Fig 5) [61]. A negative control 

651 was prepared using a sense smp_089290 probe (S3 Fig); no specific staining was observed. 

652 While the ovary (containing mature and immature oocytes) was not a rich source of smnagal 

653 expression, the vitellarium (and mature vitellocytes passing through the vitello-oviduct) was 

654 highly enriched for this putative α-NAGAL gene product (Fig 5A). These observations were 

655 supported by scRNA-Seq approaches, which showed prominent smnagal abundance within 

656 the vitellaria and mature vitellocytes and no expression within female gametes (S4 Fig). In 

657 addition, low levels of smnagal expression were found within the parenchyma, which was 

658 more clearly observed in the female scRNA-Seq plots (S4 Fig). Moderate smnagal expression 

659 was also observed in some clusters of neuronal cells, tegument lineage cells and muscle cells 

660 when inspecting the female scRNA-Seq plots. No appreciable expression was found in any 

661 other female tissue examined. The WISH analysis of males revealed that smnagal expression 

662 was predominantly localised to parenchymal cells widely distributed throughout the body (Fig 

663 5B), which was confirmed by the male scRNA-Seq expression profile plots (S5 Fig). A lack of 

664 staining was additionally observed throughout the primary reproductive organs (testes), 

665 which was supported by scRNA-Seq profiles. WISH analyses also showed that cells lining the 

666 tegument and intestine lacked intense smnagal expression in both genders, although this was 

667 easier to deduce in males. Similar to females, small yet noticeable levels of smnagal 
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668 expression were evident in some neuronal cell clusters when inspecting male scRNA-Seq plots 

669 (S5 Fig). Appreciable expression was not observed elsewhere in any other male tissue 

670 examined.

671

672 Fig 5. smnagal expression is concentrated in the vitellarium, mature vitellocytes and 

673 parenchymal cells. Micrographs of the anterior, mid-section and posterior (10x 

674 magnification) of (A) female and (B) male schistosomes as well as anterior images with a 

675 higher magnification (40x magnification, area depicted by black dashed box). Structures 

676 labelled include egg (E), ovary (O), vitellarium (V), vitello-oviduct (VOD), intestine (I), oral 

677 sucker (OS), oesophagus (OES), ventral sucker (VS) and testes (TES). Black scale bars = 200 µm 

678 and red scale bars = 50 µm.

679

680 α-N-acetylgalactosaminidase activity is required for worm motility, 

681 egg production and development 

682 The localisation of smnagal to adult parenchymal cells, neuronal clusters and mature 

683 vitellocytes as well as the well-documented neuromuscular defects characteristic of 

684 Schindler/Kanzaki disease (due to α-nagal deficiencies, [22, 23]) implicated key roles for this 

685 gene product in schistosome motility, oviposition and development. Therefore, to assess 

686 whether these processes were dependent upon α-NAGAL activity, functional genomics 

687 investigations of smnagal/smp_089290 were conducted in adult schistosomes (Fig 6). RNA 

688 interference (RNAi) of smnagal/smp_089290, using small interfering RNAs (siRNAs), led to a 

689 highly significant knockdown (92%) of smnagal in adult male worms when compared to 

690 controls (Fig 6A). In parallel, genome editing approaches were implemented with 
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691 CRISPR/Cas9 plasmid constructs and used to complement RNAi experiments. The 

692 CRISPResso2 pipeline was utilised to quantify NHEJ-associated mutations within aligned 

693 MiSEQ library sequencing reads from genome-edited worms (S1 Table). Oligonucleotide 

694 primers designed for MiSEQ library generation were designed to encompass the programmed 

695 DSB sites for each sgRNA used (S6 Fig). All genome edited samples showed detectable levels 

696 of genome editing (0.25 – 0.31%) with substitutions being the most frequently observed 

697 mutation (S2 Table). Further analyses of modified sequence reads revealed all CRISPR/Cas9 

698 plasmid treatment samples displayed NHEJ-associated mutations predicted to introduce 

699 frameshifts at the smnagal locus (likely resulting in the translation of substantially truncated 

700 proteins) or to ablate smnagal transcription (S7 Fig). Similar to RNAi, CRISPR/Cas9 genome 

701 editing led to significant knockdowns (46 – 60%) of smnagal in mixed-sex adult worms when 

702 compared to controls (Fig 6B). Reassuringly, smnagal depletion in siRNA-treated worms 

703 significantly reduced α-NAGAL activity in SWAP derived from both males and females when 

704 compared to siLuc controls (Fig 6C). However, RNAi-mediated smnagal knockdown did not 

705 result in a significant reduction in SWAP-derived α-GAL activity when compared to siLuc 

706 treated schistosome samples (S8 Fig). 

707

708 Fig 6. RNAi and CRISPR/Cas9 approaches lead to smnagal knockdown and siRNA-treated 

709 adult worms contain reduced α-NAGAL activity. (A) 7 wk old adult male schistosomes were 

710 electroporated with 5 µg siRNA duplexes targeting luciferase (siLuc) and smp_089290 

711 (siSmp_089290). After 48 hr, total RNA was isolated and used to generate cDNA, which was 

712 subjected to qRT-PCR. Percent knockdown (KD) is indicated. Statistical significance is 

713 indicated (Student’s t-test, two tailed, unequal variance, ** = p<0.01). (B) 7 wk old adult male 

714 and female schistosomes were electroporated with either lentiviral CRISPR/Cas9 plasmid 
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715 constructs targeting exon 1 (SmNAGALX1) or exon 2 (SmNAGALX2) of smnagal. Additionally, 

716 both exons were targeted by electroporating a mixture of both plasmid constructs 

717 (SmNAGALX1/X2). Electroporations with CRISPR/Cas9 plasmid DNA containing a Scramble 

718 sgRNA were used as a control. After seven days, total RNA was isolated and used to synthesise 

719 cDNA for qRT-PCR analysis. Percent knockdown (KD) is indicated. Statistical significance is 

720 indicated (Kruskal-Wallis ANOVA with Dunn post-hoc comparisons, * = p<0.05). (C) α-NAGAL 

721 activity was measured in SWAP derived from siLuc treated and siSmp_089290 treated adult 

722 male and female worms (6.45 µg for males and 2.44 µg for females) as described above. 

723 Statistical significance is indicated (Student’s t-test, two tailed, unequal variance, * = p<0.05 

724 and ** = p<0.01).

725

726 Having established that smnagal encodes a functional α-NAGAL and given that RNAi 

727 and CRISPR/Cas9 depleted this transcript from intracellular RNA pools, motility and egg-laying 

728 phenotypes of siSmnagal treated schistosome pairs were subsequently examined and 

729 quantified. Regardless of the quantification metric used (WormAssayGP2 [65, 66] or WHO-

730 TDR standards [69]), a clear motility defect was observed in both male and female 

731 schistosomes when smnagal was depleted by RNAi (Fig 7A, S9 and S10 Figs). This motility 

732 defect was apparent by day two post RNAi and maintained until day 7, when the assay was 

733 terminated. Upon completion of the RNAi assays (day seven), eggs were collected from in 

734 vitro cultures and quantified for number, volume and retention of mature vitellocytes. Here, 

735 a significant reduction in the quantity of deposited eggs was associated with smnagal 

736 deficiency (Fig 7B). The CRISPR/Cas9 genome editing approach further supported these 

737 observations with all smnagal-edited worms displaying a significantly reduced number of 

738 deposited eggs when compared to controls (Fig 7C). Notably, eggs derived from siRNA-treated 
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739 female worms were also significantly smaller than those collected from wells of siLuc treated 

740 worms (Fig 7D) and contained less-compact, abnormal (less mature) vitellocytes (Fig 7E, S11 

741 and S12 Figs).

742

743 Fig 7. Reductions in smnagal/smp_089290 affect adult worm motility and egg production 

744 processes. (A) Motility of siLuc treated and siSmnagal treated adult male and female worms 

745 was analysed daily for up to seven days after electroporation using WormAssayGP2 as 

746 described in the Materials and methods. Statistical significance is indicated (General Linear 

747 Mixed-Effects Model, NLME and EMMEANS R packages, * = p<0.05 and ** = p<0.01). (B) The 

748 total number of eggs produced by siLuc treated and siSmnagal treated adult female worms 

749 were collected seven days after electroporation and enumerated. Statistical significance is 

750 indicated (Student’s t-test, two tailed, unequal variance, * = p<0.05). (C) The total number of 

751 eggs produced by adult worm pairs electroporated with SmNAGALX1 CRISPR/Cas9 plasmid, 

752 SmNAGALX2 CRISPR/Cas9 plasmid and SmNAGALX1/X2 CRISPR/Cas9 plasmid were counted 

753 seven days after electroporation. Electroporations with lentiviral CRISPR/Cas9 plasmid 

754 constructs containing a Scramble sgRNA served as a control. Statistical significance is 

755 indicated (Kruskal-Wallis ANOVA with Dunn post-hoc comparisons, * = p<0.05). (D) Volumes 

756 of eggs produced by siLuc treated and siSmnagal treated adult female worms were calculated 

757 as described in the Materials and methods. Statistical significance is indicated (Student’s t-

758 test, two tailed, unequal variance, ** = p<0.01). (E) Representative images of fluorescence in 

759 eggs collected from wells of siLuc and siSmp_089290 treated worm pairs. Blue = DAPI+ cells 

760 (405 nm blue diode laser) and white scale bars = 20 µm. Average number of DAPI+ cells per 

761 egg calculated by IMARIS 7.3 software for each siRNA treatment is shown below each image. 
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762 DAPI+ cells in eggs derived from wells of siSmp_089290 treated worm pairs could not be 

763 determined and are labelled as ‘nd’.
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786 Discussion 

787 The identification and inhibition of gene products responsible for essential 

788 developmental or gender-associated processes provide a pathway by which schistosome drug 

789 discovery can progress rationally. To fast track such investigations, an extensive collection of 

790 putative S. mansoni drug candidates is currently available within the TDR Targets database 

791 [70]. Alongside this resource, multiple reports have recently described how genome 

792 sequencing outputs can be effectively leveraged by both cheminformatics and functional 

793 genomics for characterising next-generation schistosome drug targets and 

794 chemotherapeutics [66, 71-76]. Complementary evidence is provided here to support an 

795 essential role for SmNAGAL in the regulation of worm movement and reproductive processes. 

796 SmNAGAL (Smp_089290) encoded by S. mansoni, MS3_11280 encoded by S. 

797 haematobium and EWB00_005284 encoded by S. japonicum were the only melibiase-2 

798 domain-containing Schistosoma proteins conserving all functionally important amino acid 

799 residues necessary for the hydrolysis of α-galactose and α-N-acetylgalactosamine residues 

800 from glycolipid and glycoproteins (Fig 1). Closer inspection of these residues showed these 

801 three proteins possessed the exact same ligand binding residues to H. sapiens α-NAGAL, G. 

802 gallus α-NAGAL and C. elegans gana-1, which are all α-NAGAL enzymes with hydrolytic activity 

803 against terminal α-N-acetylgalactosamine and α-galactose moieties [24, 31, 32]. Accordingly, 

804 it is likely that Smp_089290, MS3_11280 and EWB00_005284 would exhibit enzymatic 

805 activity towards both terminal α-N-acetylgalactosamine and α-galactose residues unlike α-

806 GAL enzymes, which can only cleave terminal α-galactose residues. Studies characterising 

807 human α-GAL/α-NAGAL activity provide evidence that H. sapiens α-GAL cannot use α-N-

808 acetylgalactosamine as a substrate due to steric hindrance mediated by Glu203 and Leu206 [30, 
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809 31]. In contrast, H. sapiens α-NAGAL, Smp_089290, MS3_11280 and EWB00_005284 all 

810 possess Ser and Ala at homologous positions (Ser188, 168, 168, 197 and Ala191, 171, 171, 200), which are 

811 required/essential for using α-N-acetylgalactosamine as a substrate [31]. Additionally, 

812 EWB00_005283 and EWB00_005285 encoded by S. japonicum contain both catalytic aspartic 

813 acid residues (Fig 1), which suggests that S. japonicum possesses three melibiase-2 domain-

814 containing proteins capable of enzymatic activity. However, neither of these S. japonicum 

815 homologs possess all 13 ligand binding residues, which may influence affinity to target 

816 substrates. Although mutagenesis studies performed on Pichia pastoris α-GAL and α-NAGAL 

817 showed Trp16 to be essential for enzymatic activity [77], little is known on the essentiality of 

818 the other ligand binding residues. Nevertheless, phylogenetic analyses reinforced that 

819 Smp_089290, MS3_11280, EWB00_005284, EWB00_005283 and EWB00_005285 are 

820 schistosome α-NAGALs as all demonstrated stronger relations to representative α-NAGAL 

821 proteins compared to representative α-GAL proteins (Fig 2). Whether the other GH27 clan D 

822 family members identified here contribute to the α-GAL activities measured within adult 

823 worm extracts (Fig 4D) has yet to be determined.

824 Interrogating DNA microarray (Fig 4B) and RNA-Seq meta-analysis (S2 Fig) databases 

825 provided the first insight to smnagal’s temporal expression profile across the developmental 

826 stages of the schistosome. In both cases, expression of smnagal increased throughout intra-

827 mammalian schistosome development until full adult worm maturation, suggesting a 

828 potential role for SmNAGAL in adult schistosome development within the definitive human 

829 host. Confirmation of smnagal expression in adult male and female worm stages by qRT-PCR 

830 analyses (Fig 4C) and dominant α-NAGAL activity as shown by enzymatic assays (Fig 4D) 

831 suggests SmNAGAL preferentially cleaves off α-N-acetylgalactosamine (and not α-galactose) 

832 residues from glycan substrates (functionally confirmed by RNAi, Fig 6 and S8 Fig). Homology 
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833 modelling suggests SmNAGAL possesses a pattern of α-helices and β-strands throughout its 

834 N-terminal domain (Fig 3) comparable to the (β/α)8 barrel structure commonly observed in 

835 GH27 family members [30-32, 78-80]. Furthermore, all enzymatically important residues were 

836 shown to be arranged in an exposed catalytic active pocket, which suggests SmNAGAL utilises 

837 a double displacement mechanism for substrate binding and cleavage (Fig 3). This type of 

838 cleavage mechanism is commonly utilised by retaining GH enzymes (yielding a product that 

839 possesses the same anomeric configuration as the cleaved substrate) and involves two 

840 nucleophilic attacks on the 1-carbon of the substrate [32, 81-84]. 

841 Amongst a variety of glycans and glycoconjugates in adult schistosomes is the O-

842 glycopeptide Galβ1-3GalNAcα1-Ser/Thr (also known as the oncofetal Thomsen-Friedenreich 

843 antigen or TF antigen), which is an abundant α-N-acetylgalactosamine-containing structure 

844 [85]. The TF antigen is present on the surface syncytium and may be involved in protecting 

845 tegumental structures that are essential for schistosome survival within the vasculature of 

846 the human host [85-87]. Furthermore, the TF antigen has been suggested to interfere with 

847 the functions of host Kupffer cells and hepatocytes [85, 88]. Therefore, SmNAGAL activity 

848 required for hydrolysis of the GalNAcα1-Ser/Thr linkage during O-glycopeptide degradation 

849 may have an impact on adult worm tegument metabolism and host interactions. Expression 

850 of smnagal in adult female and male tegument lineage cells identified by scRNA-Seq analyses 

851 (S4 and S5 Figs) further supports a potential role for SmNAGAL in tegument metabolism and 

852 host interactions. Parenchymal expression of smnagal (Fig 5) and noticeable abundance in 

853 other cell types might be explained by the reported localisation of α-NAGAL enzymatic activity 

854 in lysosomes [89]. Lysosomes are found throughout many different S. mansoni tissues [90], 

855 which suggests other functional roles for SmNAGAL in addition to those identified in this 

856 study. Clearly, these observations require further exploration. 
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857 Knockdown of smnagal correlated with striking motility defects (Fig 7A and S9 Fig) as 

858 early as day two post siRNA treatment. Smaller reductions in motility observed in siSmNAGAL 

859 treated female worms may be due to the higher expression of smnagal in female worms 

860 compared to male worms. Higher mRNA turnover rates and transcript abundances have been 

861 shown to be a limiting factor of siRNA efficiency when targeting DGKE and ARHGAP27 kinases 

862 in HeLa and HepG2 cells [91]. Regardless of this potential discrepancy of RNAi efficiency 

863 between the sexes, the motility defect became more severe at day three (Fig 7A, S9 and S10 

864 Figs) and was maintained for the seven day experiment. The observed abnormal motility 

865 defects were consistent with the neurological and neuromuscular impairments associated 

866 with the human lysosomal storage disorder known as Schindler/Kanzaki disease (human α-

867 NAGAL deficiency) [22, 23, 31]. Symptoms of Schindler/Kanzaki disease include a wide range 

868 of clinical neurological/neuromuscular deficits due to the accumulation of substrates 

869 possessing α-N-acetylgalactosamine residues, which are grouped into three distinct types 

870 [31]. The most severe form, type I, is characterised by stiff movements (spasticity) caused 

871 from involuntary muscle spasms, developmental retrogression, decorticate posturing, 

872 profound psychomotor retardation and muscular hypotonia, which begins in infancy [23, 92-

873 94]. Worms substantially depleted of smnagal/SmNAGAL activity display motility defects 

874 consistent with the spasticity associated with type I Schindler/Kanzaki disease. Due to the 

875 neurological nature of Schindler/Kanzaki disease, the onset of impaired motility phenotypes 

876 may be due to smnagal depletion within neuronal cell clusters in both adult female and male 

877 worms (scRNA-Seq expression profiles; S4 and S5 Figs). Similarly, female muscle cells also 

878 possess moderate smnagal levels, which suggests the onset of RNAi-mediated motility 

879 phenotypes could be driven by depletion in muscle cell activity and, therefore, collectively 

880 characterised as a neuromuscular impairment. However, minimal smnagal expression 
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881 observed in male muscle cells suggests the abnormal motility phenotype is exclusively 

882 associated with neurological impairments in this sex. Regardless of the differential molecular 

883 mechanisms involved, it is clear that SmNAGAL also contributes to coordinated movement in 

884 adult schistosomes.

885 A fundamental key difference between the male and female schistosome centres on 

886 production of eggs, which leads to the pathology and transmission of schistosomiasis [95, 96]. 

887 An important organ necessary for egg production is the vitellarium, which extends throughout 

888 the majority of the female worm and is involved in the production of mature vitellocytes [97, 

889 98]. Vitellocyte maturation within the vitellarium progresses through four stages involving cell 

890 division and differentiation to ultimately produce mature vitellocytes (also referred to as 

891 stage 4 vitellocytes) [99]. Mature vitellocytes are transported through the vitello-oviduct and 

892 surround the ovum, which is initially produced in the ovary [100-102]. The rigid insoluble 

893 eggshell is subsequently synthesised by phenol oxidase-mediated protein cross-linking 

894 (quinone tanning) as a result of increased tyrosinase activity originating from late/mature 

895 vitellocytes [103-107]. Subsequently, the egg enters the uterus and is expelled through the 

896 gonopore of the female into the blood [107]. The elevated expression of smnagal within the 

897 vitellaria and mature vitellocytes traversing the vitello-oviduct (Fig 5A and S4 Fig) suggest 

898 SmNAGAL may be involved in aspects of egg production. The detection of smnagal expression 

899 within the egg (Fig 4B and S2 Fig) may also be explained by the presence of mature vitellocytes 

900 and strongly supports a role for SmNAGAL in vitellogenesis and oviposition, which was 

901 subsequently confirmed by both RNAi and programmed gene knockout (Figs 7B and 7C). Here, 

902 diminished numbers of eggs produced by smnagal depleted adults exhibited two 

903 predominant abnormalities; lack of typical vitellocyte structuring and spacing (Fig 7E, S11 and 

904 S12 Figs) and reductions in egg volume (Fig 7D). smnagal deficiency, however, does not 
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905 influence vitellocyte incorporation as DAPI+ cells are observed in all eggs obtained from 

906 siSmNAGAL treatment groups. Instead, smnagal depletion seems to affect vitellocyte 

907 development. Immature (stage 1) vitellocytes of S. mansoni are undifferentiated cells with 

908 large, irregularly roundish nuclei with diffuse chromatin scattered through the nucleoplasm 

909 [108]. In contrast, mature (stage 4) vitellocytes appear more condensed and uniform in shape 

910 and size. This observation is comparable to the diffuse DAPI+ material observed in abnormal 

911 S. mansoni eggs derived from smnagal depleted schistosomes. Therefore, it is likely that 

912 vitellocytes produced by adult female worms depleted of smnagal do not progress beyond 

913 stage 1 and the diffuse DAPI+ material observed in eggs represents an accumulation of 

914 immature vitellocytes. Furthermore, the atypical spacing between neighbouring immature 

915 vitellocytes likely contributes to the reductions in egg volume observed in eggs from 

916 siSmNAGAL treatment groups (approximately 15,000 µm3 per egg) when compared to eggs 

917 from siLuc treatment groups (approximately 35,000 µm3 per egg) (Fig 7D). Uneven and patchy 

918 auto-fluorescence was also consistently observed in eggs from siSmNAGAL treatment groups 

919 (S12 Fig), which may be explained by fewer mature vitellocytes containing functionally active 

920 tyrosinase being packaged in the in vitro laid eggs (IVLEs) [103-105]. In some cases, smnagal 

921 deficiency also contributed to additional observed phenotypes such as abnormal shaped eggs 

922 and incomplete development of the lateral spine (S12 Fig). Similar egg phenotypes have also 

923 been noted following inhibition of tyrosinase in schistosomes [109]. Therefore, in addition to 

924 adult worm motility, SmNAGAL clearly participates in oviposition. In light of this evidence, S. 

925 japonicum may need three enzymatically active α-NAGAL proteins (EWB00_005284, 

926 EWB00_005283 and EWB00_005285, Fig 1) due to markedly higher rate of oviposition (>2000 

927 eggs per day per worm pair) compared to S. mansoni and S. haematobium (>300 and >200 

928 eggs per day per worm pair, respectively) [110, 111]. Further characterisation of these other 
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929 schistosome homologs could provide further insight into the differential rate and absolute 

930 numbers of eggs produced by the three main, human-infecting schistosome species.

931 The use of RNAi to characterise S. mansoni genes of interest [66], such as smnagal, 

932 has been established for several years and is currently considered the functional genomics 

933 gold standard for this parasite. However, CRISPR/Cas9 genome editing approaches to 

934 characterise schistosome gene function are increasingly being explored as recently 

935 exemplified by studies of S. mansoni omega-1 [112], ache [113], and sult-or [114]. Our use of 

936 this technology to edit smnagal contains some broadly-overlapping similarities to these 

937 previous studies. For example, the overall percentages of modified sequence reads observed 

938 in smnagal-edited worms (0.25 – 0.31%) were comparable to those observed in omega-1-

939 edited eggs (approximately 4.5%) [112], ache-edited eggs (0.0295 – 0.12%) [113], sult-or-

940 edited worms (0.3 – 2.0%) and sult-or-edited sporocysts (0.1 – 0.2%) [114]. Furthermore, the 

941 predominant types of mutation in smnagal-edited worms were substitutions (S2 Table), 

942 which is consistent with omega-1-edited eggs [112] and ache-edited eggs [113]. The 

943 CRISPR/Cas9 investigation targeting the liver fluke granulin (ov-grn-1) locus in Opisthorchis 

944 viverrini also showed substitutions (98.7%) to be introduced at a higher rate than insertions 

945 (0.6%) or deletions (0.7%) [115]. However, this observation was not consistent for the sult-or 

946 investigation, which only showed deletions attributable to genome editing [114]. Additional 

947 investigations are necessary in S. mansoni and other platyhelminths to confirm if 

948 predominant substitution rates resulting from programmed genome editing are a conserved 

949 feature. It is notable that worms treated with CRISPR/Cas9 plasmids targeting smnagal exon 

950 1 (SmNAGALX1 and dual SmNAGALX1/X2) exhibited modified sequence reads with complex 

951 rearrangements consisting of insertions with deletions (S2 Table), which was not previously 

952 reported in the other S. mansoni genome editing studies to date. This may be due to the 
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953 infrequency of this type of indel being introduced when DSBs are repaired after CRISPR/Cas9 

954 genome editing [116]. Nonetheless, low percentages of S. mansoni genome editing quantified 

955 within omega-1-edited eggs and ache-edited eggs led to pronounced phenotypes [112, 113]. 

956 This observation was also consistent for smnagal-edited worms, which showed significant 

957 reductions in IVLE production (Fig 7C) similar to siSmNAGAL treated worms (Fig 7B). Further 

958 comparisons can be made between smnagal-edited worms and omega-1-edited eggs in 

959 which both manipulated groups showed significant reductions in target transcript abundance. 

960 However, this is in contrast to the CRISPR/Cas9 study targeting sult-or, which showed no 

961 mRNA knockdown or expected phenotypes despite NHEJ-associated deletions predicted to 

962 cause frameshifts that ablate sult-or transcription [114]. Collectively, these results suggest 

963 that phenotypic effects/reductions in mRNA abundance associated with RNAi-treated S. 

964 mansoni parasites targeting a particular transcript may not always be equivalent to those 

965 found in CRISPR/Cas9-edited S. mansoni parasites that target the associated gene locus. 

966 Furthermore, the overall percentages of genome editing may be underestimated in smnagal-

967 edited worms due to the presence of large deletions completely removing the primer regions 

968 over exon 1 and 2 and, thus, some mutations remain undetected by amplicon sequencing and 

969 bioinformatics analysis of the alleles. This situation has been reported with S. stercoralis [117] 

970 and C. elegans [118] and speculated to occur in the reports on omega-1 [112], sult-or [114] 

971 and ache [113]. 

972 In addition to the presence of large deletions, the omega-1 investigation suggested 

973 that several non-synonymous substitutions may have disrupted the ribonuclease catalytic site 

974 and contributed to the mutant phenotypes. Similarly, the smnagal genome edited-associated 

975 phenotypes observed (smnagal knockdown and reduced egg production) may also be due to 

976 NHEJ-associated indels/substitutions producing frameshifts (leading to the translation of 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.26.453800doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453800
http://creativecommons.org/licenses/by/4.0/


43

977 substantially truncated proteins), ablating smnagal transcription or leading to translated 

978 proteins that lack all the functional amino acid residues (S7 Fig) [32, 119]. The continued 

979 refinement of CRISPR/Cas9 technology in S. mansoni will help resolve some of these 

980 outstanding queries.

981 While the specific SmNAGAL targets within adult schistosomes have yet to be 

982 identified, our functional characterisation of this glycogene product suggests that 

983 glycoproteins/glycolipids containing α-N-acetylgalactosamine residues are critical for 

984 coordinated worm movement and egg production. These traits suggest that SmNAGAL is an 

985 essential schistosome gene product, representing a novel parasite vulnerability for exploiting 

986 further as a next-generation anthelminthic target for controlling schistosomiasis. As an 

987 important component of these investigations, we additionally confirm that smnagal is 

988 susceptible to somatic genome editing and contribute to the growing literature on utilising 

989 the CRISPR/Cas9 system in S. mansoni as a tool for functional genomics in parasitic 

990 platyhelminths [120]. An enhanced understanding of SmNAGAL or other S. mansoni glycan 

991 machinery components in lifecycle functions or host interactions will aid the search for 

992 urgently-needed, next-generation interventions. 
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1420 Supporting information
1421 S1 Fig. Assessing the stereochemical quality of the Smp_089290 homology model using 

1422 RAMPAGE Ramachandran plot analysis, ProSA-web and Verify 3D software. (A) The 

1423 graphical representation of the RAMPAGE Ramachandran plot analysis for the Smp_089290 

1424 homology model. The plot depicts the torsional angles (phi, φ, x-axis and psi, Ψ, y-axis) of the 

1425 amino acid residues in the homology model; this illustrates which combinations of angles for 

1426 each atom is possible by considering their dimensions and van der Waals radii. Stable and 

1427 unstable conformations of the model can, therefore, be plotted on the graph. (B) The 

1428 graphical representation of the ProSA-web analysis for the Smp_089290 homology model. 

1429 The z-score (-7.44, black dot) indicates the overall model quality, which is displayed in a plot 

1430 that contains the z-scores of all experimentally determined protein chains in the current PDB 

1431 database. The input structure is verified when it is found to be within the range of z-scores 

1432 typically found for deposited proteins of similar size. (C) The graphical representation of the 

1433 Verify 3D analysis for the Smp_089290 homology model. The analysis determines the 

1434 compatibility of the atomic model (3D) of the input structure with its own amino acid 

1435 sequence (1D) by assigning a structural class for each amino acid residue based on its location 

1436 and environment (as part of an α-helix, β-strand or an interconnecting loop) and polarity. (D) 

1437 A summary table of the analysis tool used (colour coded: RAMPAGE Ramachandran plot 

1438 analysis = red, ProSA-web = orange and Verify 3D = yellow), the results obtained from the 

1439 assessment of the Smp_089290 homology model and the expected values for verified 

1440 structures.

1441

1442 S2 Fig. Quantification of smp_089290 abundance across the S. mansoni lifecycle by RNA-

1443 Seq analysis reinforces female-biased expression. RNA-Seq meta data analysis of 
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1444 smp_089290 abundance for 11 lifecycle stages during mixed-sex infections. Individual 

1445 expression values for male and female are only plotted for lifecycle stages where expression 

1446 was assessed in sex-separated samples by Protasio et al. [50] and Lu et al. [51] (i.e. from ’21 

1447 day juveniles’ to ‘>42 day adults’). A single expression value is plotted for lifecycle stages 

1448 where expression was assessed in mixed-sex samples by Anderson et al. [47], Wang et al. [48] 

1449 and Protasio et al. [49] (i.e. from ‘egg’ to ’24 hr somules’).

1450

1451 S3 Fig. Adult female and male schistosomes showed little to no specific staining when 

1452 hybridised with the sense smp_089290 probe. Images of the anterior, mid-section and 

1453 posterior (10x magnification) of (A) female and (B) male schistosomes as well as anterior 

1454 images with a higher magnification (40x magnification, area depicted by black dashed box). 

1455 Structures labelled include egg (E), ovary (O), vitellarium (V), vitello-oviduct (VOD), intestine 

1456 (I), oral sucker (OS), oesophagus (OES), ventral sucker (VS) and testes (TES). Black scale bars = 

1457 200 µm and red scale bars = 50 µm.

1458

1459 S4 Fig. scRNA-Seq expression profile of smp_089290 in adult female S. mansoni shows 

1460 localisation to vitellocytes, parenchymal cells and neuronal cells. Labelled UMAP projection 

1461 plot of various cell clusters highlighted by black dashed regions. smp_089290 scRNA-Seq 

1462 expression values shown in this plot were generated from sexually mature adult female 

1463 samples only. Expression values are normalised to a scale of 0 – 100 and colour coded (blue 

1464 = low, red = high). Mature vitellocytes and late vitellocytes are labelled by red arrows.

1465

1466 S5 Fig. scRNA-Seq expression profile of smp_089290 in adult male S. mansoni shows 

1467 enrichment in parenchymal and neuronal cells. Labelled UMAP projection plot of various cell 
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1468 clusters highlighted by black dashed regions. smp_089290 scRNA-Seq transcript expression 

1469 values shown in this plot were generated from adult male samples only. Expression values are 

1470 normalised to a scale of 0 – 100 and colour coded (blue = low, red = high).

1471

1472 S6 Fig. Flanking oligonucleotide primers designed for MiSEQ library generation encompass 

1473 DSB site of SmNAGALX1 and SmNAGALX2 sgRNAs. Diagrammatic representation of the 

1474 genomic sequence of smnagal from nucleotide (nt) positions 1500 – 4000 (represented by 

1475 double lines) based on WormBase ParaSite entry [26]. Exons are depicted as red boxes with 

1476 nt positions indicated above 5´ and 3´ ends. Numbers written inside each exon represent their 

1477 position in the gene sequence. Positions and nt sequences of SmNAGALX1_sgRNA and 

1478 SmNAGALX2_sgRNA are shown below exon 1 and 2, respectively (represented by red arrows). 

1479 DSB sites for SmNAGALX1_sgRNA and SmNAGALX2_sgRNA are indicated by yellow arrows, 

1480 which are located three nts upstream of the PAM sequence highlighted in light blue (note: 

1481 the PAM sequence is not part of the sgRNA sequence). Positions and nt sequences of 

1482 SmNAGALX1_MISEQ (represented by orange lines) and SmNAGALX2_MISEQ (represented by 

1483 green lines) primers are shown along the genomic sequence. Amplicon lengths of 

1484 SmNAGALX1_MISEQ and SmNAGALX2_MISEQ products are underlined in orange and green, 

1485 respectively.

1486

1487 S7 Fig. NHEJ-associated indels and representative substitutions observed in lentiviral 

1488 CRISPR/Cas9 plasmid treated worms by CRISPResso2 analysis. Multiple sequence alignment 

1489 (MSA) showing all insertions, deletions, insertions with deletions and representative 

1490 substitutions (i.e. supported by more than one sequence read) identified in modified 

1491 sequence reads by CRISPResso2 analysis. Modified sequence reads are aligned with the 
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1492 original unmodified smnagal nucleotide (nt) sequence. Alignments are grouped as follows: 

1493 (A) Experimental treatment groups targeting exon 1 and (B) Experimental treatment groups 

1494 targeting exon 2. A colour code is used to show the number of sequence reads each 

1495 indel/substitution appears in for SmNAGALX1 (red), SmNAGALX2 (dark blue) and dual 

1496 SmNAGALX1/X2 plasmid treated worms (purple). Nts that are modified by each 

1497 indel/substitution within the alignment are coloured green. Insertions appear as additional 

1498 nts not found in the original sequence, deletions appear as lines (-) and substitutions appear 

1499 as replaced nts located in the same positions as the original sequence. The nt sequences of 

1500 SmNAGALX1_sgRNA and SmNAGALX2_sgRNA are highlighted in yellow within the original 

1501 sequence. DSB sites for SmNAGALX1_sgRNA and SmNAGALX2_sgRNA are indicated by yellow 

1502 arrows, which are located three nts upstream of the PAM sequence highlighted in light blue 

1503 (note: the PAM sequence is outside and downstream of the sgRNA sequence). An additional 

1504 colour code is used to distinguish between start (orange nts) and termination (red nts) codons 

1505 found in the sequences, which have been highlighted in black.

1506

1507 S8 Fig. SWAP samples derived from smp_089290 depleted adult male and female 

1508 schistosomes show no significant reductions in α-GAL activity. (A) 6.45 µg of siRNA treated 

1509 adult male-derived SWAP and (B) 2.44 µg of siRNA treated adult female-derived SWAP were 

1510 measured for α-GAL using α-GAL colorimetric substrates. Final absorbances were quantified 

1511 at 410 nm. Using linear trendline equations generated from α-GAL standard curves, α-GAL 

1512 activity (µg/ml) were calculated for each sample. No statistical significance in α-GAL activity 

1513 between samples was observed (Student’s t-test, two tailed, unequal variance).

1514
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1515 S9 Fig. smnagal deficiency in adult male and female worms leads to motility defects as 

1516 assessed by WHO-TDR scoring matrix. The motility of individual worms (five adult pairs per 

1517 well) were scored between 4 – 0 based on the WHO-TDR scoring matrix guidelines; 4 = normal 

1518 active/paired up, 3 = slowed activity, 2 = minimal activity and occasional movement of head 

1519 and tail, 1 = absence of motility apart from gut movements and 0 = total absence of motility. 

1520 The total occurrences of each score was plotted per day for siLuc treated and siSmNAGAL 

1521 treated adult female (A) and male (B) worms starting from day two after electroporation up 

1522 until day seven (day of electroporation considered as day zero). Statistical significance is 

1523 indicated (General Linear Mixed-Effects Model, NLME and EMMEANS R packages, ** = 

1524 p<0.01). Day one was not included in the statistical analysis due to worms appearing stunned 

1525 and immobile, likely due to electroporation manipulation. Six wells/biological replicates per 

1526 siRNA treatment were used for this analysis.

1527

1528 S10 Fig. Movement of siSmNAGAL treated worms is substantially impaired when compared 

1529 to siLuc treated worms on day three. Video footage of (A) siLuc treated and (B) siSmNAGAL 

1530 treated adult worms was captured using a NexiusZoom stereo microscope (Euromex) and 

1531 edited with ImageFocus 4 software (Euromex).

1532

1533 S11 Fig. Representative morphologies of eggs derived from siRNA treated female worms. 

1534 IMARIS 7.3 software (Bitplane) was used to create a video showing the 360° horizontal 

1535 rotation of a representative egg derived from (A) siLuc treated and (B) siSmNAGAL treated 

1536 adult female worms. Blue = DAPI+ cells, green = egg auto-fluorescence and white scale bars = 

1537 20 µm.

1538
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1539 S12 Fig. Representative fluorescence micrographs of eggs collected from wells of 

1540 siSmNAGAL treated adult female worms reveal a broad spectrum of abnormal 

1541 morphologies. Images of eggs from siLuc treated worm pairs depicting (A) vitellocytes under 

1542 the blue channel (i.e. excitation wavelength = 405 nm and emission wavelength = 461 nm) 

1543 and (B) auto-fluorescence under the green channel (i.e. excitation wavelength = 488 nm and 

1544 emission wavelength = 520 nm). Images of eggs from siSmNAGAL treated worm pairs 

1545 depicting (C) vitellocytes under the blue channel and (D) auto-fluorescence under the green 

1546 channel. Blue = DAPI+ cells, green = egg auto-fluorescence and white scale bars = 20 µm.

1547

1548 S1 Table. Initial processing of MiSEQ deep-coverage sequence reads for CRISPResso2 

1549 analysis. 

Primer pair set Sample Reads in 
inputs

Reads after 
pre-processing

Reads 
aligned

Scramble 588918 588918 139154
SmNAGALX1 1469667 1048675 429175

SmNAGALX1_MiSEQ 
primers (targeting 

exon 1) Dual SmNAGALX1/X2 1081902 535084 258576

Scramble 722655 683478 176041
SmNAGALX2 1916911 1916911 103559

SmNAGALX2_MiSEQ 
primers (targeting 

exon 2) Dual SmNAGALX1/X2 1838265 1683634 136129

1550 The number of sequence reads at each of the three initial processing stages before indel 

1551 characterisations can be made by further CRISPResso2 analysis is presented. These three 

1552 initial processing stages are “Reads in inputs” (highlighted in red, first stage), “Reads after 

1553 pre-processing” (highlighted in blue, second stage) and “Reads aligned” (highlighted in yellow, 

1554 third stage). “Reads in inputs” refers to the total number of sequence reads from raw MiSEQ 

1555 sequencing data. “Reads after pre-processing” refers to the number of sequence reads after 

1556 PCR amplification or trimming artefacts are removed. “Reads aligned” refers to the number 
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1557 of sequence reads that are of high quality (>60% homology to reference amplicon sequence), 

1558 which are used for indel characterisations. The table also lists the primer pair set and sample 

1559 (samples amplified by SmNAGALX1_MiSEQ and SmNAGALX2_MiSEQ primers are highlighted 

1560 in orange and green, respectively) used for each barcoded MiSEQ amplicon library 

1561 constructed.

1562

1563 S2 Table. Detectable frequencies of insertions, deletions, insertions with deletions and 

1564 substitutions in smnagal-edited worms as quantified by CRISPResso2 analysis. 

Mutation frequencies (%)

Primer Pair set Sample Unmodified Insertions Deletions
Insertions 

with 
deletions

Substitutions

SmNAGALX1 99.7306 0.0032 0.0075 0.0014 0.2570
SmNAGALX1_MiSEQ 

primers (targeting 
exon 1)

Dual 
SmNAGALX1/X2 99.7400 0.0034 0.0073 0.0007 0.2506

SmNAGALX2 99.6900 0.0057 0.0164 0 0.2870
SmNAGALX2_MiSEQ 

primers (targeting 
exon 2)

Dual 
SmNAGALX1/X2 99.7517 0.0081 0 0 0.2402

1565

1566 The mutation frequencies attributable to genome editing (i.e. insertions, deletions, insertions 

1567 with deletions, and substitutions) in smnagal-edited worms as quantified by CRISPResso2 

1568 analysis is indicated. The percentage of unmodified sequence reads is included. The primer 

1569 pair set and sample (samples amplified by SmNAGALX1_MiSEQ and SmNAGALX2_MiSEQ 

1570 primers are highlighted in orange and green, respectively) used for each barcoded MiSEQ 

1571 amplicon library constructed are indicated.

1572
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