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Abstract 

 

Information silos have been an oft-maligned feature of scientific research for introducing a bias 

towards knowledge that is produced within a scientist’s own community. The vastness of the 

scientific literature has been commonly blamed for this phenomenon, despite recent 

improvements in information retrieval and text mining. Its actual negative impact on scientific 

progress, however, has never been quantified. This analysis attempts to do so by exploring its 

effects on biomedical discovery, particularly in the discovery of relations between diseases, 

genes and chemical compounds. Results indicate that the probability that two scientific facts will 

enable the discovery of a new fact depends on how far apart these two facts were published 

within the scientific landscape. In particular, the probability decreases exponentially with the 

citation distance. Thus, the direction of scientific progress is distorted based on the location in 

which each scientific fact is published, representing a path-dependent bias in which originally 

closely-located discoveries drive the sequence of future discoveries. To counter this bias, 

scientists should open the scope of their scientific work with modern computational approaches. 

 

1. Introduction 

 

The wide communication of scientific discoveries across the scientific community is an essential 

element of scientific research. Scientific silos have long been bemoaned for hindering this 

process (e.g. (Leischow et al., 2008; Vodovotz & An, 2013; Törmä, 2019)) by introducing a bias 

towards knowledge that is produced within a scientist’s own community. Analogous to corporate 

knowledge silos, there are at least three aspects that would define them: (1) enormous growth 

in the knowledge available to scientists, (2) organization of scientists into communities and (3) 

slowing of the propagation of scientific knowledge between those communities. Regarding the 

first aspect, the growth of information available for scientific research (Larsen PO & von Ins M, 
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2010; Bornmann & Mutz, 2015) represents a challenge for individual scientists as information 

seekers. In a perfect world, scientists would possess complete knowledge of all existing 

scientific information and select their research goals accordingly. Abundance of information, 

however, can represent its own “resource course” challenge. One could paraphrase the famous 

corporate knowledge-management adage (Sieloff, 1999) by saying: if only science knew what 

science knows. In this respect, the field of literature-based discovery (LBD) has propounded the 

existence of “undiscovered public knowledge” concerning facts that have never been put 

together because of the disparate venues in which they were published (Swanson, 1986; 

Bekhuis, 2006; Thilakaratne et al., 2019). Thus, there is a recognition that the milieu in which a 

discovery is published influences its later use by the scientific community due to the sheer 

abundance of existing scientific knowledge. 

 

With respect to the second aspect, it has been shown that scientific publications are anchored 

around communities of scientists (Bruggeman et al., 2012; Shia et al., 2015; Fortunato et al., 

2018), which go beyond traditional scientific communities (e.g. university departments, scientific 

organizations), representing a self-organizing process. This process might be encouraged by an 

institutional bias against interdisciplinary research (Bromhan & Dinnage, 2016; Baumwol et al., 

2011), which would hamper collaboration across communities, despite recent trends towards 

fostering interdisciplinary research in systems and translational sciences (Luke et al., 2015; 

Auffray et al., 2009). It could also be a consequence of human cognitive limitations, due to 

scientists’ bounded capacity to learn and produce new knowledge and as a response to an 

increasingly more complex scientific landscape (Rodriguez-Esteban & Loging, 2013).  

 

The third aspect, and the focus of this study, relates to the negative impact that scientific silos 

ultimately have on scientific progress. The existence of silos would entail that intra-silo 

information exchange is more frequent and faster than inter-silo. This would increase the 
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likelihood of certain discoveries based on facts published within a silo, to the detriment of 

discoveries based on facts coming from different silos. Because new discoveries feed on past 

discoveries in a path-dependent manner (Soler et al., 2015; Tambolo, 2017; Heimeriks & 

Boschma, 2014), this dynamic could affect the long-term outcome of scientific research. 

 

2. Research Objective 

 

While siloization, and solutions that try to address it, have been a recurrent topic of scientific 

debate, no effort has been made to-date to quantify its negative impact on scientific progress, 

particularly its effect on the slowdown in the propagation of scientific facts, leading to the delay 

of certain discoveries and to the acceleration of others. This first attempt focuses on measuring 

the propagation of scientific facts about relations between compounds, genes and diseases, 

which are of broad interest in biomedical discovery, including clinical, pharmaceutical and 

translational research. Because defining silos is challenging, a surrogate distance measure—

the citation distance—is used to represent the separation between publications within the 

scientific landscape. This measure would be related to the likelihood that publications belong to 

the same silo. Results of the analysis show that the citation distance between two published 

facts influences the probability that they will lead to a new discovery and thus signal the 

importance that knowledge silos (or, more broadly, the large-scale structure of relations 

between scientific publications) have in distorting scientific progress. 

 

3. Methods 

 

Scientific discovery can be modeled as a process in which facts are progressively connected to 

each other, thereby building growing networks in which the discovery of new facts is connected 

to already discovered facts (Cokol et al., 2005; Rzhetsky et al., 2015). The scientific discovery 
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model employed in this study is inspired by the ABC model used in literature-based discovery 

(LBD) (Smalheiser, 2012; Thilakaratne et al., 2019) and it is based on undirected networks of up 

to 3 nodes (A, B and C). The nodes are particular elements that are the focus of research and 

the edges are relations between those elements that have been published in scientific 

publications. These networks are built sequentially over time: the edge AB is associated to the 

relation that is published first, the edge BC is associated to the second one, and the edge AC to 

the third one. Based on the time sequence order, the nodes are labeled appropriately as A, B or 

C. At any given point in time, and based on the existing published literature, there are networks 

with 1, 2 and 3 edges. For networks with all 3 edges, we say that AB and BC enabled the 

discovery of AC, even if there is no direct evidence of that, by virtue of precedence. AB and BC 

are considered “enabling facts” and AC, a “new discovery.” Networks with 2 edges comprise 

potentially enabling pairs of facts (i.e. AB and BC), which could enable a new discovery AC in 

the future. 

 

In a full, three-edge network, the time lapse for a new discovery is the time between the 

publication of BC and the publication of AC. In a two-edge network (i.e. AC does not exist), the 

time lapse is measured between publication of BC and the cut-off time (January 1, 2020). This 

is done because potentially enabling facts can still enable a new discovery at a future date. This 

is handled analogously to a Kaplan-Meier curve to avoid biases due to right-censoring. One-

edge networks are not considered for this calculation. 

 

In this study, each network node (A, B, C) is one of each a gene, a disease or a compound. 

Each edge is a relation (e.g. a gene-disease relation) linked to a specific publication in the 

database MEDLINE. Data about relations came from The Comparative Toxicogenomics 

Database (CTD) (Davis et al., 2019), which was downloaded on May 4th, 2020. From this 

database, 1,603,976 unique relations between chemicals and genes were extracted; 34,830 
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relating genes and diseases and 218,868 relating chemicals and diseases. Additionally, co-

occurrence data came from the MeSH and gene2pubmed databases. Chemical/drug and 

disease annotations were MeSH term annotations designated as “Major Topic” from the 

“Chemicals and Drugs” (D) and “Diseases” (C) branches, respectively, in the 2020 MeSH tree. 

Gene annotations came from the gene2pubmed database (Maglott et al., 2011) downloaded on 

August 20, 2020. These comprised 1,515,080 human gene annotations from 664,085 MEDLINE 

articles. MEDLINE data came from the 2020 MEDLINE/PubMed baseline. The reference date 

for each publication was the publication date (PubDate). 

 

The citation distance was computed as the distance between nodes in an undirected citation 

network in which the nodes were scientific publications recorded in MEDLINE and connections 

were citations between them (Rodriguez-Esteban R, 2020; Rodriguez-Esteban R, 2021). This 

citation distance differed from those described in previous work in that those typically involved 

directed connections (Botafogo et al., 1992). The citation distance between any pair of 

publications was computed using bidirectional breadth-first search (BFS) on citations existing at 

the time of publication of the latest article of the pair. Pairs of publications for which a path in the 

citation network could not be found were discarded from the analysis. A randomized version of 

the citation network was created by randomly swapping the nodes of the citation network, thus 

maintaining the network structure. 

 

Citations came from the Open Citation Index repository (Peroni et al., 2017) and in particular 

from the March 23, 2020 update, which contained 721,655,465 citations between pairs of 

articles identified by a digital object identifier (DOI). DOI to PMID mappings were extracted from 

EBI’s PMID-PMCID-DOI dataset (Levchenko et al., 2018) downloaded on July 9, 2020, which 

contained 22,504,850 mappings between PMIDs and DOIs—thus covering 22,504,850 unique 

PMIDs in total. Using these mappings, 269,956,002 citations from the Open Citation Index were 
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mapped from DOIs to PMIDs. As of July 2020, the fraction of publications covered by the Open 

Citation Index was 60% out of 51.1 million articles with references deposited with Crossref 

(https://i4oc.org/#about; checked on July 29, 2020). 

 

The code used for this analysis is available at: https://github.com/raroes/scientific-silos 

 

4. Results 

 

Research on biomedical properties of compounds and genetic bases of disease is modeled 

here as a series of sequentially-built networks made of up to three nodes concerning each a 

gene, a compound and a disease. The nodes are connected by facts, which are molecular and 

medical relations published in the scientific literature. Central to this analysis is that two existing 

facts, e.g. a gene-disease and a disease-compound relation, precede and, therefore, enable the 

posterior new discovery of another fact, i.e. a gene-compound relation (Figure 1). For example, 

the compound isopropanol leads to increased expression of the gene NQO1’s mRNA 

(Vandebriel et al., 2010). This, together with the fact that inhibition of NQO1 is linked to the 

amelioration of kidney diseases (Chen et al., 2011), enables a new discovery, namely the 

relation between isopropanol and kidney diseases (Brott et al., 2013). Using a comprehensive 

dataset containing thousands of such facts, this model can be employed to understand the 

dynamics of scientific discovery. 
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Figure 1. Connecting the dots. The three elements involved are the compound isopropanol, the 

gene NQO1 and kidney diseases. Each fact is a relation between two of these elements 

published in a MEDLINE article. For example, the relation between isopropanol and NQO1 was 

described in the article with PubMed ID 20566472 (Vandebriel et al., 2010). Data came from the 

Comparative Toxicogenomics Database (CTD). 

  

The first step in the analysis is to find all combinatorially-possible pairs of facts sharing an 

element in the dataset, such as all pairs of facts involving the gene NQO1. Together, these facts 

comprise all pairs of facts that can enable new discoveries. If a pair of these facts is followed by 

a new discovery, the time lapsed until that event is computed. E.g., in Figure 1, the time lapse is 

between August 2011, when the second fact was published, and January 7, 2013, when the 

new discovery was published. This time lapse is then used to estimate the pace at which 

scientists produce new discoveries from existing facts and, in the case studied here, to test its 

dependence on the “distance” between the publications in which the facts were published. The 

distance metric used is the citation distance, which is a simple way to measure proximity in the 

scientific landscape (Rodriguez-Esteban, 2020). This distance is computed based on the 

citations existing at the time that the second fact is published. E.g., in Figure 1, the citation 
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distance was 4 based on citation data from publications until August 2011, when the second fact 

was published. 

 

The dataset used initially for this analysis was the Comparative Toxicogenomics Database 

(CTD) (Davis et al., 2019), which contains manually-curated relations between compounds, 

diseases and genes from the literature. Out of all combinatorially-possible pairs of facts in the 

CTD (n=6,261,706), only a small percentage (0.25%) was followed by new discoveries after 5 

years. This percentage changed only slightly over the decades despite power-law growth in the 

combinatorial possibilities (Figure 2). 

 

 

Figure 2. (A) Percentage of pairs of facts enabling discoveries after 5 years averaged over a 

10-year time window. E.g., the earliest data point (1990) is an average for the period 1990-

1999. Linear regressions were fitted to each curve. (B) Number of combinatorially-possible pairs 

of facts per year for each dataset. The year refers to the time when the second fact was 

published. 

 

As can be seen in Figure 3A, the percentage of all combinatorially-possible pairs of facts that 

were followed by a new discovery increased linearly over the years, as scientists had time to 
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work with them. This percentage, however, decreased with increasing citation distance, 

following an exponential decay (Figure 3B). For citation distance of 2, the percentage of 

combinatorially-possible pairs of facts enabling a new discovery was, on average, 0.090% per 

year, while for citation distance of 5 it was an average of 0.036%. After 5 years, it was 2.6 times 

more likely that a new discovery would be made out of facts separated originally by a citation 

distance of 2 than out of facts separated by a citation distance of 5 (0.47% vs. 0.18%).  

 

Figure 3. Percentage of pairs of facts enabling new discoveries (A) over time in CTD, and (B) 

after 5 years, based on citation distance. The percentage of pairs of facts enabling new 

discoveries increased faster over time with smaller citation distance. Origin-intercept linear (A) 

and exponential (B) regressions were fitted to each curve. The blue line in (A) represents the 

overall percentage trend for all distances. 

 

This effect disappeared if all publications were randomly swapped within the citation network 

(Figure 4). In this case, the rate of discovery did not vary with citation distance, except for the 

case of distance equal to 1, due to data sparsity. 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 28, 2021. ; https://doi.org/10.1101/2021.07.26.453749doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453749
http://creativecommons.org/licenses/by/4.0/


11 

 

Figure 4. Percentage of pairs of facts enabling new discoveries after 5 years based on citation 

distance in a randomized citation network. Unlike in the non-randomized network, values did not 

follow an exponential decay based on citation distance. 

 

To seek additional validation for these results, a similar analysis was performed with a different 

dataset based on co-occurrence of manual annotations of genes, diseases and chemicals/drugs 

of MEDLINE records. Co-occurrences have been considered suggestive of relations 

(Pavlopoulos et al., 2014) and have been used to discover new relations between drugs, genes 

and diseases (Frijters et al., 2010). The combinatorial space of all potentially enabling pairs of 

facts was three times larger (n=17,040,304) in this case than for CTD but the overall outcome 

was similar (Figure 5): Only a small percentage of those pairs of facts (0.26%) enabled new 

discoveries 5 years after publication. The percentage grew steadily with time, but at a different 

rate depending on the citation distance, following an exponential decay (Figure 3). For facts 

separated by a citation distance of 2, the percentage enabling a new discovery increased, on 

average, 0.10% per year, while for a citation distance of 5, it was 0.035%. After 5 years, it was 3 

times more likely that a new discovery was be made out of facts published within a citation 

distance of 2 than out of facts within a citation distance of 5 (0.54% vs. 0.18%). This effect 

disappeared if publications were randomly swapped (Figure 4). Similarly to the previous case, 
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the percentage of pairs that enabled a new discovery did not vary with citation distance and was 

similar to the baseline, except for distance equal to 1 due to data sparsity. 

 

 

Figure 5. Percentage of pairs of facts enabling new discoveries over time based on citation 

distance in the co-occurrence dataset. Origin-intercept linear regressions were fitted to each 

curve. Quadratic regressions were a better fit. The blue line represents the percentage for all 

citation distances. 

 

One potential weakness of this analysis could be missing citation data. The effect of this 

shortcoming was examined by eliminating existing citations randomly. This reduction did not 

change the shape of the outcome except when it was large (75% reduction) (Figure 6). Thus, an 

increase in the availability of citation data would not be expected to change the overall picture 

either. 
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Figure 6. Percentage of pairs of facts enabling new discoveries after 5 years based on citation 

distance in a citation network with progressively less citations (100% = all citations available 

used, 75% = 75% of all citations available used, etc.). Exponential regressions were fitted to 

each curve. Data source was CTD. 

 

5. Discussion and conclusions 

 

The fact that the analyses on both datasets led to similar outcomes lends some validation to the 

results. Both analyses show that, over time, scientists “connect” only a small percentage of 

existing facts about relations between compounds, genes and diseases. Thus, biomedical 

scientists appear to have a wide set of facts available from which they only end up publishing 

discoveries about a small subset of them, whether because of lack of resources, lack of interest, 

or because many combinations lead to negative results. Moreover, scientists steadily 

“accumulate” discoveries over the years but the rate of collective accumulation is higher when 

those discoveries concern facts that were originally closer within the citation network. This 

points towards a path-dependency in scientific discovery (Rzhetsky et al., 2015) in which 

originally closely-located discoveries drive the sequence of future discoveries rather than 

optimal unbiased choices. 
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As more facts are discovered, one may expect their potential combinations to grow quadratically 

and siloization to be a consequence, at least partially, of this. However, there is a countervailing 

trend, which is that the scientific literature grows exponentially and it is able therefore to produce 

an increasingly larger number of discoveries. This analysis points to a somewhat stable relation 

between these two opposing forces. The overall percentage of facts that are being connected to 

form new discoveries has not changed much over the last decades and even increased slightly 

despite enormous growth in combinatorial possibilities (Figure 2). If scientists were falling 

behind, we would expect to see a decrease. Additionally, the rate of accumulation of new 

discoveries (Figures 3 and 5) appears generally stable and does not show signs of acceleration 

or deceleration over time (if only slight acceleration for co-occurrence data). Therefore, 

Swanson’s warning about “connection explosion” (Swanson, 2008) (“The literature of science 

cannot grow faster than the communities that produce it, but not so with connections. Implicit 

connections between subspecialties grow combinatorially. LBD is challenged more by a 

connection explosion than by an information explosion.”) does not bear on this case, probably 

because scientists tend to lend a higher focus to a reduced set of drugs, diseases and genes 

(Yao et al., 2015; Haynes et al., 2018; Stoeger et al., 2018; Rzhetsky et al., 2015), which would 

tend to limit combinatorial explosion. 

 

The citation distance is only a rough estimate of scientific proximity between articles. One could 

expect that a more precise surrogate for scientific proximity could show an even stronger 

siloization effect. The citation distance was chosen for its simplicity. Measures of semantic 

similarity between articles, for example, could create cross-feedback between article 

annotations (i.e. gene annotations) and the distance metric itself. 

 

Reaching more often for facts that are “closer” could be a simple heuristic or a type of 

availability bias. That scientists may use heuristic biases, even if unconscious, to select their 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 28, 2021. ; https://doi.org/10.1101/2021.07.26.453749doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453749
http://creativecommons.org/licenses/by/4.0/


15 

research goals should not be surprising, given the extraordinary growth of the scientific literature 

in most fields. However, this bias leads to a distortion of scientific progress and an opportunity 

for those who may venture further away from their silos with the aid of modern tools (Krenn & 

Zeilinger, 2020; Whalen et al., 2016). Siloization is ultimately an emerging property of scientific 

organization and self-organization with cognitive, social and technological aspects. 
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