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Abstract

Functional 2-photon microscopy is a key technology for imaging neuronal ac-
tivity which can, however, contain non-rigid movement artifacts. Despite the
established performance of variational optical flow (OF) estimation in different
computer vision areas and the importance of movement correction for 2-photon
applications, no OF-based method for 2-photon imaging is available. We devel-
oped the easy-to-use toolbox Flow-Registration that outperforms previous align-
ment tools and allows to align and reconstruct even low signal-to-noise 2-photon
imaging data.

2-photon microscopy in combination with synthetic or genetically encoded indicators
allows to image a wide range of different aspects of neuronal activity with cellular or even
sub-cellular resolution in anesthetized as well as behaving animals [1], [2]. Importantly,
small signal changes might carry crucial information. However, the imaging data can be
afflicted with different types of noise and artifacts. On one hand, due to the low number
of generated photons with 2-photon excitation, the shot noise is typically significant.
On the other hand, movement noise can be introduced during acquisition. Motion
artifacts can be caused by heart beat, breathing, as well as motor behavior in awake
animals. Also, some experimental paradigms inherently result in large, non-rigid and
non-elastic deformations, for example, local drug injections. While many established
tools exist for the correction of small vibrations and rigid drifts, the compensation of
large and/or non-uniform motion is still a challenge.
Furthermore, for high accuracy alignment, subpixel registration is necessary. Small
displacements can be approximated by a linearized motion assumption [3]. This means
even small residual motion can induce large artifacts around image edges due to a
proportional relation of spatial image gradient and motion magnitude with respect to
induced brightness changes.
While optical flow (OF) based image registration methods were used for 2-photon imag-
ing data before [4], they do not incorporate the advances in OF estimation developed
in recent years in the context of many computer vision areas.
As a consequence, they perform poorly, when compared with state-of-the-art image
registration methods for 2-photon imaging and are generally regarded as too prone to
noise for this application [5].
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Figure 1: Comparison of registration performance on a very challenging two-channel
2-photon recording during drug injection in vivo. The challenges of the sequence are a
very low signal to noise ratio together with brightness changes in the functional imaging
channel (orange) and non-elastic deformations due to the injected indicator. Average
of (A) raw images, (B) after rigid registration, (C) after registration with NoRMCorre,
and (D) after Flow-Registration. The tissue expands from the injection point (E)
resulting in large displacements as well as in a high divergence (F) in the displacement
field. Flow-Registration can recover fine structures with much more detail, allowing
region-of-interest selection along fine structures, while the blur and double images in
(A-C) indicate residual motion. While NoRMCorre manages to register the top and
middle left image area well, the high divergence bottom half shows residual movement
artifacts. The images are a high contrast, false color representations. The channels have
all been normalized with respect to the min and max intensity values of the average
raw recording.
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There has been a great deal of work on OF techniques in the past decades with the goal
of improving accuracy, model invariants as well as robustness and computing speed. The
recent advancements in OF estimation tackle the problem of large displacements with
discontinuous motion fields and motion layers. Chen et al. [6] lead (as of July 2021) the
Middlebury optical flow benchmark [7] with respect to average endpoint error (AEE)
and average angular error (AAE). They use similarity transformations for a segmented
flow field as initialization of large motion. In a second step, the variational method of
Sun et al. [8] is used for subpixel refinement.
In this work, we implement an OF based image registration approach. We build on
the well studied framework for variational OF estimation [3], [9], [8]. We adapt this
framework to 2-photon imaging data by techniques which have recently been developed
in visual computing. We demonstrate the performance on challenging 2-photon imaging
data and can report state-of-the-art results in terms of registration quality, competing
computation speed and easy accessibility. Our method is available as an easy-to-use
MATLAB toolbox as well as an ImageJ plugin.
The motion statistics for 2-photon imaging differ from the motion we encounter in nat-
ural images in several ways: Due to the illumination strategy, there is only a single
imaging plane and thus no different motion layers. Also, the imaged object is usually
soft, biological tissue and as a consequence, we expect smooth motion fields without
discontinuities. The image usually contains a fixed region of interest with small dis-
placements between frames and, potentially, large drift over time. Due to the scanning
method, horizontal displacements may occur. Usually, the images are not represented
in perceptual color spaces, restricting the use of classical photometric invariances, such
as in [10], but often there exist multiple signal and structural channels. On top of that,
due to technical limitations, high speed imaging can often only be realized on narrow
field of views (FOV).
Our image registration method builds on those observations: Due to the absence of
different motion layers as well as of large displacements, we do neither need strategies
for large displacements as in [6] nor a regularizer that preserves discontinuities as in
[8]. Also, the assumptions of elastic regularizers which penalize the divergence of the
OF field, e.g. compare [11], are violated by recordings during drug injection, see Figure
1 (F), where the displacement field has a high divergence after injection. Therefore,
we quadratically penalize deviations from smooth displacements fields. In our previous
work [12], we developed a motion compensation strategy for 1D linescans (e.g. [13]).
We extend this approach to compensate recordings with narrow FOV and implement
non-uniform warping in the optimization where we perform more warping steps along
the larger image dimension.
Low-pass filtering is an important pre-processing step for local and global methods [14].
It makes the images derivable and integrates over temporal changes, while removing im-
age noise. We found convolution with a 3D Gaussian kernel together with subquadratic
penalization, to be robust enough to deal with the noise in the benchmark data, e.g.,
compare the layer 5 data (see supplemental Figure 3). Previous work has shown, that
registration on structural channels does not necessarily result in much better registra-
tion performance [5]. However, in the variational framework, we can minimize the joint
energy of the structural and the functional channels.
This has the advantage that, in theory, we get a better SNR, if the same structures
are visible in both channels and, additionally, considering the aperture proplem, we
have potentially more information on the motion, if disjunct structures are visible in
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Figure 2: Application of Flow-Registration to 15 different datasets. We use 2-Photon
recordings from layer 5, layer 2/3, layer 1 and three sequences during in vivo drug or
saline injection at 6.2 Hz and 30.9 Hz. In all applied metrics, Flow-Registration performs
consistently better than rigid registration and NoRMCorre (see Supplemental material
for peak signal to noise ratios (PSNR)). The performance measures are averaged ratios
of the raw recording and the compensated recordings with mean squared error (MSE)
(A) and temporal standard deviation (temporal STD) (B). The performance factor
indicates how much higher the MSE or temporal STD is in the raw recording, so
higher values correspond to better compensation. (C) contains the frame-wise ratio of
NoRMCorre and Flow-registration MSE of all 6.2 Hz datasets with 500 frames (layer1 -
layer 5, injection, injection saline 2). MSE has been computed with respect to the first
frames of each recording (see Online Methods for details). The frame-wise performance
is significantly better for Flow-Registration (p < 0.00001, paired, two-sided Wilcoxon
signed rank test). The performance on the datasets has been sorted with respect to the
performance of Flow-Registration.

the different image channels, such as in the data in supplemental Figure 3 (A)-(D).
Additionally, the energy functional can naturally incorporate a manual weighting term,
such as ROIs, to enforce a low value of the dataterm around important image structures.
For a fast approximation of the solution, the minimum warping depth can be used to
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define the maximum resolution at which the solution is computed. We found around 10x
speedup to be possible with similar compensation quality (avg PSNR -53.90 with the
precise and -53.91 with the approximated solution, min level = 6, compare supplemental
Video 1).
We can report state-of-the-art registration results in terms of reduced temporal standard
deviation and MSE ratios, when comparing our method with NoRMCorre [5] and rigid
image registration, see Figure 2. NoRMCorre has been adopted in recent toolboxes for
2P and calcium imaging such as CaImAn (2019) [15], EZcalcium (2020) [16] or Begonia
(2021) [17] and can be considered the state of the art for the alignment of 2-photon
image sequences.
In terms of computation time, the MATLAB toolbox is similar to existing methods and
even faster with approximated solutions. On a single channel version of the 500 frame
injection sequence (consumer workstation, 12 cores @ 3.8 GHz, 64GB of memory),
our method (50 iterations, no pre-processing / IO, min level 0) takes 115 s and only
15 s with min level 6, while NoRMCorre (grid size 32, one iteration) takes 160 s and
with grid size 16 even 763 s (setting used for the benchmark solution). Deep Learning
based approaches could unlock real time application of our method, but even state-
of-the-art self-supervised methods often require annotated data as initialization [18].
Flow-Registration has already been applied to many state-of-the-art 2-photon imaging
recordings. The explicit, high-accuracy estimation of displacements can be used to
generate datasets for the training of efficient, deep learning based motion compensation
methods in the future.
Generally, a drawback of 2D motion compensation approaches for 2-photon imaging
is the lack of z-shift correction. While there exist methods for high-speed, online 3D
compensation [19], they require complicated setups and the current generation is limited
to rigid 3D motion compensation — which might therefore benefit from refinement with
a method such as Flow-Registration.
The solutions presented in this paper solve the pre-processing problem of motion con-
tamination in microscopy and multichannel video recordings. Our core software design
paradigm was the easy yet versatile integration into different workflows and toolboxes
for 2-Photon imaging. We have developed a MATLAB toolbox that supports common
file formats such as MDF, tiff image stacks, MATLAB mat files or hierarchical datafor-
mat (HDF5) files in single file or multichannel configurations. The image IO is designed
in a modular, object oriented way, such that the toolbox can easily be extended with new
data formats and embedded pre-processing. The code is memory efficient and allows
to compensate bigdata recordings with specified pre-processing methods and on-the-fly
binning. The toolbox allows a variable number of channels which makes it suitable for
multi-spectral recordings. The computationally heavy code is written in C++ which
potentially allows the implementation of Python wrappers in the future. The ImageJ /
FIJI plugin builds on Imglib2 [20] library which supports most common image formats
through the bio-formats plugin. The implementations support weighted, multichannel
input with weight masks for example to enforce higher weight on the dataterm inside
of ROIs. The ImageJ / FIJI plugin is integrated with the MATLAB toolbox, such
that the plugin can export parameters and reference frame configurations, that can be
loaded as MATLAB bulk registration jobs.
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1 Methods

Methods and any associated references are available in the online version of the paper.
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[20] Pietzsch, T., Preibisch, S., Tomančák, P. & Saalfeld, S. Imglib2 – generic image
processing in java. Bioinformatics 28, 3009–3011 (2012).

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.25.453381doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.25.453381


5 Online Methods

5.1 Animals

Experiments were approved by the OIST Institutional Animal Care and Use Commit-
tee, and performed in and AAALAC International accredited facility. Animals were
maintained in a 12 h / 12 h light/dark cycle at 22 °C, with food and water available ad
libitum.

5.2 Recombinant viruses

The adeno-associated virus (AAV) encoding the GAkdYmut PKA activity sensor [21]
was custom made and produced by the vector core facility of Pennsylvania University
(AAV2/1-hSyn-GAkdYmut-hGH, titer: 4 × 1014 gc/ml), and mixed with AAV2/1-
hSyn-TurboRFP-WPRE encoding the red fluorophore RFP (titer: 4 × 1013 gc/ml,
same supplier) at a ratio 1 : 1.

5.3 Expression of GAkdYmut and TurboRFP in cortex

Viral transfer of the indicator gene into cortical neurons of the mouse was performed as
described before (Nomura et al. [22]). C57/BL6 mice (2-month-old) were anesthetized
with a mixture of medetomidine (0.3 mg/kg), midazolam (4 mg/kg) and butorphanol
(5 mg/kg). After performing a craniotomy over somatosensory cortex (AP −1.5 mm,
ML 1.7 mm, DV −0.6-0.7 mm from bregma), 70-140 nl of a 1 : 1 mixture of AAV2/1-
hSyn-GAkdYmut-hGH and AAV2/1-hSyn-TurboRFP-WPRE was injected in layer V
at a rate of 10 nl/min. A chronic cranial window with a silicon access port (5 mm
glass coverslip) was mounted as described Roome and Kuhn [23], [24]. At the end
of the surgery, mice received atipamezole (0.3 mg/kg) for recovery from anesthesia,
and buprenorphine (0.1 mg/kg) for pain relieve. Five to eight weeks after the AAV
injection, mice were head-fixed for imaging experiments performed under anesthesia
with 1% isoflurane or awake.

5.4 In vivo imaging in cortex

A combined wide-field / two-photon microscope (MOM, Sutter Instruments) with a
femtosecond-pulsed Ti:sapphire laser (Vision II, Coherent) was used. To increase the
point spread function of excitation the back aperture of the 25× water immersion
objective (Olympus) was underfilled (spatial resolution 1 µm × 1 µm × 4 µm). The
collar of the objective was adjusted to correct for the window glass thickness (170 µm).
Simultaneous excitation of GAkdYmut (GFP-based single fluorophore sensor, Bonnot
et al. [21]) and TurboRFP was performed at 950 nm with a typical power of 5-11 mW.
Fluorescence was detected in two channels by GaAsP photomultipliers (Hamamatsu) in
spectral windows 490−550 nm (GAkdYmut) and 600-700 nm (TurboRFP), separated by
a 560 nm dichroic mirror (all Semrock). The microscope was controlled by a commercial
software (MScan, Sutter Instruments). Sampling rate was 30.9 frame/s with 512 ×
512 pixel, corresponding to a field of view of 375 µm × 375 µm. Saline (0.9% NaCl)
with Alexa592 (1 µm) or with additional drug (propranolol 10 mm) was injected under
anesthesia. Pressure injection was performed through the silicon access port using a
glass pipette beveled to a diameter of 5-10 µm opening.
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5.5 Benchmark Datasets and Evaluation

We used multiple datasets recorded with the described setup. The dataset names
indicate the imaging depth (see supplemental Figure 3), where deeper layers usually
correspond with lower SNR. For the layer 1-5 recordings, timepoints during movement
onset were selected, as those events usually correspond with movement artifacts in the
recording. For the datasets during drug and saline injections, we selected the time
points around the injection events (e.g. compare Figure 1, (E)). From each dataset,
we selected 2500 frames (80.9 s). A common approach for the evaluation of such data
is temporal binning to increase SNR. We evaluated our methods on the datasets with
binning over five frames (6.2 Hz, 500 frames total), as well as on a subset of the raw
recordings, indicated by the suffix 30 Hz. For the dataset saline injection, in total 5
frames from the beginning and end of the experiment were excluded due to artifacts.
We used real-world, low SNR datasets for the evaluation of our method without ground
truth displacements, therefore, metrics such as endpoint or angular error are not ap-
plicable. The same holds true for perception based metrics due to the overall small
movements and high image noise in the data. For the evaluation, we used reference
based PSNR (see supplemental Table 2), MSE as well as temporal STD (see Figure
2) on 2D Gaussian lowpass filtered (σ = (3, 3)>) versions of the data. As reference,
we used the temporal average of the each recording over the same frames that have
been used as reference for the motion compensation. We report MSE and STD per-
formance factors which indicate how much higher the MSE or STD value is for the
raw sequence (see Figure 2 (A) and (B)) or how much higher the MSE is for NoRM-
Corre when compared to Flow-Registration on a frame-wise basis (see Figure 2 (C)).
We excluded all frames that contributed to the reference, as well as a boundary of 25
pixels. The boundary is motivated by the large maximum displacements encountered
in the injection sequences. Lowpass filtering reduced the influence of image noise on
the results and the boundary assures that only valid image regions are considered in
the evaluations. For the compensation of all sequences, the first 100 frames (500 frames
30.9 Hz) were used as reference and supplied to the respective method.

5.6 OF Method

The applied motion estimation method is a robust variational OF method with gra-
dient constancy, robust, separate channel penalization of the dataterm and first-order,
isotropic, flow-driven regularizer. We normalize the dataterm according to Zimmer et
al. [10] and apply the recommended good practices proposed by Sun et al. [8]. The
regularizer and dataterm are penalized with a generalized Charbonnier penalty function
which for ε > 0 is given by Ψa(x) = (x2 + ε2)

a
, for a > 0 [8]. For the regularizer, larger

values of a reduce discontinuities in the flow field (staircasing artifacts) and for the
dataterm, smaller values of a reduce the influence of outliers. For 2-Photon recordings,
we set the smoothness a to 1, which results in quadratic penalization. Note, that for
a = 0.5 we get a regularized `1 norm, while the function becomes non-convex for values
of a < 0.5. However, Sun et al. encourage a choice of a = 0.45 on the Middlebury
benchmark, which we apply for the dataterm here. For the numerical approximation,
we follow the framework of Bruhn et al. [25], Brox et al. [9] and Papenberg et al. [26]
and discretize the Euler Lagrange equations in the compact motion tensor notation to
solve them with an iterative multiscale solver (downsampling factor η ∈ (0, 1)) with
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lagged non-linearities (update every 5 iterations). We use bicubic interpolation for the
warping steps and 5× 5 median-filtering (mirror boundary) of the flow increments for
each level to increase accuracy as suggested by Sun et al. [8].
The main parameters of our method are the regularization parameter α = (α1, α2)

>,
the penalizer power a, the warping depth, the downsampling factor η and the kernel
size σ = (σ1, σ2, σ3).

2. The choice of α presents the compromise of correctly registering
smaller structures that deviate from the global motion direction and a globally smooth
solution. With different values for α1 and α2, the smoothness term becomes anisotropic.
This might support the estimation of motion artifacts induced by horizontal scanning.
We scale alpha on each level of the scale space such that at a level i we use α = α ·η−i/2.
In practice, this made the result more robust under lower choices of α while enabling the
compensation of high frequent jitter. To allow higher computational speed, the finest
level for the OF calculation can be specified in the options. The Flow-Registration
plugin implements this in the Registration quality setting, where only the highest quality
setting calculates the solution on all levels. In the MATLAB toolbox, the minimum
level can be set explicitly besides the abstract quality setting. With settings η =
0.8 and minimum level of 6, we get almost tenfold faster computation time on the
injection sequence with almost the same accuracy (PSNR -53.90 vs. -53.91). With
those parameters, the highest resolution at which the displacements are estimated are
given by 512 · 0.86 = 134.

5.7 Data processing pipeline

The ImageJ / FIJI plugin makes use of the ImageJ file formats and therefore can
resort to all supported file types. The MATLAB toolbox contains modular file readers
and writer classes that can be automatically instantiated or supplied as parameters
to an options object that defines a registration job. The file IO is designed for multi-
channel processing and supplies 4D matrices in the format height×width×channel×time
independently of the actual data representation on disk. To compensate a recording,
the file reader supplies batches of size n with on-the-fly binning to the Flow-Registration
engine which are then concurrently compensated. The average displacement of the last
frames is used to initialize the lowest pyramid level of the displacement estimations in
the following batch.
Reference frames can either be supplied directly or are computed from a specified set of
frames, where the set of frames is aligned with respect to the temporal average and then
temporally averaged again. For the initial registration, α and σ are increased in size
to make the result more robust under noise and reduce overfitting. The reference and
data are normalized with respect to the 3D Gaussian filtered reference frames. Joint
normalization is performed by default but channel-wise normalization is supported as
well.
The displacements of each frame with respect to the reference on the lowpass filtered
sequences are computed and the raw frames are then registered via backwards warping
with bicubic interpolation, where out-of-bounds values are replaced with the values
from the reference. To reduce quantization due to the interpolation, the results are
stored with double precision as default but can also be stored with the precision of the
input file.
Batch processing is possible via the batch processor, where a list of filenames is supplied
that will be compensated either with individual references or the same reference, when
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dealing with recordings with the same ROI or recorded object. In the current version,
the ImageJ / FIJI plugin can only be used for the compensation of short sequences (for
example the 500 frame 6.2 Hz datasets or 2500 frames 30.9 Hz e.g. with stride 10 and
50 resp. for fast parameter testing), the extension for virtual stacks is planned for the
future. To run the plugin, it needs to be installed in ImageJ / FIJI via Plugins→Install
Plugin which adds a Flow-Registration entry under Plugins. For the MATLAB tool-
box, a C++ compiler is required and the code has been tested for MATLAB R2018a
onwards. The folder demos in the MATLAB toolbox contains scripts to reproduce the
video results and quantitative results presented here as well as examples on how to use
the code for different application scenarios. The jupiter demo compensates an ama-
teur jupiter recording and demonstrates different aspects of multi-channel tiff and ROI
processing as well as a potential application beyond the scope of neuroimaging.

5.8 Parameter Selection and Quality Metrics

For Flow-Registration, parameters were chosen based on visual inspection. For NoRM-
Corre, parameters from the demo scripts where modified based on the statistics calcu-
lated from the OF results, such as maximum displacements. NoRMCorre incorporates
different regularization approaches that makes it more robust under noise and implic-
itly define the properties of the compensated displacements. There are a total of 7
parameters for regularization and 2 for subpixel refinement against the single regular-
ization parameter α and additional solver specific parameters for Flow-Registration,
while subpixel accuracy is natively supported. We found it necessary to modify 4 of
the NoRMCorre parameters for our datasets (see Table 1). Dynamic update of the ref-
erence was turned off due to the reference based metrics that were used for evaluation.
In practice, on the injection sequences, this reduced drift, but slightly increased jitter
at the same time.
Flow-Registration was run for all datasets with default parameters and α = 1.5, for the
6.2 Hz datasets with σ = (1, 1, 0.1)> and on the 30.9 Hz datasets with σ = (1, 1, 0.5)>.
For the injection sequence, additionally the channel weight was set to (1.15, 0.85)>. The
batch size was set to the size of the datasets.

5.9 False Color Representation

The microscopy images presented in this paper aim to visualize artifacts in the average
frames caused by residual motion in two imaging channels. Therefore, we make use of
an inclusive (linear) false color representation that allows distinction of the channels
both with deuteranopia and protanopia. Given the minimum intensity values l =
(l1, l2)

> and maximum intensity values h = (h1, h2)
> from the temporal average of the

raw recordings, the color (R,G,B)> at a given image position f(x, y) = (p1, p2)
2 is

calculated as

R = (p2 − l2)/(h2 − l2)

G = 0.5 · (p− l)> ·
(
(h1 − l1)−1, (h2 − l2)−1

)>
B = (p1 − l1)/(h1 − l1)

This means that the reference normalized red imaging channel is mapped onto B, the
green channel onto R and G is the average of the other two. Therefore, turquoise areas
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dataset grid size max shift max dev update template

layer 1 (32, 32)> – – false

layer 1 30Hz (64, 64)> – – false

layer23 (32, 32)> – – false

layer23 30Hz (64, 64)> – – false

layer5 (64, 64)> – – false

layer5 30Hz (128, 128)> – – false

CaPKA (32, 32)> – – false

injection (16, 16)> 25 (25, 25)> false

injection (16, 16)> 25 (25, 25)> false

injection 30Hz (64, 64)> 25 (25, 25)> false

injection saline (128, 128)> 10 (26, 26)> false

injection saline 2 (32, 32)> 15 (25, 25)> false

Table 1: NoRMCorre parameters used for the compensation of the benchmark data.
All unmentioned parameters have been kept in the default setting of the MATLAB code
(June 2021). If the second version of the dataset is not mentioned, parameters match
with the first version.

correspond channel 2 of the input, orange areas to channel 1 and white areas indicate
that both channels are active.

5.10 Code and Data Availability

Documentation, the MATLAB code for Flow-Registration and the ImageJ Plugin can be
found on the GitHub repository https://github.com/phflot/flow_registration.
The version used for the evaluations in this paper is supplied as supplemental code.
It contains MATLAB scripts to perform motion compensation with the parameters
reported here as well as the precompiled ImageJ / FIJI plugin. The complete benchmark
dataset used in this work is available as 2-Photon Imaging Motion Dataset on Dryad.
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6 Supplemental Figures

B.1 B.2A.1 C.1 D.1A.2 C.2 D.2

A B C D

layer 1 layer 2/3 layer 5 CaPKA

Figure 3: The datasets used for the evaluation besides the injection sequences. Tem-
poral average of raw recordings (A.1-D.1) and after application of Flow-Registration
(A.2-D.2) during motion.
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Figure 4: Qualitative results of the first in vivo saline injection sequence (dataset in-
jection saline). Average of (A) raw images, (B) after rigid registration, (C) after reg-
istration with NoRMCorre, and (D) after Flow-Registration. The tissue expands from
the injection point (E) resulting in large displacements as well as in a high divergence
(F) in the displacement field. Flow-Registration can recover fine structures with much
more detail, allowing region-of-interest selection along dendritic structures (blue), while
the blur in (A-C) indicates residual motion.
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Figure 5: Qualitative results of the second in vivo saline injection sequence (dataset
injection saline 2 ). Average of (A) raw images, (B) after rigid registration, (C) after
registration with NoRMCorre, and (D) after Flow-Registration. The tissue expands
from the injection point (E) resulting in large displacements as well as in a high di-
vergence (F) in the displacement field. Flow-Registration can recover fine structures
with much more detail, allowing region-of-interest selection along dendritic structures
(blue), while the blur in (A-C) indicates residual motion.
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Raw Rigid NoRMCorre Flow-Registration

CaPKA -10.10 -8.81 -8.82 -8.47
CaPKA 30Hz -14.22 -14.59 -14.64 -13.32
injection -57.35 -56.73 -54.95 -53.90
injection 30Hz -57.93 -57.42 -56.11 -55.35
injection saline -18.11 -16.06 -15.53 -15.01
injection saline 2 -17.70 -17.69 -17.11 -16.15
layer1 -4.54 -4.37 -4.28 -3.93
layer1 2 -8.74 -8.19 -8.01 -7.61
layer1 30Hz -11.17 -11.77 -11.65 -10.67
layer23 -19.19 -16.44 -16.40 -15.01
layer23 2 -7.01 -5.35 -5.11 -4.27
layer23 30Hz -23.08 -21.78 -21.49 -20.75
layer5 -6.14 -5.83 -5.87 -5.44
layer5 2 -7.54 -6.95 -6.76 -5.74
layer5 30Hz -12.55 -12.66 -12.75 -12.05

Table 2: Average PSNR values on each dataset for the different methods. Flow-
Registration consistently outperforms the other methods. PSNR has been calculated
with respect to the maximum value 216, experiment specific properties as well as the
applied low-pass filtering (see section 5.5) as well as SNR of the raw data (e.g. 30.9 Hz
vs 6.2 Hz) have an impact on the PSNR differences between the datasets. The best
PSNR is put in bold.
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