
PiRATeMC: A highly flexible, scalable, and affordable system for obtaining high quality video
recordings for behavioral neuroscience.

Authors: Samuel W. Centanni, PhD1, Alexander C.W. Smith, PhD2*
1Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN
2Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY

*Corresponding Author:
Alexander C.W. Smith, PhD
Icahn School of Medicine at Mount Sinai
1470 Madison Ave
Hess CSM S10-202
New York, NY, 10029

Abstract

With the recent development and rapidly accelerating adoption of machine-learning based

rodent behavioral tracking tools such as DeepLabCut, one common variable that can impact the quality

and consistency of results is the camera system. Many experimenters use webcams, GoPros, or other

commercially available cameras that are not only relatively expensive, but offer very little flexibility over

recording parameters. These cameras are not optimized for recording many types of behavioral

experiments, which can lead to suboptimal video quality. Furthermore, it is a challenge, if not

impossible, to synchronize multiple cameras with each other, or to send/receive a trigger with external

signals such as a TTL pulse or a network connection. We have developed an affordable ecosystem of

behavioral recording equipment, PiRATeMC (Pi-based Remote Acquisition Technology for Motion

Capture), that relies on Raspberry Pi Camera Boards that are ideal for recording in both bright light,

low light, and dark conditions under infrared light. PiRATeMC offers users control over nearly every

recording parameter. This setup can easily be scaled up and synchronously controlled in clusters via a

self-contained network to record a large number of simultaneous behavioral sessions without burdening

institutional network infrastructure. Furthermore, the Raspberry Pi is an excellent platform for novice

and inexperienced programmers interested in using an open-source recording system, with a large

online community that is very active in developing novel open-source tools. Moreover, it easily

interfaces with Arduinos and other microcontrollers, allowing simple synchronization and interfacing of

video recording with nearly any behavioral equipment using GPIO pins to send or receive 3.3V or 5V

signals, I2C, or serial communication.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.23.453577doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453577
http://creativecommons.org/licenses/by-nc-nd/4.0/

INTRODUCTION
 Preclinical studies have long relied on traditional predetermined activity patterns to assess

behaviors such as affect, motivation, cognitive function, memory, motor coordination, etc. While these

historical approaches have led to countless discoveries, the evolution of behavioral paradigms has

yielded increasingly complex interpretations of the outcomes. Bias behavioral scoring overlooks

potentially unique behaviors that may occur in specific groups or subgroups within experiments.

Moreover, manual behavioral scoring is highly vulnerable to human error, biases, and inter-rater

variability. Using unbiased pose estimation techniques with open-source machine learning-based

software such as DeepLabCut1, 2, and behavioral mapping or clustering analysis with programs such

as B-SOID3 or VAME4 have begun to shift behavioral neuroscience into a new era of behavioral analysis

and categorization. These techniques are able to segment behaviors in an unbiased way, and eliminate

inconsistencies due to human error and inter-rater variability. To maximize the potential for these and

other programs, high resolution cameras are essentially required, and more so, they must be able to

interface with existing real-time controllers for other behavioral equipment, such as in vivo activity

measurement equipment, or operant chambers.

Here we introduce PiRATeMC (Pi-based Remote Acquisition Technology for Motion Capture),

an affordable, user-friendly, modular, open-source camera system that runs off of a Raspberry Pi (RPi)

miniature computer and an accompanying 8-megapixel (MP) Camera Board (Sony IMX219 CMOS

sensor). These cameras can record high quality video under either infrared (IR) or white light. Moreover,

they offer far more flexibility in recording parameters than most commercially available camera system.

The user can manually set recording parameters like frame size, frame rate (up to 120FPS), white-

balance (crucial for high-quailty IR videos), brightness/contrast, ISO, saturation, bitrate, and many more

(additional details below). Finally, the PiRATeMC system can easily be controlled remotely via ssh

(remote secure shell) over a local area network (LAN), and clusters of cameras can be controlled

synchronously with millisecond precision using ClusterSSH (easily installed via apt), allowing either

multi-angle recording of single subjects (e.g. for 3D-DeepLabCut5), or an easy method of recording a

large number of behavioral sessions simultaneously. We provide step-by-step instructions to physically

assemble the camera and Raspberry Pi, as well as a cloned operating system (PiCamOS) that can be

uploaded to an SSD card (source code for building PiCamOS is also available). Lastly, we describe a

simple data management pipeline, whereby with minimal user modification of PiCamOS, a large

number of RPiCams can be controlled simultaneously, and deposit all recorded videos in the same

‘sink’ directory on a remote local network (LAN) host. The goal of this paper is to provide an easily

obtainable recording system that is highly flexible in recording parameters, can interface with numerous

real-time equipment controllers and other open-source analysis software, and can easily be scaled up

to record a large number of videos synchronously. Increasing accessibility and usability of acquisition

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.23.453577doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453577
http://creativecommons.org/licenses/by-nc-nd/4.0/

and analysis programs for assessing rodent behavior has the potential to provide a wealth of new

behavioral data that may have been overlooked using traditional approaches.

METHODS

Note that any text highlighted in grey below represents inputs or outputs from the Linux terminal, and is case-sensitive.

Camera Assembly

Raspberry Pis (RPis) are single-board computers that run a full Linux operating system

(Raspbian), and thus offer greater computational capabilities than other single-board computing

devices such as Arduinos. For a simple recording setup, we recommend using the RPi 3 Model B+, as

this model is the last to have a standard HDMI output port and micro-USB charger. RPi 4 and newer

can certainly be used, however newer models only have micro-HDMI output, and a USB-C power input,

which likely necessitates purchase of additional adapters. There are two options for 8MP camera

boards that connect to the RPi camera interface: a NoIR Camera Board, and a standard Camera Board

v2. The naming of these cameras is not intuitive, the NoIR camera is the camera that is sensitive to

infrared light, (i.e., does not have an IR filter), but may produce lower quality videos under white light.

If you only plan to record experiments under white light, the standard Camera Board v2 is

recommended, as an IR filter will enhance video quality under white light. In order to set up a single

camera, the minimal parts required are listed in Table 1. Note that only one of the two camera options

(NoIR or standard) is necessary, and these cameras do come with a Flex Cable, however the stock

cable is only 6” long, so while a longer Flex Cable is not absolutely necessary, we consider a longer

flex cable necessary equipment, and the price is very low.

Basic Camera Necessities:
Part: Vendor (suggested): Product #: Price:

Raspberry Pi 3 Model B+ (or newer) Adafruit Industries, Newark
Electronics

3775 (Adafruit),
49AC7637
(Newark),

$35.00

Raspberry Pi NoIR Camera Board v2
- 8MP Adafruit Industries 3100 $29.95

Raspberry Pi Camera Board v2 - 8MP Adafruit Industries 3099

5V 2.5A Switching Power Supply with
20AWG MicroUSB Cable Adafruit Industries 1995 $7.50

Kingston 32GB microSD card CDW 5849358 $4.99
Flex Cable for Camera (various
lengths available) Adafruit Industries 1730 $2.50

 Total: $79.94

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.23.453577doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453577
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1. Parts List. This table contains the minimum essential parts to get started with one camera.
Only one camera (either NoIR or standard camera board) is needed. For mixed dark/white light use,
we recommend the NoIR camera. For a full list of optional parts/accessories, as well as notes about
each component, see Supplemental Table 1.

Once the required parts have been

gathered, assembly is very easy. First,

replace the stock 6” camera cable with a

longer one with a length of your choice (we

use 24” for recording inside operant

chambers). When inserting flex cables,

the silver leads of the cable always face

away from the slider clamp that secures

the cable in place, on both the camera and

the RPi. Instructions and example photos

for attaching the camera to the RPi are

shown in Figure 1.

Remote Controller Hardware Configuration

While RPis can be connected to a

keyboard and monitor and operated as

standalone computers, the most

convenient way to control the cameras is

via a remote secure shell (SSH)

connection. This allows the RPi to be

controlled from a remote computer

(referred to here as the ‘remote controller’)

connected to the same network as the

RPi, and the remote controller can also

serve as a data sink where videos are

automatically transferred after recording.

Because the RPi operating system is a

Linux distribution (Raspbian), it is most

convenient if the remote controller is also

running a UNIX-based operating system

(Mac OSX, Ubuntu, or any Linux

Distribution). Users that only have

Figure 1. Attached the Camera to the Raspberry Pi.
Panel 1 shows the minimum parts needed for assembly.
Panel 2 shows the unpackaged parts, as well as the
optional 24” camera cable, and PiTFT touch screen (see
Supp. Table 1 for details). The camera cable is attached at
both ends by black clamps. Remove the plastic covering
from the Pi (Panel 3), and gently lift the edges as shown in
Panel 4. If you are replacing the stock camera cable with a
longer cable (recommended), optionally do the same to the
clamp on the camera, and remove the cable as shown in
Panel 5. To attach a new camera cable, the silver leads on
the cable face the same direction as the lens (Panel 6).
Insert the cable all the way into the camera, then gently
press the clamps back down (Panel 7). Follow the same
procedure to insert the new cable into the camera port on
the Pi, with the silver leads facing away from the clamp
(towards the HDMI port on Pi 3), then gently press down on
the edges to secure the cable in place. Panel 9 shows an
assembled Pi with a 24” camera cable.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.23.453577doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453577
http://creativecommons.org/licenses/by-nc-nd/4.0/

Windows PCs available should use a Bash emulator such as Git Bash (https://gitforwindows.org/),

which will allow use of all terminal commands described for UNIX based operating systems below (see

Supplemental Material - Notes for Windows Users for details). If you plan to scale up the number of

RPis and cameras for larger experiments, we recommend using a mini-PC such as the AWOW MiniPC

running Ubuntu 18.04 or later (see Supplemental Table 1 for product details). Because many

institutional IT departments prohibit use of network switches, the remote controller should have at least

a dual-port network adapter card, as transmitting video data over WiFi is orders of magnitude slower.

This will allow the user to maintain connectivity to the internet and backbone institutional LAN on the

remote controller using one network port, and also to configure the remote controller to act as a DHCP

server, creating its own LAN to manage the RPis. Detailed instructions for this process are at

https://github.com/alexcwsmith/PiRATeMC/tree/master/docs/networking. A network switch can then be

connected to the second port, allowing the remote controller to assign and manage IP addresses to

any RPis connected to the switch, without the RPis having access to the main institutional network.

Thus, PiRATeMC does not pose any

security risk at hospitals/ university medical

centers and other institutions where

security is a significant concern. Detailed

instructions for configuring this network are

provided in supplemental materials, and an

instructional walk-through video can be

found in the documentation in the GitHub

repo linked above. The packages that need

to be installed (via sudo apt install) on the

remote controller are: openssh-server,

clusterssh, isc-dhcp-server, bind9. Before

beginning any reconfiguration, users should connect the remote controller to the institutional backbone

network, and enter ip a s into a terminal, and record the information there (or write to a plain text file

with echo $(ip a s) > ipas.txt), and also create backups of the files at: /etc/netplan/*.yaml and

/etc/dhcp/dhcpclient.conf, and also record the institutional network’s default network settings (see
Figure 3 for an example of what network settings to record prior to making changes; this is a critical

point). Users planning to record videos with only one camera should not have an issue connecting to

the institutional network without an intermediate network switch, or in the simplest use case, can

connect a PiTFT Touch Screen (add on accessory, see Supplemental Table 1) or monitor and a

keyboard directly to the RPi and record videos locally without any network connectivity.

Figure 2. Schematic showing infrastructure for creating
isolated LAN separate from main institutional network to
allow using an affordable network switch to manage
clusters of PiRATeMC Cameras.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.23.453577doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453577
http://creativecommons.org/licenses/by-nc-nd/4.0/

Software Configuration

Two versions of pre-configured and fully functional cloned disk images of the PiRATeMC

operating system are available to download from Google Drive (along with other resources) at:

https://tinyurl.com/jaaeu8s2. The ‘standalone’ version is optimally suited for users who want to use a

single camera and are able to directly connect the RPi to their institutional LAN, or who will use an RPi

without a remote connection. The ‘cluster’ version is optimized for users who want to build clusters of

cameras to record a large number of behavioral sessions simultaneously using a network switch and

an isolated LAN. The source code for these operating systems, and documentation is available on

GitHub at https://github.com/alexcwsmith/PiRATeMC. To flash the operating system onto the SD card

that will be used as the storage drive of the RPi, use rpi-imager, available for download at

https://www.raspberrypi.org/software/, or by typing: sudo apt install rpi-imager into a Linux terminal. We

have created a video showing detailed steps for writing PiCamOS to the SD card, on our system this

process takes ~3 minutes, you can find this video here: https://youtu.be/Ier37fRuUos. PiCamOS is a

modified version of Raspbian Buster, and comes pre-installed with drivers for the PiTFT Resistive

Touch Screen, and the UV4L video streaming service and WebRTC. PiCamOS also has pre-installed

shell scripts for logging IP addresses to the remote controller at startup (sendIP.sh), and for recording

videos with highly flexible parameters (recordVideo.sh).

After flashing PiCamOS to the SD card, it will be automatically unmounted/ejected. Before

placing the SD card into the RPi, re-mount it into the remote controller, and navigate to the folder

/rootfs/home/pi/. On Raspbian (and all UNIX-based operating systems), any file names that start with

‘.’ are hidden files, so make sure that hidden files are viewable (Ctrl+h on Linux, Cmd+Shift+. on Mac).

Open the file ‘.bashrc’ with either a GUI text editor (gedit or TextEdit), or with a terminal text editor like

nano or vim by typing into the terminal: nano .bashrc. This .bashrc file is a type of configuration script

(equivalent to .bash_profile on Mac OSX) that is run every time a new terminal is opened, and defines

system variables, runs startup scripts, or performs other tasks to initialize a user session. Near the top

of this file you will see four lines beginning with ‘export’ that define system variables:

1) export REMOTEPATH=rpicam@10.1.1.243

a) This is the username & IP address to an account on the remote controller computer that

also serves as a ‘data sink’. This information will be used for automatically transferring

recorded videos rom the source (RPi) to the sink (remote controller).

2) export REMOTEPASS=$(cat .pass_file)

a) This variable reads the password to the REMOTEPATH account from another hidden file

in the /home/pi/ directory, called .pass_file. Note in a graphical interface the .pass_file

command will appear locked, and is only viewable by the file owner or the system root. In

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.23.453577doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453577
http://creativecommons.org/licenses/by-nc-nd/4.0/

order to edit the contents of this file, either open it with ‘sudo nano .pass_file’ in a terminal,

or as an administrator on Windows.

3) export REMOTELOGPATH=$HOME/RPi_Sessions/

a) Path to a directory on the remote controller to write log files upon RPi startup.

4) export REMOTEVIDPATH=/d1/studies/Raspicam/

a) Path to a directory on remote computer to store recorded video files.

After these variables have been set, plug the RPi into an ethernet port, either on a network switch if

running in a cluster, or directly if running on a main institutional backbone network. If everything is

configured correctly, shortly after powering on, the RPi will transmit a log file to the directory set in

$REMOTELOGPATH above. If running in a cluster, typing dhcp-lease-list on the remote controller will

output a list of connected RPis and their IP addresses. You can then access the RPi from a terminal

on the remote controller via ssh pi@ip.address (the default password is raspberry).

RESULTS
Recording or Streaming Video:

After the PiRATeMC hardware and software have been configured, and you are able to access

the RPi through an SSH connection, you are nearly ready to begin recording or streaming videos. The

first time you power on each RPi, the first command entered should be sudo raspi-config. This will bring

you to a GUI configuration manager, where it is advised to change the password, the hostname (give

each pi a distinct and recognizable hostname; for example we name each Pi according to the location

and number of the operant chamber it will record in), and the localization/time zone settings. If you are

based outside of the USA, it may be necessary to change the keyboard layout as well. There are several

methods for recording or streaming videos.

Recording via recordVideo.sh script:
 The recordVideo.sh script is the most powerful method for recording high-quality videos, as it

offers the most flexibility of recording parameters. The usage for running this script is:

• ./recordVideo.sh <VideoName> <DurationInMinutes> <FramesPerSecond>

For example, ./recordVideo.sh TestVideo1 0.25 30 will record a 15-second video with 30 frames per

second, and will be saved with filename TestVideo with the hostname and date appended to the

filename, in a .mp4 format. This video will be stored locally on the Pi, and will also be automatically

transferred to the location set in the $REMOTEVIDPATH variable above. Please note that videos will

also be saved locally on the RPi, and should therefore be deleted regularly to avoid running out of

storage. This is critical, as full storage will not prevent the recording from starting, only from saving at

the end of the recording. To clear all videos from the Rpi, enter the command rm *mp4 while in the

home folder. Warning: use caution with the rm command, as an accidental space between the * and

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.23.453577doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453577
http://creativecommons.org/licenses/by-nc-nd/4.0/

mp4 will delete the entire OS and you will have to reinstall. A safer, but more time-consuming way is to

use the rm command with the exact filename (e.g., rm TestVideo1.mp4). To confirm the files are

removed, use the command ls *.mp4. No files with an .mp4 extension should be present.
Figure 3. Demonstration of the effect
of different recording parameters on
video quality under infrared light.
Most obviously, setting the auto-
white-balance (--awb option) to
‘greyworld’ is necessary for
correcting for the red-shifted light
from the infrared light source. Tuning
brightness, saturation, sharpness,
and contrast also have obvious
effects on video quality. See Table 2
for the parameters we find most
helpful, and Supplemental Table 2 for
all available options.

Table 2 shows some of the most useful recording parameters that can be manually set. To

change these parameters, edit the recordVideo.sh script with nano recordVideo.sh, and parameters

can be inserted in line 3 after the raspivid command. The impact of some of these recording parameters

on video quality is shown in Figure 3. A caveat of the minimal setup we have described here is that the

recordVideo.sh script does not easily allow simultaneous viewing of the video while it is being recorded.

This can be remedied by attaching a 2.8” touchscreen to the RPi and running the command: sudo

python3 ~/setupScripts/adafruit-pitft.py, and following the prompts. The final prompt of the setup

process will ask “Would you like the console to appear on the screen?”, and answering “No” to this will

result on the video being displayed on the screen while it is recorded. Alternatively, a 7” display can be

purchased and attached via a flex cable to the Display Port of the RPi, and this will display the stream

while recording is ongoing. Part numbers for both options are provided in Supplemental Table 1. As

a third option, the RPi can be plugged directly into a monitor via the HDMI port, and the monitor will

display video while it is being recorded. We do not consider these options necessary, and they increase

the price of each PiRATeMC unit by 2-3 fold, and in our experience while recording many videos

simultaneously inside of operant boxes, there is no real need to be view the streams live, as videos are

analyzed with DeepLabCut immediately following acquisition (potentially automatically in future

versions, see discussion). A fourth option to view videos while recording is via online streaming with

WebRTC (described in detail below). While this adds no additional cost, WebRTC offers far fewer

parameters to change, and can cause inconsistent recordings (i.e., dropped frames).

Short form Long form Explanation

-? --help Help

-w --width Width of image (default 1920)

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.23.453577doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453577
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 2. Abbreviated list of Raspivid commands that can be used in
recordVideo.sh line 3 after raspivid.

Streaming via UV4L:
 You can also stream videos over the network from the remote controller (or any computer

connected to the same network as the RPi) through port 8080 by opening your internet browser of

choice, and entering the RPi IP address followed by :8080 into the address bar, e.g. 10.1.1.50:8080.

This will take you to a UV4L Streaming Service configuration page shown in Figure 4.
The UV4L streaming

service is ideal for optimizing

recording parameters to use

in the recordVideo.sh script,

and for viewing the live

stream while fixing cameras

in place to optimally capture

the field of view for

behavioral equipment.

However, the UV4L service

does not offer a way to both

view the live stream and record simultaneously, and it does not offer a way to synchronize multiple

cameras. The UV4L driver also does not offer a ‘greyworld’ mode for the AWB setting, so video quality

in these streams will not be as good as can be accomplished via the recordVideo.sh script. However,

this does offer a powerful way to optimize camera position, and to test the effect of manipulating

parameters such as brightness/contrast/saturation on video quality.

-h --height Height of image (default 1080)

-o --output Output filename

-fps --framerate Number of frames to record per second

-sh --sharpness Image sharpness (-100 to 100)

-co --contrast Image contrast (-100 to 100)

-br --brightness Image brightness (0 to 100)

-sa --saturation Image saturation (-100 to 100)

-awb --awb Set auto white balance (options= off, auto,
sun, cloud, shade, tungsten, fluorescent,
incandescent, flash, horizon, greyworld)

Figure 4. UV4L Streaming Server Control Pages. The left side is the UV4L home page. On the
right is the destination of the ‘Control Panel’ link. Clicking ‘MJPEG/Stills stream’ on the UV4L
home page results in a live stream (not shown).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.23.453577doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453577
http://creativecommons.org/licenses/by-nc-nd/4.0/

Streaming via WebRTC:
Similar to streaming via UV4L, you can also stream through an internet browser by entering an

IP address followed by :8080/stream/webRTC/. This method does allow simultaneous recording and

streaming, however it does not offer flexibility or tuning of recording parameters, and is more prone to

dropped frames. Using this method, videos will be recorded and saved locally on whatever computer

is running the web browser, not necessarily to the path saved as the data sink.

DISCUSSION
A major confound in behavioral neuroscience is the rigidity and inflexibility of many commercially

available behavioral tracking software, in addition to the high costs of implementing these systems.

Many programs require a specific type of camera, offer limited options for adjusting the image, and lack

the adaptability to sync across other acquisition programs. Moreover, specific video file outputs require

time consuming conversion software to analyze videos with external programs. Here we present an

affordable, scalable, customizable, open source video recording configuration, PiRATeMC, that can be

optimized for recording animal behavior in any setting. Setting up PiRATeMC requires very little

programming/coding knowledge. Simply upload the software onto a microSD card, set four environment

variables on the microSD card while inserted into a PC, insert it into the RPi and power on, and record

videos. Video recording settings can then be modified to get very high quality videos of large behavioral

arenas illuminated by either infrared light or white light. Unbiased behavioral mapping is becoming

increasingly important and informative in neuroscience, and the output videos from PiRATeMC can be

easily incorporated into widely used open-source analysis pipelines such as DeepLabCut, B-SOID,

VAME, etc.

Setting up PiRATeMC requires very little programming and coding skills. Simply upload the

software onto a microSD card, turn on the Raspberry Pi, adjust settings, and record videos. All of the

steps can be completed using simple commands in Terminal, and we attempt to clearly state which

parts of the pipeline require specifying the user’s computer/network information. To provide support

beyond this paper, we include links to a GitHub, YouTube tutorials, and webpages relevant to

PiRATeMC. Accordingly, we present a ground level version of PiRATeMC, and encourage those with

experience in Linux coding and Raspberry Pi computing to build more code into this pipeline as

needed such as adding TTL outputs to the Raspberry Pi GPIO to trigger the start of an external

optogenetics or photometry program, allowing for precise time locked videos. In addition, a logical

next step for streamlining PiRATeMC is to convert the command line code into a unified Python code

and/or a local graphical user interface (GUI) for an even more user friendly protocol.

Being able to easily record video of a large number of behavioral sessions simultaneously may

usher in a new era of behavioral neuroscience analysis. In the field of drug addiction, we have been

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.23.453577doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453577
http://creativecommons.org/licenses/by-nc-nd/4.0/

studying self-administration for decades using lever-pressing or nose-poking as the only proxy of

‘addictive-like behaviors’. By recording full behavioral sessions and analyzing the data with

DeepLabCut and VAME, we have already begun to discover behavioral phenotypes that are highly

predictive of an ‘addiction score’ that are not able to be detected by these standard behavioral metrics

alone. Furthermore, behavioral neuroscience has long relied on human scoring and classification of

behaviors, which suffers from serious confounding issues with inter-rater variability, the need for a priori

knowledge of relevant behaviors to score, and capture of video data of high enough quality for accurate

scoring. By using PiRATeMC in combination with machine-learning behavioral analysis, we address all

three of these issues, and provide a method for unbiased, high-throughput behavioral analysis and

classification.

We acknowledge that the use of this pipeline is still in its infancy and confounds still exist. First,

PiRATeMC has only been validated using Linux and Mac operating systems and has not been tested

using Windows. Another caveat is the difficulty in viewing the videos in real time while recording as

alluded to above, although if this is required for behaviors without a predetermined timeline, either the

2.8” PiTFT touchscreen or 7” display can be used to view during recording with additional monetary

cost, or the WebRTC platform can be used to view and record videos simultaneously at the cost of

flexibility of recording parameters and synchronization of recording parameters. We hope the open-

source nature of this pipeline will encourage users to expand this pipeline into many more interfaces

beyond those outlined here, and further refine PiRATeMC to be optimized for each lab’s needs. Future

editions of PiRATeMC will incorporate microcontrollers for closed-loop experiments (for example with

optogenetic or MedAssociates equipment), and a streamlined data analysis pipeline whereby new

video data is automatically detected and analyzed with a pre-set DeepLabCut model as soon as it

finishes recording.

REFERENCES CITED
1. Mathis A, et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep

learning. Nat Neurosci 21, 1281-1289 (2018).

2. Sehara K, Zimmer-Harwood P, Larkum ME, Sachdev RNS. Real-Time Closed-Loop Feedback

in Behavioral Time Scales Using DeepLabCut. eNeuro 8, (2021).

3. Hsu AI, EA Y. An Open Source Unsupervised Algorithm for Identification and Fast Prediction of

Behaviors. bioRxiv, (2021).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.23.453577doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453577
http://creativecommons.org/licenses/by-nc-nd/4.0/

4. Luxem K, Fuhrmann F, Kürsch J, Remy S, P B. Identifying Behavioral Structure from Deep

Variational Embeddings of Animal Motion. bioRxiv, (2020).

5. Nath T, Mathis A, Chen AC, Patel A, Bethge M, Mathis MW. Using DeepLabCut for 3D

markerless pose estimation across species and behaviors. Nat Protoc 14, 2152-2176 (2019).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.23.453577doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453577
http://creativecommons.org/licenses/by-nc-nd/4.0/

