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30 Recently, mosquito-borne diseases have been a significant problem for public health 

31 worldwide.  These diseases include dengue, ZIKA and malaria. Reducing disease spread stimulates 

32 researchers to develop automatic methods beyond traditional surveillance Well-known Deep 

33 Convolutional Neural Network, YOLO v3 algorithm, was applied to classify mosquito vector 

34 species and showed a high average accuracy of 97.7 per cent.  While one-stage learning methods 

35 have provided impressive output in Aedes albopictus, Anopheles sinensis and Culex pipiens, the 

36 use of image annotation functions may help boost model capability in the identification of other 

37 low-sensitivity (< 60 per cent) mosquito images for Cu. tritaeniorhynchus and low-precision Ae. 

38 vexans (< 80 per cent).  The optimal condition of the data increase (rotation, contrast and 

39 blurredness and Gaussian noise) was investigated within the limited amount of biological samples 

40 to increase the selected model efficiency.  As a result, it produced a higher potential of 96.6 percent 

41 for sensitivity, 99.6 percent for specificity, 99.1 percent for accuracy, and 98.1 percent for 

42 precision.  The ROC Curve Area (AUC) endorsed the ability of the model to differentiate between 

43 groups at a value of 0.985.  Inter-and intra-rater heterogeneity between ground realities 

44 (entomological labeling) with the highest model was studied and compared to research by other 

45 independent entomologists. A substantial degree of near-perfect compatibility between the ground 

46 truth label and the proposed model (k = 0.950 ± 0.035) was examined in both examinations.  In 

47 comparison, a high degree of consensus was assessed for entomologists with greater experience 

48 than 5-10 years (k = 0.875 ± 0.053 and 0.900 ± 0.048).  The proposed YOLO v3 network algorithm 

49 has the largest capacity for support-devices used by entomological technicians during local area 

50 detection.  In the future, introducing the appropriate network model based methods to find 

51 qualitative and quantitative information will help to make local workers work quicker.  It may also 

52 assist in the preparation of strategies to help deter the transmission of arthropod-transmitted 

53 diseases.
54

55

56
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59 Introduction

60 Mosquito-borne diseases are a significant problem for human health. More than one million 

61 cases have been recorded, with an estimated 400,000 deaths in 2018  [1].   These mosquito diseases 

62 mostly included dengue fever, zika and malaria, which are prevalent in tropical and subtropical 

63 areas.  However, they can still spread and cause illness in other areas of the world due to human 

64 mobility: globalization, labour movement and transport. In order to minimize morbidity and 

65 disease-related mortality, the WHO has urged researchers to further develop more efficient 

66 methods that can be used in the entomological field [2]. 

67 Aedes genus mosquitoes (Ae. aegypti, Ae. albopictus, and Ae. vaxans) are pathogens with 

68 the primary focus because they can spread human arboviral diseases: dengue, chikungunya, zika 

69 and yellow fever [3, 4].  In addition, Anopheles mosquitoes (An. dirus, An. minimus, An. sinensis 

70 and An. maculatus) are vectors for human malaria parasites and can cause a high death rate [5, 6].  

71 Culex mosquitoes can also spread all arboviruses; West Nile virus and human blood parasites 

72 (microfilaria and leishmaniae species) [7, 8].  Although the distribution of mosquito vectors is 

73 unique to the area, the arthropod-borne pathogens mentioned above are distributed globally by 

74 human mobility [9].  Mosquito density and behavior have led us to understand the current effect 

75 of disease transmission and spread throughout the region.  Procedures for the detection and 

76 dissemination of mosquito species require fundamental surveillance.  The approach includes 

77 highly educated individuals with expertise in the microscopic analysis of insect species [10].  In 

78 comparison, it is time-consuming and expensive to complete the monitoring successfully.  In 

79 addition, the process of preservation is of considerable importance in storing complete and 

80 preserved samples of mosquitoes [11, 12].  The deformity of the morphological features of the 

81 mosquitoes limits the precision of its classification [13].  Although proposals have been made for 

82 the use of high throughput techniques such as PCR, Real-Time PCR and DNA barcode to replace 

83 conventional procedures [14-16], the following techniques are not rapid enough and involve 

84 qualified molecular-based staff. 

85 Automatic classification tools for mosquito species have been researched to better assist 

86 local health personnel.  Classification was successfully conducted using an analysis of image 

87 characteristics and a flight tone for insects [17-19].  Advancing computerized science offers major 

88 classification methods such as artificial intelligence, machine learning, the convolutional neural 
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89 network (CNN) and the Deep Convolutional Neural Network (DCNN).  Image processing is likely 

90 to include more than any other method since it can be used to classify insects across their life cycle, 

91 including embryos, larvae, pupae and adult stages [20-23].  Previous studies to endorse the 

92 hypothesis were to classify and count mosquito eggs in order to better determine the associated 

93 population density [24-27].  Any areas of the body, such as wings of insects, have been investigated 

94 to classify cryptic mosquito species (as in malaria mosquitoes) [10, 28].  The method, however, 

95 faces several obstacles; it is time-consuming and requires human expertise to prepare wing 

96 samples.  Therefore, the use of the entire body for a feature analysis is assumed to be the most 

97 realistic method, because no equipment for sample processing is needed.  

98 Deep learning on the basis of object detection is proportional to classification.  In reality, 

99 it can also be used to detect both dense freezing and moving objects [29-31].  However, with regard 

100 to the concept as mentioned above, the method often overlooks the time-interval lag; between trap 

101 environment and microscopic analysis when introduced in actual environments.  After making a 

102 breakthrough in deep learning; in competition with the ImageNet Wide Scale Visual Recognition 

103 Challenge (ILSVRC), target detection has surpassed the state-of-the-art neural network models to 

104 reduce the extent of human computational error.  Deep learning methods or DCNNs have been 

105 developed to classify entomological fields and with high network accuracy.  Present high-

106 performance CNN documented its use of Aedes Larvae Recognition, which used a mobile phone-

107 based study of photos captured [26].  However, the model had at least a 30% rate of 

108 misclassification. Another application was used to map the distribution of mosquito species using 

109 an acoustic recorder on a mobile phone.  It is useful for detecting the wing beat of insects [18].  

110 This study helped to quantify the effect of insect density unique to some endemic areas, however 

111 the recording method could only be carried out at short distances [18, 19, 32].  Various recording 

112 locations of mosquito sound and food-seeking times needed to be validated [17].  Fortunately, high 

113 model performance has been proposed, two versions of the neural network You Only Look Once 

114 (YOLO v3) have been shown to run faster than other recognition systems because of the network 

115 algorithm [31, 33].  The YOLO algorithm is renowned due to its fast object detection speed and 

116 high accuracy performance.  It solves the issue of object identification in a regression.  It then can 

117 directly identify the classification probability from the input of images under one CNN and also 

118 detect the global data via images from end-to-end training.  
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119 This study has been preceded by our previous work that identified gender and also species 

120 of field-caught mosquito vectors [34].  The aim of this study is to choose the appropriate model 

121 for the classification and position of single mosquito images by comparing two models, 

122 respectively YOLO v3 tiny and YOLO v3.  The research was undertaken on the basis of the 

123 original learning approaches used in the chosen YOLO model.  In comparison, small sampling 

124 sizes have been used to find acceptable data-augmentation parameters, including rotation, contrast, 

125 Gaussian noise and blur.  In addition, the degree of acceptance was achieved between the best 

126 chosen model and the ground truth, which was also related to independent entomologists.  Inter-

127 and intra-human variability has been accomplished by encouraging them to analyze the image 

128 sample as being the same as the model test set.  Here is to observe whether the model chosen is 

129 effective enough to be applied in actual scenarios.

130

131

132

133     

134 Materials and Methods:

135 Mosquito Datasets 

136 In the study, image sets were obtained from two independent open sources (Fig 1).  All 

137 mosquito images were publicly available from the GitHub repository with the url: 

138 https://github.com/jypark1994/MosquitoDL [22].  There are five species of vector mosquitoes 

139 including: dengue and zika vectors as Aedes albopictus and Ae. vaxans; malaria vector as 

140 Anopheles spp., West Nile virus vector as Culex pipiens, Japanese encephalitis vector as Cu. 

141 Tritaeniorhynchus.  As for other species or non-vector mosquitoes, include the: Ae. dorsalis, Ae. 

142 koreikus and Cu. inatomii.  The mosquito images were taken from only one source as above to 

143 gain the advantage with less variation in image quality.  It could benefit the proposed neural 

144 network model to reduce the time interval during machine training.  In addition, non-mosquito 

145 images were obtained from unpublished data: of which included the housefly, stingless bee, and 

146 saw-toothed grain beetle.  
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147 Figure 1. Flowchart of image-set designs used and labeling strategies.  2,780 images obtained 

148 from two public-available databases.  Main poses were restricted to two-lateral sides but, 

149 additional some dorsal- and ventral sides were recruited.  Comparison of the model’s performance 

150 with the independent entomologists (dash line) happened after training models were achieved 

151 (thickness line). 

152

153 A total of 2,780 images were compiled and divided into training/validation and testing sets. 

154 There were five classes of vector species with 2,231 images; and one class for both non-vector and 

155 non-mosquito species with 448 and 101 images, respectively.  In realistic environments, field-

156 captured mosquitoes had deformations in their body parts and had lost their characteristics.  Also, 

157 the mosquito variable pose represents the variety of the image.  However, the image collection 

158 mainly captured side, upper, and ventral views that were mainstreamed for working with machine 

159 learning fieldwork [13].  In addition, the pixel densities of each image used in the analysis is 

160 compatible with those of the initial resolutions 952 x 1944 and 1920×1080 pixels for the first and 

161 second open source.  Although the resolution pixels were different in the individual datasets, as 

162 seen above, their relative pixel densities were high enough for further training and evaluation of 

163 the proposed models.  On the basis of data from previous studies, it confirms the concept that the 

164 size of image resolution for learning machine learning is at least 320 × 320 pixels [33, 35].  Hence, 

165 the use of different image resolutions were used to learn the neural network model.

166 Of the total image set, the species of mosquitoes and non-mosquitoes is divided into 

167 separate directories.  These files have been randomly assigned to training/validation and testing 

168 sets. They retained a raw test range of 10% for each folder.  The remaining images were randomly 

169 divided into training/validation or 90% for each folder, the same as before.  These insect-specific 

170 directories were used to train and validate the proposed model based on a one-stage learning 

171 method. 

172 For the learning method inside the proposed model, namely the one-stage learning method, 

173 the dataset used under the one-stage method is arranged into a folder.  These image sets were 

174 responsible for each class of insects and were labelled on the basis of a rectangular box (ground-

175 truth labeling) with a limited potential area per image, a potential region of interest (ROI).  The 

176 bounding box was used to study whether or not there were any species of mosquitoes.  The mark 

177 of ground truth was conducted by entomologists under the CiRA CORE program were publicly 
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178 available from the GitHub repository with the url: https://git.cira-lab.com/cira-medical/cira-

179 mosquitoes-detection [34], based on the species of relative mosquito.

180

181 Figure 2. Schematic of labeling and data augmentation conditions with one-stage YOLO v3 

182 architecture model for object detection.  For augmentation, “no” is representative for non-

183 augmentation. “D” was abbreviated for default (rotational angle and contrasting), “D + B” for 

184 default and blur, “D + N” for default and Gaussian noise, and “D + B + N” for default and blur 

185 and Gausian noise.  A threshold of probability was the confidential value obtained from this 

186 equation of Confidence = Pr(Object) + IOUTruth
Pred.

187 Development of Deep Neural Networks

188 The objective of this part was to find the suitable model for classification and localization 

189 of every single mosquito within a testing image between Yolo v3 and Yolo tiny-v3 neural network 

190 models.  These two models studied were implemented to the CiRA CORE program. 

191 In order to guarantee that there was an adequate number and variance of images (because 

192 these variables which have an impact on model performance) a distinction between raw images 

193 (no annotation of images) and several conditions of the image augmentation was examined (Fig 

194 2).  Five conditions were tested, including the default condition at any 4-degree rotational angle 

195 increment and 10 percent improvement in brightness/contrast condition, the default and 9-step blur 

196 condition, the default and 9-step Gaussian noise condition, and the default and blur and Gaussian 

197 noise condition.  The conditions-wise comparison was analyzed in relation to the performance of 

198 the model.  Default condition was obtained by using 45 steps at rotational angles (every 8 degrees) 

199 between minimum and maximum [-180 to 180].  Default image contrasts were also modified at 

200 every 0.2 stage (with a variance of ± 25 percent) between 0.4 and 1.2.  Next, the blur conditions 

201 were adjusted for nine steps at each step.  The final condition was Gaussian noise, which was 

202 corrected for ten steps at each step.

203 For model training and evaluation, it was run on PyTorch deep learning framework within 

204 an Nvidia RTX2070 GPU platform.  Learning rates were set at 0.001, which was assumed by the 

205 trained weight, reaching optimal accuracy. 
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206 To study how effective the chosen model was, it was then compared to human ability.  
207 Inter- and intra-human variation in the identification of the tested image sets were assigned.  

208 Inter and intra-rater variability in human-level

209 Inter-and intra-human variation was designed to allow observations between model and 

210 ground truth registering; relevant to the distribution of the performance of the examiner 

211 (entomologist) in the detection of the five species of mosquito vectors.  Two independent rounds 

212 were completed with a two-month interval.  In the first round, 15 independent raters with less than 

213 5 years of experience were anonymously assigned to take the test.  10% % of the test image set 

214 was selected and prepared for all raters via Google form (Fig 1).  In addition, 25 independent raters 

215 were recruited to take part in the second evaluation, which varied from the previous version 

216 (images were selected by random).  The proposed network model and the performance of the 

217 examiners were then observed on the basis of the degree of agreement with the specialist 

218 entomologists who labeled the ground-truth as mentioned above.

219  Evaluation of model performance

220 Performance of the proposed models was evaluated by several statistical parameters 

221 including: precision, sensitivity, accuracy and specificity [35].  The formulas for these parameters 

222 were shown as:

223 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑝 (𝑇𝑝 + 𝐹𝑝) (1)

224 Sensitivity = 𝑇𝑝 (𝑇𝑝 + 𝐹𝑛) (2)

225 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑝 + 𝑇𝑛) (𝑇𝑝 + 𝐹𝑝 + 𝑇𝑛 + 𝐹𝑛) (3)

226 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = (𝑇𝑛) (𝐹𝑝 + 𝑇𝑛) (4)

227

228 where Tp is the number of true positive classifications, Tn is the number of true negatives, Fp is 

229 the number of false positive classifications, Fn is the number of false negatives, Actual Positive is 

230 the summation between the number of true positive and false negative and Actual Negative is the 

231 summation between the number of true negatives and false positives.  The precision versus recall 

232 curve for every mosquito species was constructed to evaluate the weight performance.
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233 In addition, the performance of the proposed model was assessed by calculating the area 

234 under the receiver operating curve (ROC) with 95% confidence intervals (CIs) and the area under 

235 the curve (AUC) to determine the accuracy of the models using python.  The ROC curve was 

236 plotted on the basis of the likelihood value of the 5% increment relative threshold.  The 95 percent 

237 CIs is measured using a non-parametric bootstrap approach of 1000-fold image re-sampling.    

238 The degree of consensus between the model and the ground truth, as well as the 

239 independent entomologists, was studied for exploratory observation by using two operational 

240 points, namely sensitivity and specificity.  The examiners were not persons who labeled the 

241 training images.  The test image-set for assessing the performance of both the model and the 

242 examiners was the original modal with a 10 % margin parameter in the test static.  The degree of 

243 consensus in both the proposed model and the examiners was compared to the gold standard; and 

244 then calculated by Cohen's kappa (SPSS software).  The Kappa statistics varies from 0 to 1 by 

245 following; 0 – 0.20 an agreement equivalent to chance or none (0-4% reliability), 0.21 – 0.39 a 

246 minimal agreement (4-15% reliability), 0.40 – 0.59 a weak agreement (15-35 %  reliability), 0.60 

247 – 0.79 a moderate agreement (35-63 % reliability), 0.80 – 0.90 a strong agreement (64-81 % 

248 reliability), and above 0.90 an almost perfect agreement (82-100 % reliability) [36].  The null 

249 hypothesis (H0) was rejected by p-value less than 0.05.

250 Results

251 Comparison of performance of the network model

252 The assessment of the two models were investigated based on a threshold probability, P(t), 

253 from t5% to t95%.  The predictions obtained from these models were provided by Pclass ≥ t [37].  

254 Considering the model’s performance, the capacity of YOLO tiny v3 and YOLO v3 algorithms 

255 were compared.  The YOLO v3 algorithm showed a higher average accuracy at 97.7% than the 

256 YOLO v3 tiny algorithm (Table 1).  It has been reported that the rationale of high-performance 

257 may be due to the YOLO v3 network having a larger amount of hidden layers and parameters, 

258 which is more than any other model version; Tiny-YOLO v3 [31, 33].

259

260 Table 1. Model-wise comparison. Comparison of the performance of both YOLO v3 versions 

261 were studied.  Average accuracy by model and also by class was shown.
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262   
Mosquito speciesLearning 

method of the 

network model

Ae. 

albopictus

Ae. 

vexans

An. 

sinensis

Cu. 

pipiens

Cu. 

tritaeniorynchus
Non-vector

Average 

accuracy

YOLO v3 tiny 1.000 0.946 0.970 0.980 0.923 0.997 0.969

YOLO v3 1.000 0.953 0.993 0.993 0.923 0.997 0.977

Average 

accuracy
1.000 0.950 0.981 0.986 0.923 0.997

263  

264

265 Class-wise comparison showed a high average detection accuracy of all mosquito species 

266 studies, especially in Ae. albopictus, Cu. pipiens and An. sinensis as higher than 97per cent.  This 

267 may be because these three species have unique characteristics, which helped the network model 

268 to learn them clearly.  Interestingly, the model can be used to detect Ae. albopictus at 100% 

269 accuracy, which is greater than the detection for any other classes.  This is beneficial for exploring 

270 the mosquito species in Thailand where dengue is endemic.  By contrast, there are similar 

271 characters within the images of both Ae. vexans and Cu. tritaeniorhynchus caught.  There was a 

272 reason why model performance gave us lower average accuracy than any others.  In accordance to 

273 the studied models, it may be beneficial in identifying the mosquito vectors for Zika, dengue, 

274 malaria and rare pathogens in the tropical region as West Nile virus.      

275 Selection of data augmentation conditions

276 The result showed that the YOLO v3 is a state-of-the-art model since it can provide the 

277 best  high values with parameters including 90.7% of sensitivity, 99.1% of specificity, 97.7% of 

278 accuracy and 96.1% of precision (Table 2).  Although the one-stage learning methods provide an 

279 impressive performance in some mosquito vectors (Ae. albopictus, An. sinensis and Cu. pipiens), 

280 it increases both sample size and their image variation with annotation functions in the fine-tuned 

281 network.  This could help improve the model capacity in detecting other mosquito images with 

282 low sensitivity (< 60per cent) for Cu. tritaeniorynchus and low precision for Ae. vexans (< 80per 

283 cent) (Table 2).  The study aimed to increase the model’s performance when compared with non-

284 augmentation conditions.  Four data-augmentation conditions were studied including; no 

285 augmentation, default, default and blur, and default-blur and noise.  It should be noted that the 
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286 model achieved high performance (accuracy and precision) when augmentation conditions were 

287 used.  Specifically, the network model with conditions (default + blur, and default + blur + noise) 

288 gave us the highest values when compared with other conditions.  Finally, the model with optimal 

289 augmentation gave us the highest capacity including 96.6 % of sensitivity, 99.6% of specificity, 

290 99.1% of accuracy and 98.1% of precision.  Moreover, the AUC under the ROC curve supported 

291 the model capacity to distinguish between classes at a value of 0.985 (Fig 3).  Hence, annotation 

292 functions are very beneficial for training with the proposed model, which has already been fine-

293 tuned.  Within the limited amount of biological-samples, it is expected that an enlargement of the 

294 sample size and image variation, by using much more annotation strategies, could help solve the 

295 problem effectively.

296

297 Figure 3. ROC curve of the YOLO v3 model with optimal augmentation condition.
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298 Table 2. Comparison of data augmentation conditions for YOLO v3 network model.

299
Mosquito species

Parameters
Augmentation condition 

for YOLO v3 model Ae. albopictus Ae. vexans An. sinensis Cu. pipiens Cu. tritaeniorynchus Non-vector
Average

No augmentation 1.000 0.959 1.000 0.960 0.540 0.980 0.907

default 0.940 0.837 0.939 1.000 0.680 0.920 0.886

Default + blur 1.000 0.959 0.898 1.000 0.700 0.980 0.923

Default + noise 1.000 0.959 0.959 1.000 0.860 1.000 0.963

Sensitivity

Default + blur + noise 1.000 0.939 0.980 1.000 0.920 0.960 0.966

No augmentation 1.000 0.952 0.992 1.000 1.000 1.000 0.991

Default 1.000 0.952 0.996 0.964 1.000 1.000 0.985

Default + blur 1.000 0.936 1.000 1.000 1.000 0.996 0.989

Default + noise 0.996 0.968 1.000 1.000 1.000 1.000 0.994

Specificity

Default + blur + noise 1.000 0.976 1.000 1.000 1.000 1.000 0.996

No augmentation 1.000 0.953 0.993 0.993 0.923 0.997 0.977

Default 0.990 0.933 0.987 0.970 0.946 0.987 0.969

Default + blur 1.000 0.940 0.983 1.000 0.950 0.993 0.978

Default + noise 0.997 0.966 0.993 1.000 0.977 1.000 0.989

Accuracy

Default + blur + noise 1.000 0.970 0.997 1.000 0.987 0.993 0.991

No augmentation 1.000 0.797 0.961 1.000 1.000 1.000 0.960

Default 1.000 0.774 0.979 0.847 1.000 1.000 0.933

Default + blur 1.000 0.746 1.000 1.000 1.000 0.980 0.954

Default + noise 0.980 0.855 1.000 1.000 1.000 1.000 0.972

Precision

Default + blur + noise 1.000 0.885 1.000 1.000 1.000 1.000 0.981
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301 Inter- and intra-rater variability

302 Evaluation of performance was studied at the level of consensus of the ground truth 

303 (entomological labeling); with the best model and connected to other independent entomologists. 

304 Here, determine whether the model chosen was successful enough to be applied in a specific 

305 environment. 10 % of the test datasets were randomly chosen and used for blind testing by all 

306 human investigators; as inter-and intra-human variants.  Approximately one month after the first 

307 evaluation, 10 percent of the image re-selection from the test collection was circulated through 

308 Google form to the same examiners for more intra-and inter-examination variability.  

309

310  Figure 4. ROC curve with agreement level of the proposed model and the independent-

311 entomologists. A represents the first test and B the second test.  S1_1 represents subject-1, who 

312 joined the first test and S2_1 for subject-1 who joined both tests. 1r_2 represents subject-2, who 

313 joined the first test only and 2r_2 represents subject-2, who joined only the second test.   

314

315 In the first test, the significant agreement level between the ground truth labeling and the 

316 proposed model (k = 0.950 ± 0.035) and with entomologists, who had more than 5-10 years if 

317 experience was perfect degrees (k = 0.875 ± 0.053 and 0.900 ± 0.048), as measured by Cohen’s 

318 kappa (Fig 4a).  The results reflect the similar visualities between the DCNN model studied and in 

319 humans.  Significantly, there was clear evidence in the agreement values for the independent 

320 entomologists, with less than five-years of experience, showed a lower degree when compared to 

321 the experienced entomologists.  The second test, the agreement level values tended to be similar 

322 to the first test, except for in subjects s2_3 who got higher scores than the first test from 

323 intermediate (k = 0.700 ± 0.041) to perfect levels (k = 0.875 ± 0.053) (Fig 4b).   Inter- and intra-

324 human variability confirmed the requirement for long-term training in younger individuals to be 

325 specialists.  Automatic devices, on the other hand, can achieve excellent performance based on the 

326 size of the sample being inputted. The latter emphasizes automated devices that can be used to 

327 assist human capabilities and are to be regarded. As there is a reduction in the interest in 

328 entomology and the production of human expertise requires a great deal of time, automated 

329 systems, on the other hand, have shown that they perform significantly well. As a result, people 
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330 have become more interested in automatic systems, although the ability of the system does not rely 

331 on its processing time, but rather depends on data to learn the model within a time-limited frame. 

332 In addition, the higher AUC value (0.977) under the ROC curve seen statically indicates 

333 some values of average sensitivity and average specificity between the first and second human 

334 variability studies, especially in entomologists with less than 5 years of experience. With a short 

335 period of time for training between humans and DCNN, the network model can be expected to be 

336 useful for further application in remote areas where there is a shortage of expert entomologists.  

337 Discussion

338 The DCNN suggested in the research study resulted in high success in the identification of 

339 mosquito species that can spread several arthropod-borne pathogens, including dengue virus, 

340 ZIKA virus, West Nile virus and malaria parasite. The most prevalent species of mosquito with 

341 the special characteristics used enables the system to operate with greater precision, specificity 

342 and sensitivity than 96 per cent, resulting in higher accuracy relative to other mosquitoes [20, 22, 

343 38, 39].  Previous work suggested that a larger data set could boost model efficiency for uncommon 

344 image classes [37].  In this study, when data augmentations were done; such as combination of 

345 rotation, contrasting, Gaussian noise and blur conditions, their model’s performance, it showed 

346 outstanding value to non-augmentation which is consistent with the previous report [22].  

347 Furthermore, image sets with different resolution pixels and their illumination may sometimes 

348 improve the overall detection capability of the model [37].  The research model demonstrated good 

349 success in distinguishing between mosquito and non-mosquito, mosquito vector and non-vector 

350 with achieved high accuracy and ROC AUC of approximately 0.985 in the model-wise relation 

351 (Fig 3). Consider it scalable and fast with the YOLO v3 algorithm compared to other detection 

352 methods such as DPM, R-CNN, and Darknet-19 [31, 33].  The proposed model allowed 

353 technicians to detect the object very quickly. This model can be useful in the detection of species 

354 of mosquitoes in remote areas which are likely to have a large number of mosquitoes collected 

355 from mosquito traps. Object identification predictions can also be extended to entomologically 

356 related work, as all organisms could be identified with high confidence using the proposed network 

357 model. 
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358 Levels of disagreements between the proposed network obtained and the ground truth 

359 labeling are connected to inter- and intra- rater variability in the entomological examination.  The 

360 variability examination in humans was studied by using a two-independent imageset.  Two-animal 

361 species (Ae. vexans and Cu. tritaeniorynchus), of particularly high variability.  Although these two 

362 animals are different in genus-level and differ in their natural characteristics; the difficulty, in both 

363 the proposed model and inter- and intra-raters, to distinguish them may be relevant to the image’s 

364 quality happening during data collection. For example, the difference in focus quality may make 

365 it difficult to label datasets and train models [40].  Although computational modeling has had a 

366 significant influence on both clinical and science work, more enhancements are needed. This 

367 requires (a) a large number of training details, and (b) a new methodological architecture to be 

368 learned to manage images collected from various scanners or cameras [41].  Using the same basic 

369 type of camera property and stereo microscope to capture the mosquito image could help promote 

370 further deployment of the embedded device network concept in remote areas elsewhere, without 

371 re-training the data prior to use in real-time scenarios. 

372 Conclusion

373 The proposed YOLO v3 network algorithm provides great potential for rapid screening 

374 and support devices for entomological technicians, especially during mosquito identification. 

375 According to inter-and intra-human variability, the experiment has been accomplished by 

376 encouraging them to analyze the image sample as being the same as the model test set.  In the 

377 future, qualitative and quantitative devices based on the best network model will help to make it 

378 easier for local workers to perform quicker and to prepare strategies related to the advanced 

379 prevention of mosquito-borne diseases.

380
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