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36 Abstract

37 Lycoriella species (Sciaridae) are responsible for significant economic losses in 

38 greenhouse production (e.g. mushrooms, strawberry, and nurseries). Current 

39 distributions of species in the genus are restricted to cold-climate countries. Three 

40 species of Lycoriella are of particular economic concern in view of their ability to invade 

41 across the Northern Hemisphere. We used ecological niche models to determine the 

42 potential for range expansion under climate change future scenarios (RCP 4.5 and 

43 RCP 8.5) in distributions of these species of Lycoriella. Stable suitability under climate 

44 change was a dominant theme in these species; however, potential range increases 

45 were noted for key countries (e.g. USA, Brazil, and China). Our results illustrate the 

46 potential for range expansion in these species in the Southern Hemisphere, including 

47 some of the highest greenhouse production areas in the world. 

48 Keywords: Greenhouse, Environmental suitability, Mushroom pest, Black fungus 

49 gnats
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50 1. Introduction

51 Sciaridae (Insecta, Diptera), known as black fungus gnats, comprise more than 

52 2600 species worldwide, most of which are harmless to human activities [1]. Although 

53 most of the species have phyto-saprophagous larvae, 10 known species have larvae 

54 that may feed on living tissue, damaging roots or mining stems and leaves of 

55 economically important crops and ornamental plants, which can lead to significant 

56 economic losses [2–5]. 

57 Mushroom crops can be affected severely by sciarids. Sciarid larvae can feed 

58 on the developing mycelium inside the substrate and destroy sporophore primordia. 

59 Mature mushrooms may also be damaged by larvae tunneling into the tissue, which 

60 leads to product depreciation. Severe larval infestations may even destroy the 

61 sporophores, causing severe economic losses to producers [6].

62 Since 1978 worldwide production of cultivated edible fungi has increased 

63 around 30-fold and is expected to increase further in coming years [7]. Mushrooms 

64 represented a global market of US$63B in 2013 [8]. According to the USDA, the value 

65 of mushroom sales for 2019-2020 in the USA was US$1.15B, up 3% from the previous 

66 season [9]. Among the mushrooms produced, Agaricus bisporus is the most important, 

67 according to the Economics, Statistics and Market Information System. In 2020-2021, 

68 the area under production is 12,470 m2, 56.5% of which is in Pennsylvania territory 

69 [9]. 

70 The mushroom industry has suffered major economic losses caused by sciarid 

71 larvae in Australia, USA, Russia, United Kingdom, and South Korea [10,11]. Three 

72 sciarid species of the genus Lycoriella Frey, 1942 (L. agraria, L. ingenua, and L. 

73 sativae) are particularly harmful to cultivated mushroom crops, and are considered to 
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74 rank among the most important pests of cultivated mushrooms throughout the world 

75 [4,10]. In countries like the United States and England, L. ingenua and L. sativae are 

76 the most serious pests in mushroom crops [12], as well in Europe [10]. In Korea, L. 

77 ingenua is considered as the most economically important [11]. Given their small size, 

78 sciarid larvae can be transported inadvertently to new areas by human activities. 

79 Infested potting mix, soilless media, commercial plant substrate, and rooted plant 

80 plugs have been shown to act as pathways for sciarid movement [13]. From 1950 

81 onwards, globalization promoted transporting these invasive species [14]. In this 

82 sense, studies of their ecology, environmental requirements, and climatic change 

83 impacts for establishment of invasive populations are needed.

84 Ecological niche modeling (ENM) is used to evaluate relationships between 

85 environmental conditions and species’ abundances and occurrences [15]. 

86 Understanding potential distributions of species represents an important opportunity 

87 for pest control and mitigation of possible invasors (e.g. Compton et al., 2010; Gallien 

88 et al., 2010; Thuiller et al., 2005). Considering that the three Lycoriella species are 

89 economically important and are invasive species [10,19], niche modeling allows 

90 researchers to identify areas not currently occupied by them; if dispersal is possible or 

91 facilitated, these areas can be invaded and populations established in these regions 

92 [15]. For these reasons, we used ENM to identify new regions of potential invasive risk 

93 for three Lycoriella species with pest status in mushroom production, under current 

94 and future climate conditions (2050) for two greenhouse gas emissions scenarios.

95

96 2. Materials and Methods

97 2.1 Occurrence data
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98 Occurrence data for Lycoriella species were obtained from published papers 

99 available in bibliographic databases (Google Scholar, Web of Science, Scopus), and 

100 from SpeciesLink (http://splink.cria.org.br/) and GBIF (http://www.gbif.org). We gathered 

101 all data from 1950-2018 for synonyms [3] including L. agraria [20] and its synonym 

102 Sciara multiseta [21], L. ingenua [22] and its synonym S. pauciseta [23] and L. sativae 

103 [24], and its synonyms L. auripila [25] and L. castanescens [26]. Occurrences lacking 

104 geographic coordinates were georeferenced in Google Earth (2015; 

105 https://earth.google.com/web/). We excluded records lacking the exact location or with 

106 high geographic uncertainty (e.g. name of the country as a collection site).

107 We assembled the occurrence data for each Lycoriella species, and performed 

108 a geographic spatial thinning such that no thick points were closer than 50 km using 

109 the spThin R package [27]. As such, we used 43 L. agraria occurrences, 118 L. 

110 ingenua occurrences, and 136 L. sativae occurrences. Finally, the data were split 

111 randomly into two subsets: 50% for model training and 50% for model testing (Suppl. 

112 information figures 1, 2 and 3).

113

114 2.2 Environmental variables

115 The bioclimatic variables used here to summarize climatic variation were from 

116 WorldClim version 1.4 [28]; we excluded four variables (bio 8, bio 9, bio 18, bio 19) 

117 that present spatial artefacts [29]. We summarized future conditions via 22 general 

118 circulation models (GCMs; Suppl. information figures 4, 5 and 6) for 2050 available 

119 from Climate Change, Agriculture and Food Security [30]. Two greenhouse gas 

120 emissions scenarios (RCP 4.5 and RCP 8.5) were used to explore variation among 

121 possible future emissions trajectories. The climate variables were used at a spatial 
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122 resolution of 2.5 min (~5 km2). We used Pearson’s correlations across each of the 

123 calibration areas for each species, removing one from each pair of variables with 

124 correlation >0.80. The remaining not correlated variables were grouped into all 

125 possible sets of >2 variables for testing (Cobos et al., 2019;  Table 1).

126

127 2.3 Model calibration and evaluation

128 We calibrated candidate models in Maxent 3.4.1 (Phillips et al., 2006), and model  

129 selection was achieved using the kuenm R package [32]. We assessed all potential 

130 combinations of linear (l), quadratic (q), product (p), threshold (t), and hinge (h) feature 

131 types; in tandem with 9 regularization multiplier values (0.1, 0.3, 0.5, 0.7, 1, 3, 5, 7 and 

132 10); and the 26, 247, and 120 environmental data sets described above, for L. agraria, 

133 L. ingenua, and L. sativae, respectively. We therefore explored 1170 candidate models 

134 for L. agraria, 15,561 for L. ingenua, and 5400 for L. sativae (Table 1). We evaluated 

135 significance, performance, and complexity, of each candidate model, to choose 

136 optimal parameter settings, as follows. Significance testing was via partial receiver 

137 operating characteristic (pROC) tests [33]; values of partial ROC were calculated 

138 based on maximum acceptable omission error rate of E = 0.05. Omission rates were 

139 determined using a random 50% of the occurrence data, and model predictions were 

140 binarized via a modified least training presence thresholding approach (E = 0.05). 

141 Finally, we evaluated model complexity using the Akaike information criterion with 

142 correction for small sample size (AICc), following Warren and Seifert (2011). All 

143 modeling processes were included in the kuenm R package [32].

144 We use a hypothesis of the accessible area (M) for each species to calibrate 

145 our models [35,36], using buffers of 50 km around occurrence data points remaining 
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146 after spatial thinning. Final models were taken as the median of the 10 replicates for 

147 best models and were projected worldwide. Model summaries were generated from 

148 thresholded median model projections (Figure 2) using the E = 0.05 value. We used 

149 the kuenm package [32] for these final steps as well. For each future-climate scenario 

150 (RCP 4.5 and RCP 8.5), we transferred the models and evaluated extrapolation 

151 conditions through MOP analysis [37], using the ntbox R package [38].

152 We summarized the projections of the models as medians of the replicate 

153 models using a modified least presences threshold value of E = 0.05. Binary maps for 

154 future conditions were used to determine uncertainty in terms of disagreement among 

155 predictions from the different GCMs (Suppl. information figures 4, 5 and 6). We 

156 summed the maps and used overlap between present and future potential distribution 

157 areas to determine prediction stability and range increase for each species in 

158 geographic areas with low extrapolation risk based in MOP analysis (Supp. information 

159 figures 7, 8 and 9).

160

161 3. Results

162 We created and evaluated 22,131 candidate models for the three Lycoriella 

163 species, (Table 1). For L. agraria, of 1170 candidate models, 669 were significant (P 

164 < 0.05) and 575 had omission rates below 5%; of significant, low omission models, 7 

165 were selected according to low complexity (AICc; Table 1). Of 15,561 candidate 

166 models for L. ingenua, 6898 were significant and 6789 models had omission rates 

167 below 5%; we selected 6 models based on complexity. Finally, we generated 5400 

168 candidate models for L. sativae, of which 1323 were significant and 1061 had omission 

169 rates below 5%; we selected 7 models according to AIC criteria (Table 1).

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 23, 2021. ; https://doi.org/10.1101/2021.07.23.453546doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.23.453546
http://creativecommons.org/licenses/by/4.0/


8

170 Nine variables were identified as key in our ENMs (Table 2). In general, 

171 Lycoriella species showed relationships with seasonality in temperature and 

172 precipitation, and with variables related to cold temperatures and wet seasons (Table 

173 2), with variable contributions ranging 4.6-49.8%. The maximum number of variables 

174 for best models was in L. sativae, including high differences in variable contribution 

175 (Table 2).

176 Current suitable areas for Lycoriella species includes much of the Northern 

177 Hemisphere, except for parts of Greenland, Russia, and northern China. L. ingenua 

178 and L. sativae also had suitable areas in the Southern Hemisphere: South America, 

179 southern Africa, and Australia (Figures 1 and 2). The model for L. agraria indicated 

180 high suitability in parts of North America, except Mexico (Figures 1 and 2), as well as 

181 much of Eurasia except for Russia, the Indian Subcontinent, and Southeast Asia. 

182 Suitable areas for L. ingenua were indicated for much of the Americas, except for parts 

183 of Canada, Alaska, Central America, and northern South America. Lycoriella sativae 

184 showed high suitability in the Americas, except in the western United States, northern 

185 Canada, central Mexico, and parts of South America (e.g. northern Brazil, Pacific 

186 Coast). Eastern and southern Asia was not suitable for this species; nor were much of 

187 Australia, North Africa, or parts of central and southern Africa.  

188 Stable suitable conditions for the three Lycoriella species were the dominant 

189 pattern in comparisons of current and future potential distributions (Figure 1 and suppl. 

190 information figures 4, 5 and 6). Potential range expansion for the three species were 

191 noted in North America and Southeast Asia (Figure 1 and suppl. information figures 4, 

192 5 and 6). Range reductions were detected in each species but covered (less than ~ 

193 78,000 km2) in disaggregated pixels; however, main reduction areas were in the Asia 
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194 (southern China and Mongolia). The broadest range expansions for L. agraria were 

195 anticipated in Asia (China, Russia, and Mongolia). In contrast, for L. ingenua, our 

196 results did not show a homogeneous pattern of potential range expansion; however, 

197 we noted increases in suitability in the Americas, Africa, Asia, Europe, and Australia. 

198 The biggest changes in distributional potential of L. sativae were in North America and 

199 western parts of South America (Figure 1). New potential range areas were also in 

200 Alaska and Canada (Figure 1). Lycoriella agraria and L. sativae potential range 

201 overlap was indicated in the western United States (Nevada, Arizona, Idaho, 

202 Wyoming, and Colorado) (Figures 1, and 2). Potential range overlap of L. agraria with 

203 L. ingenua, and L. ingenua with L. sativae were noted in central and western China 

204 (Qinghai, Xizang, and Xinjiang), central Kazakhstan, northern and northwestern 

205 Mongolia, northern Siberia, and the border regions between China and Mongolia 

206 (Figures 1, and 2).

207

208 4. Discussion

209 It is generally accepted that environmental changes will modify species’ 

210 geographic distributions worldwide [39]. Understanding how these changes will 

211 influence species’ distributions is particularly key for economically important species. 

212 The Sciaridae occurs almost worldwide [10], including important pests in mushroom 

213 crops, for example, [3], mainly in the genera Bradysia and Lycoriella [6].

214 Lycoriella includes the most threatening pests (e.g. our three species), causing 

215 important damage to mushroom production [4]. In Korea, the most economically 

216 important oyster mushroom pest is L. ingenua, among the six mushroom fly species 
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217 [11]. Usually, L. sativae is the most abundant in fields, but is much less damaging than 

218 L. ingenua in mushroom culture [3].

219 How climate change will affect the geographic distributions of economically 

220 important sciarid species remains an open question. According to Sawangproh et al. 

221 (2016), ambient temperature can affect not only the survival and larval development 

222 of sciarid flies but also their feeding activity. As such, damage in mushroom crops or 

223 nurseries will be influenced by lower or higher temperatures. Apart from regional 

224 species checklists, little is known about the factors that drive these species’ 

225 distributions, so consequently little is known about impacts of climate change on the 

226 future distributions of these species. These insects are easily transported by human 

227 activities and, once they reach a suitable environment, they can build up populations, 

228 which can lead to major economic losses and establish populations in mushroom 

229 production areas. 

230 Few studies have investigated the presence of sciarids in the Afrotropical 

231 region. Chidziya et al. (2013) considered L. ingenua (as L. mali) as the most damaging 

232 mushroom fly in Zimbabwe, but provided no occurrence records for the species. 

233 Katumanyane et al. (2020) reported for the first time the presence of both L. ingenua 

234 and L. sativae in South Africa. Our model has predicted suitable environmental 

235 conditions for these species in the southern portion of the African continent, including 

236 the above-mentioned countries (Figures 1, and 2), though no points from either 

237 country were included in the dataset used in model calibration.

238 The dominant and most serious pest species in mushroom crops in North 

239 America is L. ingenua [12]. Our results show that, for the USA, for example, current 

240 environmental suitability for this species is moderate for the entire West Coast and 
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241 most of the southeastern part of the country, including most of the East Coast (Figure 

242 1 and supp. information figure 5). Most of California presents high environmental 

243 suitability for the species, which is particularly relevant because California ranks 

244 second in the number of mushroom growers in the country, following only 

245 Pennsylvania [9].

246 Pennsylvania itself has moderate current environmental suitability (Figure 2), 

247 and our model predicts stable environmental suitability for the state under future 

248 scenarios (supp. information figure 5). These results should be taken into 

249 consideration, since it could lead to major economic losses to mushroom producers, 

250 considering that about 66% of all US mushroom growers are located in this state [9].

251 In South America, on the other hand, mushroom production is still incipient. It 

252 plays a growing social role as it becomes a different source of income for producers 

253 at local level. Brazil is the most outstanding case in South America, although efforts to 

254 cultivate mushrooms are beginning in other countries [43].

255 So far, no official record of species of Lycoriella exists for Brazil. Our model 

256 showed high environmental suitability in most of southern and southwestern Brazil for 

257 L. ingenua and L. sativae (Figure 2). As such, once these species are introduced in 

258 the country, they will likely have the ability to establish stable populations, a fact that 

259 must be regarded with caution because most Brazilian mushroom production is 

260 concentrated in the southern and southwestern states. Introduction of Lycoriella 

261 species to the country would pose an extra threat for Brazilian mushroom growers, 

262 who already face problems with other sciarid and scatopsid species [44,45].

263 The genus Lycoriella significantly reduces mushroom production inside 

264 greenhouses; these species also may impact other agricultural species (e.g. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 23, 2021. ; https://doi.org/10.1101/2021.07.23.453546doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.23.453546
http://creativecommons.org/licenses/by/4.0/


12

265 strawberry, nursery plants [6,46,47]. Our results show areas with suitable conditions 

266 for these flies around the world (Figure 2). We are particularly concerned about 

267 greenhouse availability, although we are not incorporating possible competition with 

268 other species in our models. However, Lycoriella species show very broad ecological 

269 niches with high possibilities invasive potential, from Brazil to Alaska.  We suggest that 

270 experimental physiological studies that address the fundamental niche of these 

271 species more directly will be an important next step in protecting food production in 

272 greenhouses, to characterize areas with environmental conditions that characterize 

273 the physiological limits adequate to the development of Lycoriella populations.
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446  Table 1. Best models selected and evaluated based on statistical significance (partial 
447 ROC), performance (omission rates: OR), and complexity (AICc). This model was 
448 calibrated and projected using the environmental variables shown in Table 2.
449

Lycoriella 
species 

Mean 
AUC 
ratio

pROC  P 
value 

Omission 
rate at 5% AICc Delta 

AICc
Reg. 
multiplier

Feature 

classes

1.000 0 0.04 829.260 0.000 1 lqpt

1.049 0 0.04 830.493 1.232 1 lqpt

1.000 0 0 830.664 1.401 3 lqpth

1.000 0 0 830.667 1.407 3 lqpth

1.000 0 0 830.667 1.407 3 lqpth

1.000 0 0.04 831.205 1.945 1 lqpt

L. agraria

1170 models

1.000 00 0.04 831.208 1.948 1 lqpt

 1.036 0 0.01 2425.36 0 3  l

 1.035 0 0.03 2425.366 0.005 0.1 l

1.036 0 0.03 2425.366 0.005 0.3 l

L. ingenua

15,561 models

 

 1.036 0 0.03 2425.366 0.005 0.5 l

1.035 0 0.03 2425.366 0.005 0.7 l

1.035 0 0.03 2425.366 0.005 1 l
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1.052 0 0.031 2766.137 0 3 l

1.047 0 0.046 2766.874 0.736 0.1 l

1.044 0 0.046 2766.874 0.736 0.3 l

1.046 0 0.046 2766.874 0.736 0.5 l

1.045 0 0.031 2766.874 0.736 0.7 l

1.043 0 0.015 2766.874 0.736 1 l

L. sativae

5400 models

 

1.000 0 0 2767.922 1.784 3 pth

450

451
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452 Table 2 – Models and variables that were relatively uncorrelated (Pearson's correlation 

453 < 0.8) for Lycoriella species. The models were built and tested used 26 variables sets 

454 for L.agraria, 247 variables sets for L. ingenua, and 120 variables sets for L. sativae.

455

Species Uncorrelated variables  Variable contribution (%)

L. agraria

 

Mean diurnal range

Mean temperature of warmest quarter

Mean temperature of coldest quarter

Precipitation of wettest quarter

Precipitation of driest quarter

4.60

48.67

0.00

22.67

24.05

L. ingenua Temperature seasonality

Maximum temperature of warmest month

Mean temperature of coldest quarter

Precipitation of wettest quarter

28.90

0.00

49.80

21.30

L. sativae Mean diurnal range

Maximum temperature of warmest month

Temperature annual range

Mean temperature of coldest quarter

Annual precipitation

Precipitation of wettest quarter

Precipitation of driest quarter

38.26

29.44

0.00

 7.89

8.18

5.77

10.41

456

457
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