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Abstract

This research presents a framework to enable computer-automated observation and
monitoring of bottlenose dolphins (Tursiops truncatus) in a professionally managed
environment. Results from this work provide insight into the dolphins’ movement
patterns, kinematic diversity, and how changes in the environment affect their dynamics.
Fixed overhead cameras were used to collect ∼ 100 hours of observations, recorded over
multiple days including time both during and outside of formal training sessions.
Animal locations were estimated using convolutional neural network (CNN) object
detectors and Kalman filter post-processing. The resulting animal tracks were used to
quantify habitat use and animal dynamics. Additionally, Kolmogorov-Smirnov analyses
of the swimming kinematics were used for high-level behavioral mode classification. The
detectors achieved a minimum Average Precision of 0.76. Performing detections and
post-processing yielded 1.24× 107 estimated dolphin locations. Animal kinematic
diversity was found to be lowest in the morning and peaked immediately before noon.
Regions of the habitat displaying the highest activity levels correlated to locations
associated with animal care specialists, conspecifics, or enrichment. The work presented
here demonstrates that CNN object detection is not only viable for large-scale marine
mammal tracking, it also enables automated analyses of dynamics that provide new
insight into animal movement and behavior.

Introduction 1

Direct observation of animals in both free ranging and managed settings has been key 2

to developing an understanding of the behavior and dynamics of these biological 3

systems. How the animals behave in the presence of other animals, interact and engage 4

with their environment, or are affected by changes to their environment are all questions 5

of interest. Ideally, these observations are made without modifying animal behavior, 6

and in a manner that facilitates a quantitative comparison between conditions in the 7

environment. In managed settings there is a strong emphasis on behavioral monitoring 8

to inform welfare practices [1–3]. Bottlenose dolphins, the most common cetacean in 9

zoos and aquariums, are generally regarded as a species that thrives in a managed 10

environment, though data-driven studies of behavior and welfare have been limited [4,5]. 11
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The ability to quantify animal motion and location, both in the environment and with 12

respect to other animals, is therefore critical in understanding their behavior. Here we 13

present an automated computer vision framework inspired by methods found in the 14

field of robotics for persistently and robustly tracking animal position and kinematics. 15

Biomechanics and behavioral studies depend on animal-based measurements that are 16

considered reliable and repeatable for the species of interest [2, 6–8], but direct 17

measurements of animals in the marine environment can be challenging. As a result, 18

researchers tend to use direct observation and expert knowledge to classify and 19

parameterize animal behavior in both wild and managed settings. In the wild, 20

measurements of animal motion are often made using animal-borne tracking systems. 21

The sensors used to collect data from animals tend to be packaged together into 22

minimally-invasive (removable) tagging systems [9]. These tags can be used to directly 23

measure parameters such as animal speed, acceleration, position at the surface or 24

orientation in their environment without introducing significant modifications to the 25

animals’ swimming dynamics [10]. When combined with direct observations of behavior, 26

tag data can be used to quantify the animals’ behaviors during a period of interest, such 27

as foraging [11]. Sensor data and behavioral observations have also been used to train 28

algorithms to automatically detect behavioral states [12,13]. These trained algorithms 29

can then be used to detect and parameterize behavioral states from large amounts of 30

sensor data that lack direct observations of animal behavior. 31

In contrast, tag-based measurements of marine mammals in managed settings are 32

less common, and location measurements in indoor habitats are not possible with GPS. 33

Instead of tags, animals in these environments tend to be monitored using external 34

sensors, such as cameras and hydrophones, placed in the environment [14,15]. These 35

sensor networks can be used to observe a majority of the animals’ environment with a 36

relatively small number of sensors. While it is possible to continuously record the 37

animals’ environmental use and social interactions, these videos must be heavily 38

processed to convert them into useful information. This processing is often performed 39

by a trained expert, who watches and scores behavioral or tracking information from 40

the data [2, 16–18]. This hand-tracking is time consuming and can be inefficient when 41

hundreds of hours of data have been collected from multiple sensors. Recent efforts have 42

been made to automate this process for cameras, primarily through heuristically-crafted 43

computer-vision techniques [19,20]. However, these techniques were either limited in 44

execution due to prohibitive costs (e.g. funds for the hardware/installation of an 45

extended multi-camera array), or required manual tuning to account for changing 46

environmental conditions (e.g. lighting shifts throughout the day). 47

To address these gaps, this work investigates day-scale swimming kinematics using a 48

neural network based computer-automated framework to quantify the positional states 49

of multiple animals simultaneously in a managed environment. Neural networks have 50

demonstrated flexibility and robustness in extracting information on biological systems 51

from image and video data [21–23], and were chosen for use in this research for these 52

properties. In this study, video recordings of the animals from a two-camera system 53

were analyzed using convolutional neural network (CNN) object-detection techniques 54

and were post-processed via Kalman filtering to extract animal kinematics. The 55

resulting kinematic states were used to quantify bottlenose dolphin habitat usage, 56

kinematic diversity, and movement profiles during daily life. The framework and results 57

presented here demonstrate the capabilities of robotics/computer vision-inspired 58

techniques in extracting dynamic information from biological systems that can be used 59

to gain new insights into behaviors and biomechanics. 60
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Materials and methods 61

In this work, camera data were used to monitor the behavior of a group of marine 62

mammals both qualitatively and quantitatively in a managed setting. Camera-based 63

animal position data were used to quantify habitat usage, as well as where and how the 64

group of animals moved throughout the day. The position data were decomposed into 65

kinematics metrics, which were used to discriminate between two general movement 66

states — static and dynamic — using the velocities of the tracked animals. A general 67

ethogram of the animals’ behaviors monitored in this research is presented in Table 1. 68

The kinematics metrics were further used to refine our understanding of the behavioral 69

states the animals experienced both in and out of training sessions through a 70

combination of Kolmogorov-Smirnov statistical analyses and joint differential entropy 71

computations. The study protocol was approved by the University of Michigan 72

Institutional Animal Care and Use Committee and the Brookfield Zoo. 73

Table 1. Behavior condition ethogram of dolphins under professional care.

Category Behavior Definition
ITS (In Training
Session)

Animal Care Session Time period in which animal care
specialists work with the dolphins
to learn new behaviors or practice
known behaviors without public
audience.

ITS Formal Presentation Time period in which animal care
specialists work with the dolphins
in front of an audience to present
educational information to the
public.

OTS (Out of
Training Session)

Static Animal movement state with lit-
tle to no active fluking at a rate
of speed less than 0.5 m s−1.

OTS Dynamic Animal movement state with ac-
tive fluking at a rate of speed
greater than 0.5 m s−1.

Experimental environment 74

Seven bottlenose dolphins with an average age of 17 ± 12 yrs and length of 247 ± 17 75

cm were observed using a dual-camera system in the Seven Seas building of the 76

Brookfield Zoo, Brookfield IL. The complete environment consists of a main habitat 77

with public viewing, two smaller habitats behind the main area, and a medical habitat 78

(not shown) between the two smaller habitats (Fig. 1). The main habitat is 33.5 m 79

across, 12.2 m wide, and 6.7 m deep. The back habitats have circular diameters of 10.7 80

m and are 4.3 m deep, and the medical area is 7.6 m in diameter and 2.4 m deep. The 81

habitats are connected through a series of gates. During formal training sessions in the 82

main habitat, animal care specialists primarily engage with the animals on the island 83

between the gates to the other areas. There are underwater observation windows for the 84

viewing public on the far side of the main habitat from the island (not shown), and 85

smaller windows looking into the offices of the animal care specialists on the island and 86

next to the right gate (Fig. 2, top). Recordings of the main habitat took place across 87

multiple days (between Feb. 6 and March 27, 2018), for varying portions of each day, 88

for a total of 99.5 hours over 20 recordings. Data collection began at the earliest at 89

07:41 and ended at the latest at 16:21. During the recorded hours, the dolphins 90
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participated in four formal training sessions according to a regular, well-defined 91

schedule set by the animal care specialists (ACSs). 92

Fig 1. Diagram of the experimental setup. TOP: Illustration of the main
habitat, with camera placements (blue enclosures) and fields of view (gray cones).
BOTTOM: x-y view of example tracklets (red and green on gray lines) of two dolphins
(highlighted light orange), which are also visible in the top of this figure.
BOTTOM-ZOOM (RIGHT): Vector illustrations of the two example tracks. Example
notation for tracklet j (red): position (~p(j,t′)), velocity (~v(j,t′)), yaw (θ(j,t′)), and yaw
rate (θ̇(j,t′)). BOTTOM-ZOOM (LEFT) Illustration of tracklet generation, with
detections (stars) and tracklet proximity regions (dashed). Example notation for
tracklet j (red): position (~p(j,t)), velocity (~v(j,t)), Kalman-predicted future position

(~̂p(j,t+1)), true future position (~p(j,t+1)), and future animal detection (~u(j,t+1,i′)).

Fig 2. Combined figure demonstrating camera overlap, bounding box
meshing, and animal position uncertainty. TOP: Transformed individual camera
views, with objects in the habitat marked. Yellow – Dolphin bounding boxes, Green –
Drains, Red – Gates between regions, Orange – Underwater windows (3 total).
Correlated bounding boxes are indicated by number, and the habitat-bisecting lines (ls)
for each camera frame in solid red. Distances from Box 2 to the closest frame boundary
(db) and the boundary to the bisecting line (dl) are highlighted in yellow. MIDDLE:
Combined camera views including dolphin bounding boxes (yellow), with the location
uncertainty distribution (A) overlaid for Box 2. BOTTOM: 2D uncertainty distribution
(A) with major (a-a, black) and minor (b-b, red) axes labeled and separately plotted.

A formal training session consisted of time in which the ACSs work with the 93

dolphins to learn new behaviors or practice known behaviors. At the beginning of each 94

formal training session, the dolphins were asked to maintain positions directly in front of 95

the ACS (formally known as “stationing”). The animal care specialists then presented 96

discriminative stimuli or gestures that indicated which behaviors they requested each 97

dolphin produce. If a dolphin produced the desired behavior, they received a reward 98

(i.e., reinforcement). If they chose not to produce the behavior, a specialist may request 99

the same behavior again or move on to a different behavior. When the animals were in 100

a formal training session (abbreviated ITS), they experienced two formats of training 101

during the data collection period: non-public animal care sessions and formal public 102

presentations. Time outside of formal training sessions (abbreviated OTS) was defined 103

as when the animals were not interacting with ACSs. During the OTS time periods, the 104

ACSs would provide enrichment objects for the animals to interact with and select 105

which parts of the habitat the animals could access using gates on either side of the 106

main island. The time intervals for the OTS and ITS blocks are displayed in Table 2. 107

Experimental equipment 108

Two AlliedVision Prosilica GC1380C camera sensors with Thorlabs MVL5M23 lenses 109

were separately mounted in Dotworkz D2 camera enclosures, which were attached to 110

80/20 T-slotted aluminum framing. On the frame, the cameras were spaced 111

approximately 2m apart. The frame was mounted to a support beam directly above the 112

main habitat, with the cameras angled to give full coverage of the area when combined. 113

Figure 1, top, illustrates the habitat, camera placement, and field of view coverage. For 114

data collection, the cameras were connected through the Gigabit Ethernet protocol to a 115

central computer with an Intel i7-7700K CPU. Recordings were executed using the 116

MATLAB Image Acquisition Toolbox, in the RGB24 color format at a frame rate of 117
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Table 2. Block time intervals

Time Interval
Block OTS ITS

1 08:00 – 09:30 09:30 – 10:00
2 10:00 – 11:30 11:30 – 12:00
3 12:00 – 13:00 13:00 – 13:30
4 13:30 – 14:30 14:30 – 15:00
5 15:00 – 16:00 N/A

The ITS blocks (1 and 3) are animal care sessions, and the OTS blocks (2 and 4) are
formal presentations.

20Hz. Each camera was connected to a separate Ethernet port on an internal Intel 118

PRO/1000 Pt PCIe card. A separate computer system was used for detection inference, 119

and was outfitted with an Intel i7-8700K processor clocked to 4.8 GHz and a Nvidia 120

Titan V graphics processing unit in Tesla Compute Cluster mode. 121

Dolphin detection 122

Approximately 99.5 hours of data from two cameras were collected for this work, 123

resulting in ∼ 14 million individual frames of data. To extract spatial information about 124

habitat use and swimming kinematics, we first needed to identify animals in the frames. 125

These detections were filtered and associated with short trajectories (tracklets) from 126

individual animals. Kinematic data (position, velocity and heading) from the tracklets 127

were then used to parameterize and form probability distributions that were used to 128

identify tendencies in animal motion during in training (ITS) and out of training session 129

(OTS) swimming. 130

Neural network methods 131

The first step in the analysis process was dolphin detection from the captured video 132

frames using Faster R-CNN, a machine-learning object detection method [24]. The 133

method consisted of two primary modules: a Region Proposal Network (RPN), and a 134

Fast R-CNN detector network. The RPN identified regions in an image that may 135

enclose objects of interest, and presented these to the Fast R-CNN detector to verify 136

which regions did in fact contain objects the detector sought to identify. These two 137

modules when combined form one large network capable of returning a bounding box 138

tightly enclosing an object’s location within an image. For a more complete explanation 139

of the method please refer to [24]. 140

All modules used in the implementation were present in the MATLAB Deep 141

Learning Toolbox excepting the Parametric Rectified Linear Unit (PReLU) activation 142

function, which was defined with a custom neural network layer per directions in the 143

MATLAB online documentation [25,26]. The convolutional neural network (CNN) 144

structure used in the Faster R-CNN framework is as follows. For the input layer, the size 145

was chosen to be similar to the smallest bounding boxes in the set of manually scored 146

dolphin profiles, in the format of (l,l,3), where l is 2× the side length of the smallest 147

bounding box major axis. The input layer had a third dimension of 3 as input images 148

were in the RGB colorspace. The feature extraction layers had the following structure: 149

four sets of 2D 3× 3 convolution layers, each followed by batch normalization, PReLU 150

activation, and 2× 2 max pooling (stride 2) layers, in that order. The four convolution 151

layers had, in order: 64, 96, 128, and 128 filters. Each convolution was performed with 152

one layer of zero padding along the edges of the inputs to avoid discounting the 153
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corners/edges. The classification layers used the extracted features from the previous 154

layers to identify an image region as either a dolphin or the background. They consisted 155

of: 1) A fully connected layer, length 512, to extract features from the final convolution 156

layer, followed by a PReLU activation; 2) A fully connected layer, length 2, to determine 157

non-scaled classification weights; 3) A softmax function layer to convert these weights 158

into the final probabilities of the image region’s classification. The highest probability 159

from the softmax layer corresponded to the most likely classification for the region, and 160

the magnitude of this probability indicated the confidence of the classification. 161

Training the network 162

Ground truth data were scored by a trained observer who manually defined bounding 163

boxes that identified the locations of the dolphins in the training/testing frames (Fig. 2, 164

A). These ground truth data were selected over a range of lighting conditions and 165

dolphin locations to ensure robustness of the detection network. For each camera, 100 166

frames were extracted from each of 11 separate recordings, with evenly spaced time 167

intervals between frames. The recordings were collected in May 2017, and February, 168

March, and August 2018. Over 940 frames from each of the left and right cameras were 169

found to contain usable dolphin locations, i.e. human-detectable dolphin profiles. Each 170

usable dolphin location in the selected frames was manually given a bounding box 171

tightly enclosing the visible profile. The detector for the left camera was trained on 172

1564 profiles and tested on 662, and the detector for the right camera was trained on 173

1482 profiles and tested on 662. The dolphin detectors were trained using the MATLAB 174

implementation of Faster R-CNN, employing the previously-defined CNN structure as 175

the classification method. 176

Detection processing 177

Detections were performed over all 99.5 hours of recorded data from both cameras, at 178

10Hz intervals (total of 7.16× 106 frames), using a 95% minimum confidence threshold 179

to ensure accuracy. The fields of view of the two cameras overlap for a portion of the 180

habitat, resulting in some dolphins being detected simultaneously by both cameras. 181

This yielded multiple sets of conflicting detection bounding boxes spanning the two 182

fields of view, which necessitated associating the most likely left/right box pairs. Before 183

conflict identification was performed, the detection boxes were first transformed into a 184

common plane of reference termed the world frame. Using known world point 185

coordinates, homographies from each camera to the world frame were generated using 186

the normalized Direct Linear Transform method [27]. These homographies were used to 187

convert the vertices of the bounding boxes to the world frame using a perspective 188

transformation. Intersecting boxes were identified by evaluating polygonal intersections, 189

and Intersection over Union (IoU) metrics were computed for intersecting boxes to 190

measure how well they matched. Associations were identified between pairs of left/right 191

intersecting boxes with the highest mutual IoU values. 192

Associated boxes’ world frame centroid locations were meshed using a weighted 193

mean. First, the boundaries of each camera’s field of view were projected into the world 194

frame, allowing us to obtain the line in the world frame y-direction defining the center 195

of the overlap region, denoted ls = xmid (Fig. 2, middle). xmid is the x-coordinate in 196

the world frame midway between the physical placement of the cameras. For each 197

detection (u), the distance (db) in the x-direction from u to the nearest projected 198

camera boundary line (bn) was then determined. Next, the distance (dl) in the 199

x-direction from line ls through u to bn was found. Finally, the weight for the camera 200

corresponding to bn was calculated as wn = db/2dl, with the weight for the other (far) 201
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camera as wf = 1−wn. This ensured that if detection u was on ls, then wn = wf = 0.5, 202

and as u moved closer to bn, we would have wn → 0 and wf → 1. 203

In specific circumstances, the shapes of the drains at the bottom of the habitat were 204

warped by the light passing through rough surface water, and resulted in false dolphin 205

detections. Separate (smaller) image classifiers for each camera were trained to identify 206

these false positive drain detections, and were run on any detections that occurred in 207

the regions of the video frames containing the drains. These detectors were strictly 208

CNN image classifiers and were each trained on over 350 images and tested on over 150 209

images. For the drain detector, the input layer size had the format of (ld, ld, 3), where ld 210

is the mean side length of the detection bounding boxes being passed through the 211

secondary classifiers. The feature detection layers had the same general structure as the 212

Faster R-CNN classifier network, except in this case the convolution layers had, in order: 213

32, 48, 64, and 64 filters each. In the classification layers, the first fully connected layer 214

had a length of 256. 215

Tracklet formation 216

Each experimental session involved the detection of multiple animals throughout their 217

habitat. However, animal detections were done independently for each frame of the 218

video. To extract kinematic information from the animals in the video, the detection 219

associations needed to be preserved across frames. In this work, short continuous tracks 220

(i.e. tracklets) were generated for a detected animal by identifying the most likely 221

detection of that animal in the subsequent frame. To generate multiple individual 222

tracklets in series of video frames, an iterative procedure of prediction and association 223

was conducted under a Kalman filter framework with a constant velocity model. 224

The position of the i-th detected animal in one video frame at time t is denoted as 225

u(t,i) = [u
(t,i)
x , u

(t,i)
y ]. Each detection, u(t,i) was either associated with a currently 226

existing tracklet or used to initialize a new tracklet. To determine which action was 227

taken, for each tracklet, denoted as T(k) for the k-th tracklet, this process first 228

predicted the state of the tracked animal in the next frame (T̂(k,t+1)) based on the 229

current state information of the animal T(k,t). 230

T(k,t) = [p(k,t),v(k,t)] (1)

= [p(k,t)
x , p(k,t)

y , v(k,t)
x , v(k,t)

y ] (2)

T̂(k,t+1) = [p̂(k,t+1), v̂(k,t+1)] (3)

= [p̂(k,t+1)
x , p̂(k,t+1)

y , v̂(k,t+1)
x , v̂(k,t+1)

y ] (4)

where p(k,t) = [p
(k,t)
x , p

(k,t)
y ] denotes the filtered position of the animal tracked by the 231

k-th tracklet at time t and v(k,t) = [v
(k,t)
x , v

(k,t)
y ] is the corresponding velocity. Under a 232

constant velocity model, the predicted next frame position p̂(k,t+1) = [p̂
(k,t+1)
x , p̂

(k,t+1)
y ] 233

was obtained by integrating the current velocity over one frame period and summing 234

this to the current frame position. The predicted velocity remained constant. 235

p̂(k,t+1)
x = p(k,t)

x + v(k,t)
x ∆t (5)

p̂(k,t+1)
y = p(k,t)

y + v(k,t)
y ∆t (6)

v̂(k,t+1)
x = v(k,t)

x (7)

v̂(k,t+1)
y = v(k,t)

y (8)
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Using the predicted position, the k-th tracklet checked whether there existed a 236

closest detection in the next frame that was within the proximity region of the predicted 237

position. If true, that detection, denoted as u(k,t+1,i) for the i-th detection in frame 238

t+ 1 associated with the k-th tracklet, was used as the reference signal of the Kalman 239

filter to update the state (position and speed) of tracklet ~T (k). If false, the unassociated 240

tracklet continued propagating forward, assuming the animal maintained a constant 241

velocity. If a tracklet continued to be unassociated for 5 consecutive frames (empirically 242

determined), it was considered inactive and was truncated at the last confirmed 243

association. All information related to the k-th tracklet was saved after its deactivation: 244

T(k) = [T(k,tstart), . . . ,T(k,t−1),T(k,t),T(k,t+1), . . . ,T(k,tend)]T (9)

As illustrated in Fig. 1, the tracklet formation operation linked each animal’s 245

individual detections (u) over consecutive frames and returned not only the positions 246

(p) of the animals, but also the forward speed (v), yaw (heading, θ), and turning rate 247

(θ̇), which could then be used to parameterize the positional states of the animals. 248

Position uncertainty 249

There was a general position uncertainty for each animal detection due to noise in the 250

Faster R-CNN detections. This was caused by a combination of limited camera 251

resolution, as well as distortion of an animal’s image from waves and ripples on the 252

surface of the water. Additionally, since animal depth could not be measured, there 253

were errors in the world-frame x-y location estimates (caused by camera perspective and 254

light refraction effects) that could not be corrected. In this work, the detection 255

uncertainty was represented as a 2D probability density function (PDF), whose size and 256

shape depended on the location of the detection with respect to the cameras (Fig. 2, 257

bottom). The short (minor) axis, D1, was a Gaussian uncertainty distribution defined 258

according to a heuristically estimated error in the camera detections (∼ 0.2 m), and 259

represented the general position uncertainty in the Faster R-CNN detections (Fig. 2, 260

bottom, b-b). The long (major) axis of the distribution, D2, represented the position 261

uncertainty caused by the perspective and refraction effects (uncertainty from unknown 262

depth). A 1D PDF was defined according to previously measured animal depth data 263

(total of 9.8 hours during separate OTS time blocks), obtained via non-invasive tagging, 264

which represented the general distribution of depths occupied by the animals. This was 265

convolved with D1 to produce the general shape of D2 (Fig. 2, bottom, a-a). The x-axis 266

length scale for D2 for a particular detection was obtained from the maximum position 267

error in the detection’s x-y location. This was the magnitude of the x-y position 268

difference (original versus corrected x-y position) if the detection happened to be at 269

maximum depth (∼ 7 m). This magnitude varied dependent on the world-frame original 270

location of the detection. Details on the depth-based location correction can be found 271

in [28]. 272

Mapping animal kinematics to habitat 273

Heatmaps of dolphin position and speed were used to map animal positional state to 274

the habitat. The dolphins were defined to be static or minimally mobile (drifting) when 275

they were traveling at speeds below 0.5 m s−1, and dynamic otherwise. To generate the 276

positional heat maps, a blank 2D pixel map of the main habitat, M , was first created. 277

Then, for each pixel representation p of a detection u, the maximum possible magnitude 278

of location error due to depth was determined, defined as em (pixels, scale 1 pix = 5 279

cm), along with the orientation of the error propagation, ψm (radians). The perimeter 280

of the habitat served as a hard constraint on the location of the animals, thus em was 281
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truncated if the location of the point with the maximum possible shift, 282

[px + em cos(ψm), py + em sin(ψm)], fell outside this boundary. The minor axis of the 2D 283

uncertainty distribution, D1, was a 1D PDF in the form of a Gaussian kernel with 284

σgauss = 0.2s (0.2 meters scaled to pixels by scaling factor s = 20). Next, the depth 285

PDF was interpolated to be em pixels long, and was convolved with D1 (to account for 286

measurement uncertainty in the camera detections). This yielded the major axis 1D 287

PDF, D2. The 2D (unrotated) occupancy PDF, E = D>1 D2, was then computed, where 288

D1, D2 were horizontal vectors of the same length. The 2D rotated occupancy PDF, F , 289

was calculated by rotating E by an angle of ψm through an interpolating array rotation. 290

The MATLAB implementation of imrotate was used for this calculation. F was then 291

normalized to ensure the distribution summed to 1. Finally, F was locally summed into 292

M , centered at location [xu, yu] = [px + 0.5em cos(ψm), py + 0.5em sin(ψm)], to inject 293

the occupancy probability distribution for u into map M . This process was then 294

repeated for all detections. For the sake of visibility, all heatmaps were sub-sampled 295

down to the scale of 1 pix = 1 meter. 296

A similar process was used to form the speed heatmaps. In a speed heatmap, the 297

values of F are additionally scaled by the scalar speed of the animal, v, that 298

corresponds to detection u, and then locally summed into a separate map, N (sum F · v 299

into N centered at [xu, yu]). Element-wise division of N by M was performed to 300

generate S, a map of the average speed per location. 301

Lastly, the direction of motion of the animals throughout the monitored region was 302

described using a quiver plot representation. To formulate the quiver plot, two separate 303

heatmaps were generated, Qx and Qy, one each for the x and y components of the 304

animals’ velocities. Qx was created using a similar method to the speed heatmap, but in 305

this case F was scaled by the x-component of the animal’s velocity (sum F · v cos(θ) 306

into Qx centered at [xu, yu]), where θ was the heading of the animal corresponding to 307

detection u. Similarly for Qy, F was scaled by the y-component of the animal’s velocity 308

(sum F · v sin(θ) into Qy centered at [xu, yu]). The vector components Qx and Qy 309

combined represented the general orientation of the animals at each point in the habitat. 310

Probability distributions of metrics and entropy computation 311

For each time block of OTS and ITS, the PDFs of speed (m s−1) and yaw (rad) were 312

numerically determined. These were obtained by randomly extracting 105 data samples 313

of both metrics from each time block of OTS and ITS, and producing PDFs for each 314

metric and time block from these data subsets. 315

Additionally, the joint differential entropies of speed and yaw were computed for 316

each time block of OTS and ITS. In this case, the joint entropy of animal speed and 317

yaw represents the coupled variation in these metrics for the animals. This indicates 318

that speed-yaw joint entropy can be considered a proxy for measuring the diversity of 319

their kinematic behavior. To compute the joint entropy h for one time block, the 320

randomly sampled speed (continuous random variable S) and yaw (continuous random 321

variable Ψ) data subsets (S and Ψ, respectively) of that time block were used to 322

generate a speed/yaw joint PDF: f(s, ψ), where s ∈ S, ψ ∈ Ψ. f was then used to 323

compute h with the standard method: 324

h(S,Ψ) = −
∫
S,Ψ

f(s, ψ) ln[f(s, ψ)]dsdψ (10)

Kolmogorov-Smirnov statistics 325

To evaluate the statistical differences in animal dynamics between time blocks, the 326

two-sample Kolmogorov-Smirnov (K-S) distances (∆ks) and their significance levels (α) 327

June 10, 2021 9/19

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2021. ; https://doi.org/10.1101/2021.07.23.453543doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.23.453543
http://creativecommons.org/licenses/by/4.0/


were computed for each of the following metrics: speed (m s−1), yaw (rad), yaw rate 328

(rad s−1), and the standard deviations of each [29]. These were done by comparing 329

randomly-sampled subsets of each time block, with each subset consisting of 104 data 330

samples per metric. Only time blocks of similar type were compared (i.e. no ITS blocks 331

were compared to OTS blocks, and vice-versa). The computations were performed using 332

the MATLAB statistics toolbox function kstest2. 333

Results 334

Detector and filter performance 335

During evaluation, the Faster R-CNN detectors for the left and right cameras achieved 336

Average Precision scores of 0.76 and 0.78, respectively. The CNN drain classifiers for 337

the left and right cameras achieved respective accuracy scores of 92% and 94%. 338

Processing all 99.5 hours of recordings yielded 5.92× 106 detections for the left camera 339

and 6.35× 106 detections for the right. The initial set of detections took ∼ 8.4 days to 340

compute when performed on the Titan V computer system. Of these, 3.83× 104 (0.65%) 341

detections from the left camera and 3.02× 104 (0.48%) detections from the right camera 342

were found to be drains misclassified as dolphins. After removing the misclassified 343

detections, meshing the left and right detection sets yielded a total of 1.01× 107
344

individual animal detections within the monitored habitat. The tracklet generation 345

method used in this work associated animal track segments containing gaps of up to 4 346

time steps. As a result, the prediction component of its Kalman filter implementation 347

was used to fill in short gaps in the tracking data. Generating tracklets from the meshed 348

detections yielded a total of 1.24× 107 estimated dolphin locations, from 3.44× 105
349

total tracklets. 350

Spatial distribution — position 351

During OTS, the tracked animals were found to be in a dynamic swimming state ∼ 77% 352

of the time and a static state for ∼ 23% of the time. The static OTS behavior tended to 353

be associated with particular features of their habitat: the gates that lead to the other 354

areas of the habitat or at the underwater windows that offered views of the animal care 355

specialist staff areas (Fig. 3). When swimming dynamically during OTS, the dolphins 356

tended to spend more time near the edges of their habitat, with the most time focused 357

on the island side with the gates and the windows (Fig. 4, left column). This was 358

especially true during Block 5, with additional weight placed along the edge of the 359

central island. 360

Fig 3. Static position distributions for OTS and ITS. A note on the format of
the training sessions: Dolphins spent more time stationed at the main island during
public presentations than non-public animal care sessions. During formal public
presentations, ACSs spend a higher portion of the training session on the main island
because it is within view of all of the public attending the presentation. Non-public
animal care sessions are more fluid in their structure than public sessions. ACSs often
use the entire perimeter of the habitat throughout the session.

Throughout ITS, the dolphins were asked to engage in dynamic swimming tasks 361

∼ 62% of the time, and were at station (in front of the ACSs) for the remaining ∼ 38% 362

of the time. During ITS, the dolphins had a heavy static presence in front of the central 363

island, where the animals were stationed during formal training programs. Less 364

emphasis was placed on the edges, contrasted to their locations during OTS (Fig. 5, left 365
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Fig 4. Spatial distributions for dynamic OTS, with position distributions
along the first column and speed distributions/quiver plots along the
second column. Prior to the first full training session of the day at 9:30 a.m., the
dolphins were engaged in low intensity (resting) swimming clockwise around the
perimeter of the habitat, with the highest average OTS speeds recorded after the 9:30
sessions. From there, speeds trail off for the subsequent two time periods. The 1:30-2:30
p.m. time block is characterized by slower swimming in a predominantly
counterclockwise pattern. There is an increase in speed and varied heading pattern
during the 3:00-4:00 time block.

column). During ITS, the ACSs presented discriminative stimuli or gestures 366

corresponding to specific animal behavior, which defined the spatial distributions of the 367

dolphins’ movements during these time blocks. Additionally, there were spatial 368

distribution similarities between training sessions of similar type, e.g. Blocks 1, 3 were 369

animal care and husbandry sessions, and 2, 4 were formal public presentations. Note the 370

structure of the spatial distributions across the top of their habitat, where during the 371

care sessions (Blk. 1, 3) the dolphins’ positions were focused on specific points in the 372

area, while during the presentations (Blk. 2, 4) their positions were distributed across 373

the edge of the central island. This captured the formation used during presentations 374

with animals distributed more uniformly across the island. 375

Fig 5. Spatial distributions for dynamic ITS, with position distributions
along the first column and speed distributions/quiver plots along the
second column. Speeds across the entire habitat are higher during public
presentations than non-public animal care sessions because high-energy behaviors (e.g.,
speed swims, porpoising, and breaches) are typically requested from the group several
times throughout the presentation. Though non-public presentations include
high-energy behaviors, non-public animal care sessions also focus on training new
behaviors and engaging in husbandry behaviors. Public presentations provide the
opportunity for exercise through a variety of higher energy behaviors, and non-public
sessions afford the ability to engage in comprehensive animal care and time to work on
new behaviors.

Spatial distribution — speed/quiver 376

In Block 1 of OTS, the dolphins had relatively low speeds (mean 1.30 m s−1) across 377

their habitat, and based on the vector field of the quiver plot for the block, were 378

engaged in large, smooth loops along the edges of the habitat (Fig. 4, right column). 379

This was contrasted with Block 2, which saw a higher general speed (mean 1.57 m s−1) 380

as well as diversified movement patterns, with the right half exhibiting 381

counter-clockwise chirality while the left half maintained the clockwise motion pattern. 382

Blocks 3-5 exhibited higher mean speeds (Blk. 3: 1.45 m s−1, Blk. 4: 1.41 m s−1, Blk. 5: 383

1.43 m s−1) than Block 1, and lower than 2, with the dolphins’ movement patterns 384

shifting changing between each OTS block. 385

During ITS, the care blocks’ (Blk. 1, 3) speed distributions and vector fields 386

qualitatively demonstrated similar structures, while those of the presentations (Blk. 2, 387

4) were more mixed, with more similarities along the left and right far sides, but fewer 388

in the center (Fig. 5, right column). The mean speeds did not share particular 389

similarities between blocks of similar type (Blk. 1: 1.39 m s−1, Blk. 2: 1.45 m s−1, Blk. 390

3: 1.44 m s−1, Blk. 4: 1.39 m s−1). 391
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Statistical comparison of metrics 392

Figure 6, top, displays the overlaid PDFs of the speed and yaw metrics during OTS, and 393

Figure 6, middle, displays the PDFs during ITS. The K-S distances for all six metrics 394

were reported in Table 3, with all values rounded to 3 digits of precision. For OTS, we 395

saw from the K-S results that Blocks 1 and 2 varied the most with respect to the others 396

in terms of speed, which was observed in Figure 6, top, while the yaw values were not 397

generally significantly different, again observed in Fig. 6 (given the high number of 398

samples used to generate the K-S statistics, we were able to compare the significance 399

levels to a stronger threshold of αcrit = 0.001). Across the board, Block 2 generally 400

differed significantly from the rest of the OTS blocks for the most metrics, with Block 1 401

following close behind. In contrast, Blocks 3-5 differed the least significantly from each 402

other, indicating similarities in the dolphins’ dynamics patterns for Blocks 3-5. 403

Table 3. Kolmogorov-Smirnov Session Comparison

Speed Yaw Yaw Rate
Blk. ∆ks α ∆ks α ∆ks α

O
T

S

1 2 0.187 < 0.001 0.028 < 0.001 0.047 < 0.001
1 3 0.095 < 0.001 0.021 0.025 0.034 < 0.001
1 4 0.080 < 0.001 0.019 0.049 0.057 < 0.001
1 5 0.079 < 0.001 0.021 0.027 0.035 < 0.001
2 3 0.096 < 0.001 0.028 < 0.001 0.017 0.099
2 4 0.111 < 0.001 0.025 0.003 0.028 < 0.001
2 5 0.110 < 0.001 0.023 0.012 0.016 0.148
3 4 0.026 0.002 0.019 0.046 0.025 0.004
3 5 0.026 0.003 0.022 0.012 0.010 0.685
4 5 0.018 0.093 0.013 0.403 0.030 < 0.001

IT
S

1 2 0.059 < 0.001 0.028 < 0.001 0.022 0.017
1 3 0.021 0.019 0.020 0.039 0.008 0.871
1 4 0.059 < 0.001 0.028 0.001 0.021 0.020
2 3 0.061 < 0.001 0.023 0.009 0.028 < 0.001
2 4 0.043 < 0.001 0.010 0.638 0.008 0.940
3 4 0.068 < 0.001 0.029 < 0.001 0.028 < 0.001

Speed σ Yaw σ Yaw Rate σ

Blk. ∆ks α ∆ks α ∆ks α

O
T

S

1 2 0.047 < 0.001 0.035 < 0.001 0.076 < 0.001
1 3 0.012 0.434 0.026 0.002 0.053 < 0.001
1 4 0.025 0.004 0.029 < 0.001 0.062 < 0.001
1 5 0.014 0.249 0.015 0.222 0.040 < 0.001
2 3 0.047 < 0.001 0.031 < 0.001 0.033 < 0.001
2 4 0.065 < 0.001 0.039 < 0.001 0.043 < 0.001
2 5 0.051 < 0.001 0.048 < 0.001 0.043 < 0.001
3 4 0.025 0.005 0.016 0.153 0.014 0.264
3 5 0.008 0.889 0.026 0.002 0.026 0.002
4 5 0.025 0.003 0.032 < 0.001 0.035 < 0.001

IT
S

1 2 0.033 < 0.001 0.108 < 0.001 0.092 < 0.001
1 3 0.027 0.001 0.012 0.423 0.016 0.139
1 4 0.040 < 0.001 0.096 < 0.001 0.086 < 0.001
2 3 0.046 < 0.001 0.103 < 0.001 0.100 < 0.001
2 4 0.014 0.303 0.014 0.264 0.026 0.003
3 4 0.056 < 0.001 0.093 < 0.001 0.095 < 0.001

For ITS, we note that the significant differences in metrics generally followed the 404
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structure type of each ITS block: comparisons between Blocks 1 vs. 3, and 2 vs. 4, were 405

found to be significantly different the least often. This was to be expected, given Blocks 406

1 and 3 were animal care sessions, and 2 and 4 were presentations. Of particular note 407

are the yaw std. dev. and yaw rate std. dev. metrics, with entire order of magnitude 408

differences in K-S distances when comparing similar vs. different types of ITS blocks. 409

Speed and yaw joint entropy 410

The joint differential entropies of speed and yaw per time block are displayed in Figure 411

6, bottom, with values reported in Table 4. The time blocks in this figure were 412

presented in chronological order, and with that in mind we observed that the first 413

blocks of each OTS and ITS had the least joint entropy (variation in speed and yaw 414

throughout the time block), followed immediately by a peak in the second block of each. 415

Subsequent time blocks for both OTS and ITS then yielded lower entropies that were 416

sustained. Overall, ITS blocks were observed to have higher speed-yaw joint entropy 417

than OTS blocks in similar time windows. 418

Fig 6. Speed and yaw probability distributions and joint differential
entropies, respective to time block. TOP: Probability density functions of animal
speed (m s−1) for OTS (left) and ITS (right). MIDDLE: Probability density functions
of yaw (rad) for OTS (left) and ITS (right). BOTTOM: Joint differential entropy of
speed and yaw for each block of OTS (left) and ITS (right), with limited-range y-axes
to more clearly show value differences.

Table 4. Speed and Yaw Joint Differential Entropy

OTS ITS
Block 1 2 3 4 5 1 2 3 4

Entropy 2.358 2.599 2.543 2.508 2.541 2.521 2.675 2.584 2.605

Discussion 419

Automatic dolphin detection 420

This research presents a framework that enables the persistent monitoring of managed 421

dolphins through external sensing, performed on a scale that would otherwise require a 422

prohibitively high amount of human effort. Both the Faster R-CNN dolphin detection 423

and CNN drain detection methods displayed reliable performance in testing, and 424

enabled large-scale data processing at rates not achievable by humans. Given that the 425

total duration of video processed was ∼ 199 hours (2 cameras × 99.5 hours each), an 426

inference time of ∼ 202 hours (1.013×) represents at minimum an order-of-magnitude 427

increase in processing speed when compared to human data annotation. This estimate 428

was obtained from the authors’ prior experience in manual animal tracking, which could 429

take over 10 hours of human effort per hour of video (frame rate of 10 Hz) annotated for 430

a single animal. As such, the performance of this detection framework presents new 431

opportunities in long-term animal monitoring, and enables the automated processing of 432

longer duration and more frequent recording sessions. In this research, use of the 433

monitoring framework enabled the large-scale animal position and kinematic state data 434

necessary to yield insights into animal behavior and spatial use within their 435

environment. 436
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Animal kinematics and habitat use 437

Kinematic diversity 438

Joint dynamic entropy was used to quantify differences in animal kinematic diversity 439

throughout the day to explore how temporal changes in the dolphins’ habitat would 440

result in modified kinematic diversity levels (Fig. 6, bottom). The use of entropy as a 441

proxy for kinematic diversity has been applied in the past to characterize prey motion 442

unpredictability for predator evasion, however in this work it serves to provide a 443

measure of animal engagement [30]. We observed the lowest kinematic diversity in the 444

mornings as the animal care specialists were arriving at work and setting up for the day. 445

The highest kinematic diversity when not interacting with animal care specialists then 446

occurred immediately after the first ITS time block. In general, the first time blocks of 447

both OTS and ITS showed the lowest kinematic diversity of their type, the second of 448

each showed the highest, and the following blocks stabilized between the two extremes. 449

The speed/quiver plots (Figs. 4-5, right) provide a qualitative understanding of the 450

entropy results. For example, in Block 1 of OTS (Fig. 4, top-right) the dolphins 451

engaged in slow swimming throughout their habitat in smooth consistent cycles along 452

the environment edge, yielding the lowest joint entropy. Joint entropy then increased 453

during both the morning ITS and OTS blocks and remained elevated for the rest of the 454

day, representing higher animal engagement through the middle of their waking hours. 455

This is consistent with previous research on animal activity and sleep patterns, 456

which reports a diurnal activity cycle for managed animals [17]. However, it is 457

interesting to note that changes in animal kinematic diversity throughout the day 458

during OTS are not gradual: the OTS time block displaying the minimum value is 459

immediately followed by the block displaying the maximum, and are only separated by 460

the first training session (30 minute duration). This sudden shift may not be fully 461

explained by only the dolphins’ diurnal activity cycle, and may be related to the fact 462

that their first daily interactions with the ACSs occur between these two OTS time 463

blocks. A finer time-scale analysis of their kinematic diversity trends is necessary to 464

determine which is the cause for this change in animal engagement. 465

Habitat use 466

The kinematic data also enabled the investigation into how features in the habitat 467

influenced animal behavior and spatial use, particularly during OTS. The animals 468

tended to have a general focus on the area between the gates along the edge of the 469

central island (Fig. 4, left). Additionally, throughout the OTS position plots (including 470

static, Fig. 3, left) four animal-preferred locations were observed. The two hot spots to 471

the left and right of the central island are gates (Fig. 1, middle, Fig. 2, top), where the 472

dolphins could communicate with conspecifics when closed or pass through to other 473

areas of their habitat when open. Conversely, the two hot spots nearer the middle of the 474

island edge corresponded to underwater windows that led to an ACS work area (two 475

central windows in Fig. 2, top/middle). Through these windows the dolphins may 476

observe the ACSs, view conspecifics in one of the back habitats (through an additional 477

window, not shown in Fig. 2), or observe enrichment occasionally placed on the other 478

side of the glass (mirrors, videos, etc.). Regions of the habitat in proximity to these two 479

windows experienced some of the highest occupancy in all OTS position plots, both 480

static and dynamic. This indicates that particular attractors for the dolphins’ attention 481

were observable through those windows, whether they were the ACSs, conspecifics, or 482

enrichment. 483

These attractors also influenced the dolphins’ kinematics and activity levels. Of all 484

the regions in the environment, only the positions in front of the central windows 485

consistently recorded peak or near-peak location-specific animal swimming speeds for all 486
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OTS time blocks (Fig. 4, right). When combined with the results from the position 487

distributions (Fig. 4, left), this implies that these dolphins not only focused their 488

attention on these attractors, their presence correlated to higher activity levels in the 489

dolphins when swimming in their vicinity. 490

Behavior classification from dynamics metrics 491

During ITS blocks, ACSs asked for specific behaviors from the dolphins and these 492

behaviors were often repeated. Elements of public educational presentations (ITS 2/4) 493

were varied to include a mixture of both high and low energy segments, and this blend 494

resulted in similar dynamic patterns for the public sessions. In contrast, the non-public 495

animal husbandry and training sessions (ITS 1/3) were less dynamic overall, and yielded 496

similar dynamic patterns for these sessions. Qualitative similarities in the pairs of 497

animal training sessions were observable in both the position and speed/quiver plots in 498

Fig. 5, and the probability density functions presented in Fig. 6. 499

The K-S statistics were used to quantify the similarities and differences between 500

time blocks within both OTS and ITS. As the ACSs requested similar behaviors during 501

ITS blocks of the same type, we expected similarities in the dynamics metrics for Blocks 502

1 vs. 3 and Blocks 2 vs. 4, and differences between the metrics for blocks of different 503

types. The pattern displayed by the K-S statistics in Table 3 (particularly in the 504

std. devs.) showed by far the most significant differences between time blocks of 505

different types, and the fewest for blocks of the same type. Without prior knowledge of 506

the block types, it would be possible to use this pattern to identify that Blocks 1 and 3 507

were likely the same type, as were 2 and 4. This demonstrated that the presented 508

method of obtaining and analyzing dolphins’ dynamics metrics was sufficient to 509

differentiate between general behavior types. 510

This was useful for analyzing the OTS results, as the position and speed/quiver plots 511

in Fig. 4 only showed patterns in the animals’ location preferences within their habitat. 512

In contrast, the K-S statistics gave a clearer view of the differences between OTS time 513

blocks. Block 2 separated itself significantly from all other time blocks in nearly every 514

metric, while Block 1 was in a similar position (though not as pronounced). Blocks 3-5 515

showed few significant differences for metrics comparisons between each other. This 516

indicated that the dolphins had more distinct dynamics for Blocks 1 and 2, and 517

maintained similar dynamics patterns throughout Blocks 3-5. When combined with the 518

joint differential entropy values, these results indicated there may be three general OTS 519

behavior types for the dolphins in this dataset (in terms of kinematic diversity [KD]): 520

“Low KD” at the beginning of the day (Block 1), “High KD” immediately after the first 521

training session (Block 2), and “Medium KD” for the remainder of the day (Blocks 3-5). 522

A fine-scale temporal analysis of animal kinematic diversity should reveal whether these 523

behavior transitions are dependent on the ACSs or other factors. 524

Limitations and future work 525

Using a limited number of cameras meant full stereo coverage of the habitat was not 526

possible, preventing a direct estimate of animal depth. Additionally, camera placements 527

resulted in region-specific glare on the surface of the water that impeded the Faster 528

R-CNN detector. To address these problems, cameras could be added in locations that 529

allow for fully overlapping coverage, at angles that avoid glare in the same regions. 530

Further, installing cameras capable of low-light recording could enable night monitoring 531

sessions. An inherent problem with camera-based tracking is the fact that similarities 532

between dolphin profiles make it challenging to identify individuals. This problem has 533

been addressed in [28], where kinematic data from dolphin-mounted biologging tags 534

were used to filter camera-based animal location data. This filtering process made it 535

June 10, 2021 15/19

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2021. ; https://doi.org/10.1101/2021.07.23.453543doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.23.453543
http://creativecommons.org/licenses/by/4.0/


more feasible to identify which location data points corresponded to specific tagged 536

individuals, coupling the kinematic and location data streams for these animals. Fusing 537

the coupled tag and camera data through methods similar to [28] or [31] would then 538

provide high-accuracy localization information to contextualize the detailed kinematics 539

data produced by the tags. 540

Conclusions 541

Through this research we have demonstrated a monitoring framework that offers new 542

options for long-term managed dolphin observation, while significantly enhancing the 543

efficiency of both data collection and analysis. This work demonstrated the feasibility of 544

a camera-based computer-automated marine animal tracking system, and explored its 545

capabilities by analyzing the behavior and habitat use of a group of managed dolphins 546

over a large time scale. From the results, we were able to quantify day-scale temporal 547

trends in the dolphins’ spatial distributions, dynamics patterns, and kinematic diversity 548

modes. These in turn revealed that habitat features associated with particular 549

attractors served as focal points for this group of dolphins: these features were 550

correlated with higher animal physical proximity, kinematic diversity (specifically ACS 551

presence), and activity levels. 552
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16. Clegg ILK, Rödel HG, Cellier M, Vink D, Michaud I, Mercera B, et al. Schedule
of human-controlled periods structures bottlenose dolphin (tursiops truncatus)
behavior in their free-time. Journal of Comparative Psychology.
2017;131(3):214–224. doi:10.1037/com0000059.

17. Sekiguchi Y, Kohshima S. Resting behaviors of captive bottlenose dolphins
(Tursiops truncatus). Physiology and Behavior. 2003;79(4-5):643–653.
doi:10.1016/S0031-9384(03)00119-7.

18. Walker RT, Miller LJ, Kuczaj SA, Solangi M. Seasonal, diel, and age differences
in activity budgets of a group of bottlenose dolphins (Tursiops truncatus) under
professional care. International Journal of Comparative Psychology. 2017;30.
doi:10.46867/ijcp.2017.30.00.05.

19. Karnowski J, Hutchins E, Johnson C. Dolphin detection and tracking.
Proceedings - 2015 IEEE Winter Conference on Applications of Computer Vision
Workshops, WACVW 2015. 2015; p. 51–56. doi:10.1109/WACVW.2015.10.

20. Rachinas-Lopes P, Ribeiro R, Dos Santos ME, Costa RM. D-Track—A
semi-automatic 3D video-tracking technique to analyse movements and routines
of aquatic animals with application to captive dolphins. PLoS ONE.
2018;13(8):e0201614. doi:10.1371/journal.pone.0201614.

21. Brunetti A, Buongiorno D, Trotta GF, Bevilacqua V. Computer vision and deep
learning techniques for pedestrian detection and tracking: A survey.
Neurocomputing. 2018;300:17–33. doi:10.1016/j.neucom.2018.01.092.
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