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22 Abstract
23 Aberrant activation of the Ras/Raf/ERK (extracellular-signal-regulated kinase)-MAPK 

24 (mitogen-activated protein kinase) pathway is involved in the progression of cancer, 

25 including urothelial carcinoma; but the negative regulation remains unclear. In the present 

26 study, we investigated pathological expression of Spred2 (Sprouty-related EVH1 domain-

27 containing protein 2), a negative regulator of the Ras/Raf/ERK-MAPK pathway, and the 

28 relation to ERK activation and Ki67 index in various categories of 275 urothelial tumors 

29 obtained from clinical patients. In situ hybridization demonstrated that Spred2 mRNA 

30 was highly expressed in high-grade non-invasive papillary urothelial carcinoma 

31 (HGPUC), and the expression was decreased in carcinoma in situ (CIS) and infiltrating 

32 urothelial carcinoma (IUC). Immunohistochemically, membranous Spred2 expression, 

33 important to interact with Ras/Raf, was preferentially found in HGPUC. Interestingly, 

34 membranous Spred2 expression was decreased in CIS and IUC relative to HGPUC, while 

35 ERK activation and the expression of the cell proliferation marker Ki67 index were 

36 increased. HGPUC with membranous Spred2 expression correlated significantly with 

37 lower levels of ERK activation and Ki67 index as compared to those with negative Spred2 

38 expression. Thus, our pathological findings suggest that Spred2 negatively regulates 

39 cancer progression in non-invasive papillary carcinoma possibly through inhibiting the 

40 Ras/Raf/ERK-MAPK pathway, but this regulatory mechanism is lost in cancers with high 

41 malignancy. Spred2 appears to be a key regulator in the progression of non-invasive 

42 bladder carcinoma.
43
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44 Introduction
45 Bladder cancer is a highly prevalent disease and its incidence is steadily rising worldwide 

46 [1]. In the United States, bladder cancer is the 4th most incident and 8th most deadly 

47 tumor among men [2]. Most of the bladder cancer is urothelial carcinoma arising from 

48 urothelial epithelium. Evidence indicates that urothelial carcinoma has two distinct 

49 clinical subtypes with distinct molecular features at bladder tumor initiation; low-grade 

50 tumors (superficial papillary) and high-grade tumors (flat, represented by carcinoma in 

51 situ) [3, 4]. Low-grade tumors, i.e., papillary urothelial neoplasm of low malignant 

52 potential or low-grade papillary urothelial carcinoma, do not easily progress to high-grade 

53 papillary urothelial carcinoma or invasive carcinoma [5, 6]. Recently, a comprehensive 

54 landscape of molecular alterations in urothelial carcinomas was shown [7]. More than 

55 70% of low-grade papillary carcinomas harbor FGFR3 gene mutation [8]. On the other 

56 hand, flat carcinoma in situ (CIS) often develops to invasive urothelial carcinoma [9, 10], 

57 in which allelic deletion of the p53 and PTEN (tumor-suppressor) [11] and retinoblastoma 

58 gene (RB, negative cell cycle regulator) [12] is common.

59 In addition to the gain of function gene mutations, extracellular-regulated kinase 

60 (ERK) plays a crucial role in cancer development and progression [13, 14]. The 

61 Ras/Raf/ERK-MAPK (mitogen-activated protein kinase) pathway, one of the 

62 serine/threonine kinases of MAPKs pathway, is a major determinant to promote cell 

63 proliferation, differentiation, and survival, and plays an important role in bladder cancer 

64 prognosis [15]. ERK activation was observed in high-grade non-invasive and invasive 

65 urothelial carcinoma [16], suggesting that robust ERK activation contributes to urothelial 

66 tumorigenesis with a high malignant potential. 

67 Signaling pathways are counterbalanced by endogenous inhibitory mechanism(s). 

68 Spred2 (Sprouty-related, EVH1 domain-containing protein 2) inhibits Ras-dependent 

69 ERK signaling by suppressing the phosphorylation and activation of Raf [17]. Ras 

70 activation is aberrant in many tumors due to oncogenic mutation of the Ras genes or 

71 alterations in upstream signaling components [18]. Rational therapies that target the 

72 Ras/Raf/ERK-MAPK pathway continues to attract much attention for cancer therapy [19]. 
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73 We have hitherto investigated in different types of murine models and found that Spred2 

74 controls inflammation by down-regulating the Ras/Raf/ERK-MAPK pathway [20–29]. 

75 Interestingly, Spred2 expression is down-regulated in invasive carcinomas such as 

76 hepatocellular carcinoma [30, 31] and prostatic adenocarcinoma [32]. Thus, altered 

77 Spred2 expression could affect urothelial tumorigenesis by regulating the Ras/Raf/ERK-

78 MAPK pathway in bladder cancer. However; the pathophysiological roles of Spred2 in 

79 bladder cancer tumorigenesis remain largely unknown. In the present study, we examined 

80 the mRNA and protein expression of Spred2 in a range of human urothelial tumors. Our 

81 present findings suggest that endogenous Spred2 affects urothelial cancer progression, 

82 especially in non-invasive papillary urothelial carcinoma.

83

84 Materials and methods
85 Clinical samples 
86 A total of 275 bladder biopsy or resection specimens (transurethral resection and 

87 cystectomy) during the year 2001-2016 were retrieved from pathology record at 

88 Department of Pathology, Okayama University Hospital. The patients who underwent 

89 chemotherapy or radiotherapy before the resection were not included in this study. All 

90 the hematoxylin and eosin (HE)-stained sections were reviewed and categorized by two 

91 blinded pathologists according to the 2016 WHO classification: non-tumor urothelium 

92 (non-tumor), papillary urothelial neoplasm of low malignant potential (PUNLMP), low-

93 grade papillary urothelial carcinoma (LGPUC), high-grade papillary urothelial carcinoma 

94 (HGPUC), carcinoma in situ (CIS), and infiltrating urothelial carcinoma (IUC). All 

95 sections were used for immunohistochemistry. For in situ hybridization, sections were 

96 randomly chosen from each category. Cases for the enrolled 275 patients were shown in 

97 Table 1, in which clinicopathological features of each category were noted. 

98 The protocol in this study was reviewed and approved by the Ethics Committee, 

99 Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical 

100 Sciences and Okayama University Hospital (1608-009). Informed consent was obtained 

101 in the form of opt-out on our website. Those who rejected were excluded. This consent 
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102 procedure conformed to amended Ethical Guidelines for Clinical Studies provided by 

103 Ministry of Health, Labor and Welfare of Japan (May 31, 2015) was approved by the 

104 Ethics Committee, Okayama University Graduate School of Medicine, Dentistry and 

105 Pharmaceutical Sciences and Okayama University Hospital.

106

107 In situ hybridization

108 A total of 85 samples were randomly selected from 275 samples (Table 1). Paraffin-

109 embedded tissue samples were sectioned at 5-μm-thick, kept on glass slides overnight at 

110 45°C and then in situ hybridization was performed using the Affymetrix ViewRNA ISH 

111 Tissue Assay kit (QVT0050) and ViewRNA Chromogenic Signal Amplification kit 

112 (QVT0200) (Thermo Fisher Scientific, MA, USA), according to the manufacturer’s 

113 instructions. Human Spred2 probe set was purchased from Thermo Fisher (Affymetrix, 

114 Catalog No. VA1-17417-01). Spred2 mRNA expression was stained in red-dot. The total 

115 number of red-dot in 100 cells was counted in each sample under microscope by two 

116 blinded pathologists, and the number of red-dot per cell was calculated.

117

118 Immunohistochemistry

119 For immunohistochemistry, all 275 specimens were employed (Table 1). Immunostaining 

120 for Spred2 was carried out using the Polink-2 plus HRP rabbit with DAB kit (GBI, Bothell, 

121 WA, USA), according to the manufacturer’s instructions. In brief, sections (4-µ-thick) 

122 were treated by microwave oven in 0.1 M citric acid buffer, treated with 3%H2O2 in 

123 methanol, blocked with DAKO Protein Block Serum-Free (Dako, Carpinteria, CA, USA), 

124 and incubated with anti-human Spred2 polyclonal antibody (Proteintech, Rosemont, IL, 

125 USA). Sections were then incubated with rabbit antibody specific enhancer, followed by 

126 the addition of polymer-HRP for rabbit IgG, and visualized using DAB complex. Nuclear 

127 counterstaining was performed using hematoxylin. Immunostaining for pERK1/2 (Clone 

128 D13.14.4E, Cell Signaling Technology, Danvers, MA, USA) and Ki67 (Clone MIB-1, 

129 Dako) was performed on a Ventana Discovery XT automated stainer (Ventana, Tucson, 

130 AZ, USA) with using iVIEW DAB Detection Kit (Ventana). 
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131

132 Evaluation of immunohistochemistry

133 Spred2 was stained in the cytoplasm (C) or/and membrane (M). Immunoreactivity for 

134 Spred2 was classified into 4 groups, according to subcellular localization and staining 

135 intensity; C-M-, absent or weak staining intensity in cytoplasm and membrane; C-M+, 

136 moderate to strong membranous staining without staining in cytoplasm; C+M-, moderate 

137 to strong cytoplasmic staining without membranous staining; C+M+, moderate to strong 

138 cytoplasmic and membranous staining. pERK immunostaining was scored on the 

139 following semiquantitative scale as previously reported with modifications [33]: no 

140 staining (0); focal to <10% of cells (1); 10-50% of cells (2); 50% or more cells stained 

141 weak (3); 10-50% stained strong (4); 50% or more stained strong (5). Ki67 index, a 

142 marker for cell proliferation, was determined by counting 500 tumor cells, and the 

143 percentages of positively stained cells were determined. The stained sections were 

144 assessed by two blinded pathologists.

145

146 Database analysis

147 Datasets with more than 25 samples in each category from Sanchez-Carbayo bladder 2 

148 [34], Blaveri bladder 2 [35], and Stransky bladder [36] were used to analyze Spred2 

149 expression in bladder cancer. An unpaired two-tailed t test was used for the statistical 

150 analysis. Kaplan-Meier Plotter (http://www.kmplot.com) was used to analyze the 

151 prognostic values of Spred2 mRNA expression levels in bladder carcinoma. Kaplan-

152 Meier survival plots were drawn using data from the Kaplan-Meier database. A log-rank 

153 p-value <0.05 was considered to indicate a statistically significant difference. 

154

155 Statistical analysis

156 Statistical analysis was performed using GraphPad Prism7 (GraphPad Software, San 

157 Diego, CA, USA) and js-STAR (free software). Dunn's multiple comparison test was 

158 performed after Kruskal-Wallis test for the comparison of mean values among multi-

159 groups. Multiple Fisher's exact test was performed using the Bonferroni correction for the 
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160 comparison of proportions among multi-groups. Mann-Whitney test was used for the 

161 comparison of mean values between the two groups. A value of p<0.05 was considered 

162 statistically significant.

163

164 Results
165 Spred2 mRNA expression in bladder urothelial tumors

166 We first examined Spred2 mRNA expression in various categories of 85 urothelial lesions 

167 including non-tumor, PUNLMP, LGPUC, HGPUC, CIS, and IUC. Figure 1A shows the 

168 representative HE and in situ hybridization photographs from each category, in which 

169 Spred2 mRNA expression was presented by red-dot (Fig 1A). The number of red-dots 

170 per cell was regarded as Spred2 mRNA expression level (Fig 1B). Levels of Spred2 

171 mRNA expression were increased as the malignancy of the cancer increased in papillary 

172 tumors. Of note, the level reached the peak in HGPUC and then decreased in CIS and 

173 IUC. Spred2 mRNA expression in IUC was significantly lower than that in HGPUC (Fig 

174 1B). These results indicate that Spred2 mRNA expression was up-regulated in non-

175 invasive papillary bladder cancer as compared to cancers with high malignancy including 

176 invasive carcinoma. 

177

178 Spred2 protein expression in bladder urothelial tumors

179 We next examined Spred2 protein expression by immunohistochemistry in 275 bladder 

180 urothelial tumors. To confirm immunoreactivity of Spred2 antibody, H1993 cells were 

181 stained with the antibody under overexpressing Spred2 (Supplementary Fig 1). Spred2 

182 protein expression (Fig 2A) was immunophenotypically classified into 4 groups, 

183 according to the subcellular localization and staining intensity. The staining pattern in 

184 each tumor category was shown in Table 2. In all non-tumor cases, Spred2 was positive 

185 in cytoplasm of basal and lower intermediate cells (pattern C+M-, 101/101 cases). More 

186 than half of the cases of PUNLMP, CIS, and IUC showed absent or weak staining (C-M-; 

187 74% (14/19 cases), 74% (29/39 cases), and 69% (22/32 cases), respectively). LGPUC and 

188 HGPUC showed membranous staining (C-M+ and C+M+) more frequently (49% (20/41 
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189 cases), and 51% (28/43 cases), respectively) than other categories (Table 2). We then 

190 compared mRNA and protein expression of Spred2. Cases with membranous staining, 

191 regardless of cytoplasmic staining pattern (C-M+ and C+M+), showed significantly higher 

192 levels of Spred2 mRNA expression than those without membranous staining (C-M- and 

193 C+M-) (Fig 2B). Spred2 is a membrane-associated substrate of receptor tyrosine kinase 

194 [17, 37] and react with Raf localized in the raft domain of the plasma membrane [38], 

195 suggesting that membranous Spred2 is more meaningful when considering the functional 

196 regulation. The positive rate of membranous Spred2 expression (C-M+ and C+M+) in each 

197 category was shown in Figure 2C, which showed that the expression was increased in 

198 LGPUC, peaked in HGPUC and then decreased in CIS and IUC. Together with the 

199 mRNA expression data, these results suggest that functional Spred2 was most expressed 

200 in HGPUC, and the expression was lower in CIS and IUC as compared to HGPUC.

201

202 Expression of pERK and Ki67 in bladder urothelial tumors

203 Increased Spred2 expression may affect the activation of the Ras/Raf/ERK-MAPK 

204 pathway and subsequent cancer growth. To address this possibility, we investigated the 

205 protein expression of phosphorylated ERK (pERK), an indicator of ERK-MAPK 

206 activation status, by immunohistochemically in each category. pERK was detected in the 

207 nucleus and cytoplasm of urothelial epithelial lesions in all specimens from each category 

208 with different intensity in strength (Fig 3A). The intensity of nuclear and cytoplasmic 

209 staining was then evaluated. Weak pERK staining (score, 1 and 2) was detected in 87% 

210 (score 1; 67/101, score 2; 21/101 cases) and 100% (score 1; 13/19, score 2; 6/19 cases) 

211 of non-tumor and PUNLMP, respectively (Table 3). In cancer categories (LGPUC, 

212 HGPUC, CIS and IUC), cancer cells with moderate (score 3) and strong (score 4 and 5) 

213 staining were increased. Strong pERK staining was detected in 10% (score 4; 4/41, score 

214 5; 0/41), 44% (score 4; 14/43, score 5; 5/43 cases), 56% (score 4; 14/39, score 5; 8/39 

215 cases), and 78% (score 4; 16/32, score 5; 9/32 cases) in LGPUC, HGPUC, CIS and IUC, 

216 respectively (Table 3). pERK score in each category was increased according to the 

217 malignant potential (Fig 3B). We next performed Ki67 immunohistochemistry (Fig 4A) 
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218 and calculated Ki67 index (Fig 4B), an indicator of cell proliferation marker, in all 

219 categories. Ki67 index was significantly increased in all categories of bladder urothelial 

220 tumors as compared to non-tumor. Ki67 index of HGPUC, CIS and IUC was significantly 

221 higher than that of LGPUC (Fig 4B). Thus, pERK score and Ki67 index increase with 

222 high malignancy.

223

224 Comparison between pERK score/Ki67 index and membranous Spred2 

225 expression

226 We next compared the relation between pERK score/Ki67 index and membranous Spred2 

227 expression (negative: M-, positive: M+) in cancer categories. In HGPUC, pERK score 

228 with Spred2 M+ were lower than those with Spred2 M-. No differences were found in 

229 LGPUC, CIS and IUC (Fig 5A). Since an increase in pERK is generally associated with 

230 an increased Ki67 index [39], ERK activation may result in increased tumor cell 

231 proliferation. As shown in Figure 5B, Ki67 index in HGPUC with Spred2 M+ was lower 

232 than those with Spred2 M-. These results suggest that membranous Spred2 plays a role 

233 in down-regulated ERK activation and subsequent cancer cell proliferation in HGPUC, 

234 but this negative regulatory mechanism is not functioning in CIS. Although pERK score 

235 was not different between Spred2 M- and Spred2 M+ in IUC, Ki67 index was decreased 

236 in Spred2 M+ as compared to Spred2 M-, indicating that Spred2 may downregulate 

237 cancer cell proliferation through ERK-MAPK independent pathway in IUC.

238

239 Database analyses of Spred2 expression and overall survival

240 We examined Spred2 expression in bladder cancer database by Sanchez-Carbayo bladder 

241 2 dataset [34], Blaveri bladder 2 [35], and Stransky bladder [36] in a public cancer 

242 microarray database (ONCOMINE) [40]. As shown in Figure 6A, Spred2 expression was 

243 significantly increased in non-invasive superficial bladder cancer compared to that in 

244 normal bladder samples (Fig 6A, left). Of note, Spred2 expression in infiltrating bladder 

245 urothelial carcinoma was lower than superficial bladder cancer, which was also found in 

246 the other datasets (Fig 6A, middle and right). The decreased Spred2 expression in 
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247 infiltrating bladder urothelial carcinoma may have affected cancer survival. We then 

248 assessed the prognostic value of Spred2 in patients with bladder carcinoma in Kaplan-

249 Meier Plotter (www.kmplot.com). The overall survival for 30 months was higher in 

250 patients with higher Spred2 mRNA level (Fig 6B). Although there was no statistical 

251 significance in the 150 month-overall survival between the groups (Fig 6C, upper panel), 

252 the median survival in Spred2 high expression cohort (42.33 months) was 1.6 times longer 

253 than low expression cohort (28.63 months) (Fig 6C, lower panel). Thus, the expression 

254 level of Spred2 can be clinically important in the cancer progression. 

255

256 Discussion
257 Cancer cell growth is mediated by various cell signaling pathways. Among them, 

258 Ras/Raf/ERK-MAPK is often up-regulated in human diseases including cancer [41], and 

259 as such represents an attractive target for the development of anti-cancer drugs [19]. This 

260 pathway is also important in urothelial cell migration and invasion [42]. A better 

261 understanding of the endogenous negative regulatory mechanism(s) could improve 

262 strategies for preventing and treating bladder urothelial tumors. To the best of our 

263 knowledge, this is the first report to show Spred2 mRNA and protein expression in 

264 bladder urothelial tumors in all categories, ranging from non-tumor to invasive cancer. 

265 Previous studies demonstrated that Spred2 mRNA expression was decreased in 

266 hepatocellular carcinoma (HCC) [31] and prostatic adenocarcinoma [32], comparing with 

267 that in adjacent non-tumor tissue and benign gland, respectively. Down-regulated Spred2 

268 expression was particularly evident in higher grade prostate cancers [32], and Spred2 

269 expression levels in HCC tissue were inversely correlated with the incidence of tumor 

270 invasion and metastasis [31]. These previous findings indicated that Spred2 may function 

271 as a potential tumor suppressor gene. In our study, Spred2 mRNA expression was 

272 increased in non-invasive cancer HGPUC, whereas the expression in invasive bladder 

273 cancer IUC was significantly decreased as compared to that in non-invasive carcinoma 

274 HGPUC. Consistently, database analyses showed that Spred2 expression in infiltrating 

275 bladder urothelial carcinoma (invasive) was lower than that in superficial bladder cancer 
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276 (non-invasive). Protein expression of functional Spred2, a membranous positive staining, 

277 was frequently observed in LGPUC and HGPUC, but not in CIS and IUC. Thus, Spred2 

278 may play a role as a tumor suppressor in non-invasive carcinomas, but the function 

279 appears to be lost in invasive carcinoma. 

280 Spred2 was discovered as a membrane-associated substrates of receptor tyrosine 

281 kinases [17, 37]. However; our data indicated that Spred2 was found not only in the 

282 membrane but in the cytoplasm in urothelial tumors. Previous confocal microscopy 

283 analyses revealed that Spred2 was present in cytoplasm and co-localized with neighbor 

284 of BRCA1 (NBR1) [43] or microtubule-associated protein 1A/1B-light chain 3 

285 (LC3) [44]. Very interestingly, Spred2-NBR1 complex enhanced Spred2-mediated ERK 

286 inhibition upon stimulation with fibroblast growth factor (FGF), suggesting that 

287 Spred2/NBR1-dependent down-regulation of ERK-MAPK is achieved via directed 

288 endosomal trafficking of activated receptors [43]. Sprouty proteins, a member of the 

289 Sprouty/Spred family, were distributed throughout the cytosol, which were underwent 

290 rapid translation to membrane ruffles following epidermal growth factor (EGF) 

291 stimulation [45]. In urothelial tumors, we showed that membranous Spred2 protein was 

292 favorably detected in cancer categories, especially LGPUC and HGPUC. These results 

293 indicate that Spred2 may transition from cytoplasm to cell membrane by various stimuli 

294 in the cancer microenvironment, exerting the function.

295 ERK activation was associated with increased Ki67 expression in salivary gland 

296 mucoepidermoid carcinoma [39]. Since Spred2 inhibits the ERK pathway and subsequent 

297 cell proliferation, we compared the relationship between membranous Spred2 protein 

298 expression and pERK score/Ki67 index in each cancer category. Interestingly, HGPUC 

299 displaying membranous Spred2 expression showed significantly lower pERK score and 

300 Ki67 index, as compared to membrane-negative expression. On the other hand, pERK 

301 score was not affected by membranous Spred2 expression in CIS and IUC. Spred2 is 

302 presumed to be effective only after reaching a certain level of membrane expression. It 

303 appears that ERK activation was so strong in CIS and IUC that concurrent membranous 

304 Spred2 expression might be insufficient to suppress the aberrant ERK activation in CIS 
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305 and IUC. Interestingly, Ki67 index was decreased in IUC with membranous Spred2 

306 expression, although pERK score was not altered by membranous Spred2 expression. 

307 Spred2 may downregulate cancer cell proliferation through ERK-MAPK independent 

308 pathway in IUC. Spred2 gene mutations can be frequently seen in bladder urothelial 

309 carcinoma (Supplementary Fig. 2). The mutated Spred2 may function differently.

310 Spred2 mRNA expression in CIS was as high as that in HGPUC, however; 75% of 

311 CIS showed negative membranous Spred2 staining and only 15% of CIS showed positive 

312 membranous Spred2 staining. It remains unclear how Spred2 protein expression is 

313 regulated in CIS. The poor correlations were generally reported between the level of 

314 mRNA and protein [46, 47]. There are many complicated and varied post-transcriptional 

315 mechanisms; post-transcriptional, translational and protein degradation regulation. CIS 

316 appears to be the critical turning-point to control the complex regulation. Further study is 

317 necessary to understand the specific mechanisms regulating Spred2 mRNA and protein 

318 expression.

319 In conclusion, Spred2 mRNA and protein expression was up-regulated as the grade 

320 increased in non-invasive papillary urothelial carcinomas. Membranous Spred2 

321 expression in HGPUC, but not in CIS and IUC, correlated with significantly low levels 

322 of ERK activity. In bladder cancer, HGPUC is clinically important because tumor grows 

323 more quickly and more likely spread, and tumor progression (invasion) was identified in 

324 40% of all cases [48]. Our present study suggests that Spred2 functions to suppress the 

325 growth and progression of cancer in non-invasive bladder cancer through suppressing the 

326 ERK pathway, and this regulatory mechanism does not function in invasive bladder 

327 cancer.

328

329 Supporting information
330 S1 Fig. Immunoreactivity of Spred2 antibody. H1993 cells cultured on Lab-Tek II 

331 Slide (8 Chamber, Electron Microscopy Sciences, Hatfield, PA, USA) were transfected 

332 with Spred2 expression plasmid (OriGene, Rockville, MD, USA) or control plasmid 

333 (OriGene) using turbofectin 8.0 (OriGene). The cells were fixed in 95% ethanol and 
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334 immunostained with anti-Spred2 polyclonal antibody using the polymer method (Polink-

335 2 Plus HRP RABBIT with DAB kit, GBI, Bothell, WA, USA). Spred2 positive cells were 

336 shown in brown.

337

338 S2 Fig. The mutation of Spred2 in cancers. Data were from TCGA Pancancer Atlas 

339 from cBioPortal for Cancer Genomics (https://www.cbioportal.org/results/plots). (A) The 

340 Spred2 mutations in different cancer. Bladder cancer is the 3rd place having mutation of 

341 Spred2 among cancers. (B) The distribution of mutations on the domain structure of 

342 Spred2 in bladder urothelial carcinoma. 

343
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504 Figure legends
505

506 Fig 1. Spred2 mRNA expression in urothelial tumors. (A) Representative photographs 

507 of HE- (original magnification 400×) and in situ hybridization-sections from each 

508 category are shown. Spred2 mRNA expression was presented by red dots. (B) The 

509 number of the red-dots per cell was counted under microscope and Spred2 mRNA 

510 expression level was shown per one cell from each category (N: non-tumor; n=10, P: 

511 PUNLMP; n=10, L: LGPUC; n=15, H: HGPUC; n=18, C: CIS; n=18, and I: IUC; n=14). 

512 Data were mean ± SEM. #p<0.05, §p<0.01, ¶p<0.001, *p<0.0001 (Dunn’s multiple 

513 comparison test). 

514

515 Fig 2. Immunohistochemical analyses of Spred2 protein expression in urothelial 

516 tumors. (A) Representative photographs of Spred2 immunohistochemistry (original 

517 magnification 400×) from each category are shown. (B) Expression levels of Spred2 

518 mRNA in each Spred2 staining pattern were shown. C; cytoplasm, M; membrane. (C-M-; 

519 n=81, C+M-; n=122, C-M+; n=54, C+M+; n=11). Data were mean ± SEM. #p<0.05, 

520 §p<0.01 (Dunn’s multiple comparison test). (C) The positive rate of membranous Spred2 

521 expression in each category was shown (N: non-tumor; n=101, P: PUNLMP; n=19, L: 

522 LGPUC; n=41, H: HGPUC; n=43, C: CIS; n=39, and I: IUC; n=32). Data were mean ± 

523 SEM. #p<0.05, §p<0.01 (Multiple Fisher's exact test).

524

525 Fig 3. pERK score in urothelial tumors. (A) Representative photographs of pERK 

526 immunohistochemistry (original magnification 400×) from each category are shown. (B) 

527 pERK staining intensity was evaluated and scored (0-5), and pERK score in each category 

528 was shown (N: non-tumor; n=101, P: PUNLMP; n=19, L: LGPUC; n=41, H: HGPUC; 

529 n=43, C: CIS; n=39, and I: IUC; n=32). Data were mean ± SEM. §p<0.01, ¶p<0.001, 

530 *p<0.0001 (Dunn’s multiple comparison test).

531

532 Fig 4. Ki67 index in urothelial tumors. (A) Representative photographs of Ki67 
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533 immunohistochemistry (original magnification 400×) from each category are shown. (B) 

534 Ki67 index in each category was shown (N: non-tumor; n=101, P: PUNLMP; n=19, L: 

535 LGPUC; n=41, H: HGPUC; n=43, C: CIS; n=39, and I: IUC; n=32). Data were mean ± 

536 SEM. #p<0.05, §p<0.01, ¶p<0.001, *p<0.0001 (Dunn’s multiple comparison test). 

537

538 Figure 5. Comparison between pERK score/Ki67 index and membranous Spred2 

539 expression. pERK score (A) and Ki67 index (B) were compared between membranous 

540 Spred2 negative (M-) and positive (M+) in cancer categories (LGPUC; n=41, HGPUC; 

541 n=43, CIS; n=39, and IUC; n=32). Bar in each graph represents median. #p<0.05, §p<0.01 

542 (Mann-Whitney test). 

543

544 Fig 6. Spred2 expression in overall survival of patients with bladder cancer. (A) 

545 Statistical analyses of Spred2 expression in normal, superficial bladder cancer 

546 (superficial) and infiltrating bladder urothelial carcinoma (infiltrating) from 3 different 

547 datasets (Sanchez-Carbayo bladder 2, Blaveri bladder 2, and Stransky bladder) were 

548 shown. The numbers in parentheses indicates the number of samples. §p<0.01, *p<0.0001 

549 (unpaired two-tailed t test). (B, C) Kaplan-Meier analysis of the data in www.kmplot.com 

550 was used to determine the survival probability for 30 months (B) and 150 months (C) of 

551 patients with high or low Spred2 expression, followed by the log-rank test.
552
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553 Table 1. Cases for the enrolled 275 patients.

features　

　
cases (%)

number of examined

by IHC/ISH progression nuclear grade invasiveness

non-tumor 101 (36.7) 101/10 - - -

PUNLMP 19 (6.9) 19/10 slow very low non-invasive

LGPUC 41 (14.9) 41/15 slow low non-invasive

HGPUC 43 (15.6) 43/18 quick high non-invasive

CIS 39 (14.2) 39/18 quick high non-invasive

IUC 32 (11.6) 32/14 quick high>>low invasive

554 non-tumor; non-tumor urothelium, PUNLMP; papillary urothelial neoplasm of low malignant 

555 potential, LGPUC; low-grade papillary urothelial carcinoma, HGPUC; high-grade urothelial 

556 carcinoma, CIS; carcinoma in situ, IUC; infiltrating urothelial carcinoma. IHC; 

557 immunohistochemistry, ISH; in situ hybridization.

558
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559 Table 2. Subcellular immunolocalization of Spred2 in each tumor category

C-M- C+M- C-M+ C+M+ total cases

non-tumor 0 101 0 0 101

PUNLMP 14 4 1 0 19

LGPUC 15 6 20 0 41

HGPUC 8 7 22 6 43

CIS 29 4 4 2 39

IUC 22 0 7 3 32

total cases 88 122 54 11 275

560 non-tumor; non-tumor urothelium, PUNLMP; papillary urothelial neoplasm of low malignant 

561 potential, LGPUC; low-grade papillary urothelial carcinoma, HGPUC; high-grade urothelial 

562 carcinoma, CIS; carcinoma in situ, IUC; infiltrating urothelial carcinoma. IHC; 

563 immunohistochemistry, ISH; in situ hybridization. C; cytoplasm, M; membrane.

564
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565 Table 3. pERK score in Spred2 immunostaining pattern

566 non-tumor; non-tumor urothelium, PUNLMP; papillary urothelial neoplasm of low malignant 

567 potential, LGPUC; low-grade papillary urothelial carcinoma, HGPUC; high-grade urothelial 

568 carcinoma, CIS; carcinoma in situ, IUC; infiltrating urothelial carcinoma. IHC; 

569 immunohistochemistry, ISH; in situ hybridization.

Spred2 pattern  pERK score 1 2 3 4 5 total cases

C-M- 0 0 0 0 0 0

C+M- 67 21 13 0 0 101

C-M+ 0 0 0 0 0 0

non-tumor

C+M+ 0 0 0 0 0 0

C-M- 11 3 0 0 0 14

C+M- 2 2 0 0 0 4

C-M+ 0 1 0 0 0 1

PUNLMP

C+M+ 0 0 0 0 0 0

C-M- 3 4 8 0 0 15

C+M- 1 0 3 2 0 6

C-M+ 0 5 13 2 0 20

LGPUC

C+M+ 0 0 0 0 0 0

C-M- 0 1 2 4 1 8

C+M- 0 0 2 3 2 7

C-M+ 0 4 14 4 0 22

HGPUC

C+M+ 0 0 1 3 2 6

C-M- 0 1 11 11 6 29

C+M- 0 0 2 1 1 4

C-M+ 0 0 2 1 1 4

CIS

C+M+ 0 0 1 1 0 2

C-M- 0 0 4 11 7 22

C+M- 0 0 0 0 0 0

C-M+ 0 1 1 3 2 7

IUC

C+M+ 0 0 1 2 0 3
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