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Abstract 

Sleep quality changes dramatically from young to old age, but its effects on brain dynamics 

and cognitive functions are not yet fully specified. We applied Hidden Markov Models (HMMs) to 

resting-state MEG data from a large cohort (N=564) of population-based adults (aged 18-88), in order 

to characterize transient neural networks and to relate their temporal dynamics to sleep quality and 

to cognitive performance. Using multivariate analyses of brain-sleep profiles and of brain-cognition 

profiles, we found that an age-related “neural shift”, expressed as decreased occurrence of “lower-

order” brain networks, coupled with increased occurrence of “higher-order” networks, was associated 

with both increased sleep dysfunction and decreased fluid intelligence above and beyond age. These 

results suggest that poor sleep quality, as evident in ageing, may lead to a behavior-related shift in 

neural dynamics.    
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1 Introduction 

With the increasing proportion of older adults in the worldwide population (Beard et al., 2016), 

there is a pressing need to understand the neurobiology of healthy ageing. Sleep quality changes 

dramatically from young to older age, and might be both causative and indicative of brain changes in 

healthy ageing  (e.g., Feinberg et al., 1967; Fjell et al., 2018; Scullin & Bliwise, 2015). As people get 

older, sleep becomes more fragmented (e.g., Bliwise et al., 2009), less efficient (Gadie et al., 2017) 

and there is a decline in the quantity and quality of the “deep” stages of sleep, such as slow-wave 

sleep (SWS) and REM sleep (Ohayon et al., 2004; Varga et al., 2016). Among older adults, sleep 

problems have been associated with increased risk of developing cardiovascular disease (Wu et al., 

2018), dementia (Shi et al., 2018), and mental health problems (Roberts et al., 2000). An outstanding 

question is how these variations in sleep quality are related to brain function and cognitive 

performance, which also change with age.  

One way to investigate the relations between sleep quality and brain functioning is by relating 

sleep measures to resting-state functional connectivity. In recent decades, resting-state functional 

connectivity, measured mainly with functional magnetic resonance imaging (fMRI), have proved 

effective in distinguishing various patient groups from controls (e.g., Alzheimer disease, major 

depression, schizophrenia; see for example Lee et al., 2013). Substantial work has also used resting-

state fMRI (rsfMRI) to examine the effects of age on functional connectivity (Andrews-Hanna et al., 

2007; Chan et al., 2014; Ferreira & Busatto, 2013; Geerligs et al., 2015; Grady et al., 2016; Grady, 2008) 

with consequences for cognitive functioning (Bethlehem et al., 2020; Tsvetanov et al., 2016). 

Nevertheless, a recent attempt to relate resting-state functional connectivity to sleep quality, revealed 

no association between functional connectivity within or between resting-state networks and any 

objective or subjective sleep parameters (Lysen et al., 2020).  

Decades-long investigation of sleep dysfunction and cognitive performance in healthy aging 

also yielded mixed results. Some studies suggest a link between poor sleep and reduced cognitive 
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performance at older age (Feinberg et al., 1967; Hokett et al., 2021). For example, using a large cohorts 

of healthy older adults (N~1500, 65+ years old), Tsapanou et al., (2017) showed that poor sleep quality 

and longer sleep duration were linked to low memory performance. In another large-scale multicohort 

study, sleep problems were associated with subjective cognitive decline in multiple cognitive domains 

including memory, naming, orientation and calculations (Tsapanou et al., 2019). Furthermore, it has 

been shown that, for older adults, subjective sleep problems in later life were predictive of cognitive 

decline as indicated by their score in the Mini Mental Status Examination (MMSE; Folstein et al., 1975). 

Nevertheless, others have indicated that these relations might be more limited. In particular, following 

a comprehensive review of seven correlational and experimental domains, Scullin & Bliwise (2015) 

concluded that in older adults, variability in sleep often does not relate to cognitive functioning, and 

that solely improving sleep may not reverse cognitive impairments.  

The discrepancy between studies investigating the abovementioned associations between 

sleep quality, neural mechanisms, and cognitive performance in healthy ageing, might be due to 

several methodological factors. First, the relations between sleep quality and the brain, as measured 

with fMRI, might be affected by age-dependent confounding factors like cerebrovascular reactivity 

and head motion (Geerligs et al., 2017; Lehmann et al., 2017; Power et al., 2012; Tsvetanov et al., 

2015). While some of these confounds, like neurovascular coupling, can be addressed by more 

sophisticated modelling (Tsvetanov, Henson, et al., 2021), others like head-motion are notoriously 

difficult to correct (Maknojia et al., 2019). Moreover, the brain-sleep relations might not be fully 

captured by static measures of functional connectivity. In particular, dynamic fluctuations in activity 

and connectivity can support flexible reorganization and coordination of neural networks (e.g., Allen 

et al., 2014), prompting the extension of functional connectivity to further include dynamic measures 

(e.g., Cabral et al., 2017; Vidaurre et al., 2018). Nevertheless, the fundamentally limited temporal 

resolution of fMRI (owing to the sluggish vascular response and relatively slow image acquisition 

times), precludes it from disclosing the potentially richer dynamics in brain connectivity above 

approximately 0.1 Hz. Finally, another potential source for this discrepancy might be the multivariate 
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nature of the relations between sleep patterns, cognitive patterns, and the associated neural 

mechanisms. Indeed, a recent study in which age-related differences in sleep quality were associated 

with health outcomes across multiple domains, suggested that lifespan changes in sleep quality are 

multifaceted and not captured well by summary measures (Gadie et al., 2017).   

To overcome these problems, in the current study we characterized transient resting-state 

neural dynamics that are related to sleep quality, cognitive performance and age using a multivariate 

approach. As an alternative to the indirect hemodynamic fMRI, we used magnetoencephalography 

(MEG) as a direct measure of neural activity sampled at 1kHz and higher. Unlike fMRI, MEG is not 

affected by age-related changes in vascular factors (Tsvetanov et al., 2015), and allows simpler and 

more robust methods for correcting head-motion artifacts (e.g., Taulu & Simola, 2006). We employed 

a recently developed analytical approach that offers the ability to measure dynamic functional 

connectivity in terms of transient states of stable patterns of activity and connectivity that last a few 

hundred milliseconds (Baker et al., 2014), well beyond the temporal resolution of fMRI. Furthermore, 

to account for the multifaceted nature of the factors considered in our study, we used Partial Least 

Squares (PLS) to relate patterns of neural dynamics to profiles of sleep quality and cognitive 

performance.  

More specifically, we exploited a resting-state MEG dataset obtained from 564, population-

based individuals, who were sampled uniformly across the adult-lifespan (18 to 88 years of age) as 

part of the Cam-CAN project (www.cam-can.org). In addition to MEG scanning, these individuals also 

completed a self-report sleep questionnaire (PSQI: Pittsburgh Sleep Quality Index; Buysse et al., 1989) 

and a wide range of cognitive tasks. We utilized the characteristics of the transient neural dynamics 

using Hidden Markov Models (HMM; Baker et al., 2014; Brookes et al., 2018; Hawkins et al., 2020; 

Vidaurre et al., 2016, 2017, 2018) as inferred in our previous study (Tibon et al., 2021). HMM is a data-

driven method that identifies a sequence of “states”, where each state corresponds to a unique 

pattern of brain covariance that reoccurs at different points in time. By quantifying the time-series of 
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MEG data as a sequence of transient states, the HMM provides information about the periods of time 

at which each state is active, enabling the characterization of its temporal dynamics. This technique 

had been used to identify neural dynamics in resting-state or task MEG datasets (Baker et al., 2014; 

Hawkins et al., 2020; Vidaurre et al., 2016), and was recently linked to age and cognition in a large-

scale cohort (Tibon et al., 2021). The size of the Cam-CAN cohort allowed us to then take a multivariate 

approach, namely, to use PLS analysis to relate the temporal properties of the data-driven HMM states 

to profiles of sleep quality and cognitive performance.  

Using similar methods, we have previously observed a “neural shift”, expressed as increased 

occurrence of brain states involving “higher-order” networks and decreased occurrence of brain states 

that involve early visual networks. This neural shift was associated with both increased age and 

decreased fluid intelligence, suggesting that it likely reflects reduction in neural efficiency rather than 

compensation (Tibon et al., 2021). For the current study, in accord with the inefficiency account, we 

predicted that the neural shift will be further associated with increased sleep dysfunction. 

2 Materials and Methods 

2.1 Participants 

A population-based sample of 708 healthy human adults (359 women and 349 men) was 

recruited as part of Stage 2 of the Cambridge Centre Aging and Neuroscience (Cam-CAN; www.cam-

can.org; (Shafto et al., 2014). Ethical approval for the study was obtained from the Cambridgeshire 2 

(now East of England-Cambridge Central Research Ethics Committee), and participants gave full 

informed consent. Exclusion criteria included poor vision (below 20/50 on Snellen test; Snellen, 1862) 

and poor hearing (threshold 35 dB at 1000 Hz in both ears), ongoing or serious past drug abuse as 

assessed by the Drug Abuse Screening Test (DAST-20; Skinner, 1982), significant psychiatric disorder 

(e.g., schizophrenia, bipolar disorder, personality disorder), neurological disease (e.g., known stroke, 

epilepsy, traumatic brain injury), low score in the Mini Mental State Exam (MMSE; 24 or lower; Folstein 
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et al., 1975), or poor English knowledge (non-native or non-bilingual English speakers); a detailed 

description of the exclusion criteria can be found in Shafto et al. (2014), Table 1. Of these, only 

participants who were considered for our previous study (Tibon et al., 2021; N=594, following the 

removal of 98 participants who did not have full neuroimaging data, 15 participants with poor MEG-

MRI co-registration, and one participant who had no visits to one of the HMM states), and had full 

PSQI data (in all 7 measures of sleep quality), were considered for the current study. Thus, the final 

sample included 564 participants (age range 18-88).  

2.2 Sleep measures 

Sleep quality was assessed using the PSQI (Buysse et al., 1989), a well-validated self-report 

questionnaire designed to assist in the diagnosis of sleep disorders. The questions are grouped into 

seven components including overall sleep quality, sleep latency, sleep duration, sleep efficiency, sleep 

disturbance, sleep medication use, and daytime dysfunction due to sleepiness. Each of the sleep 

components yields a score on an ordinal scale, ranging from 0 (good sleep/no problems) to 3 (poor 

sleep/severe problems), with higher scores reflecting greater dysfunction. Scores were obtained from 

Gadie et al. (2017). 

2.3 Cognitive tasks 

Thirteen cognitive tasks, performed outside the scanner, were used to assess five broad 

cognitive domains, including executive function, memory, language, processing speed and emotional 

processing. The tasks are fully detailed in (Shafto et al., 2014). Task scores, also used in our previous 

study (Tibon et al., 2021; see Table 1 for full details), were obtained from Borgeest et al. (2018), in 

which missing data (<12% in all tasks) were interpolated using Full Information Maximum Likelihood 

(Enders & Bandalos, 2001) across the full Stage 2 sample (n = 708), as implemented in the Lavaan R 

package (Rosseel, 2012).  
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2.4 MEG resting-state data 

MEG resting-state data included 4 temporal characteristics for 8 inferred brain states (i.e., 32 

measures overall). The acquisition, preprocessing, and analysis pipeline are fully described in Tibon et 

al. (2021), and are summarized in Figure 1. In short, MEG resting-state data were recorded for 8 min 

and 40 s using a 306-channel VectorView MEG system (Elekta Neuromag, Helsinki), preprocessed 

using MaxFilter 2.2.12 software (Elekta Neuromag Oy, Helsinki, Finland), SPM12 

(http://www.fil.ion.ucl.ac.uk/spm), and the OHBA Software Library (OSL; https://ohba-

analysis.github.io/osl-docs/), and co-registered to each participant’s structural T1-weighted MRI. 

Source space activity was then estimated for each participant at every point of an 8 mm whole‐brain 

grid using a single-shell lead-field model and a linearly constrained minimum variance (LCMV) scalar 

beamformer (Van Veen et al., 1997; Woolrich et al., 2011), parcelled into 38 regions of interest (ROIs; 

as in Colclough et al., 2015), and summarized by the first principal component across grid points within 

that parcel. The amplitude envelope of each parcel’s time-course was then calculated using a Hilbert 

transform.  

Group-level exploratory analysis of networks (GLEAN; https://github.com/OHBA-

analysis/GLEAN; Vidaurre et al., 2017) was then applied to the temporally-concatenated envelope 

data across all participants, in order to infer 8 brain states via Hidden Markov Modelling (HMM). 

HMMs describe the dynamics of neural activity as a sequence of transient events, each of which 

corresponds to a visit to a particular brain state. Each state describes the data as coming from a unique 

38-dimensional multivariate normal distribution, defined by a covariance matrix and a mean vector. 

Therefore, each state corresponds to a unique pattern of amplitude envelope variance and covariance 

that reoccurs at different time points. The HMM state time‐courses then define the points in time at 

which each state was “active” or “visited”. These estimated state time‐courses, represented by a 

binary sequence showing the points in time when that state was most probable, were obtained using 

the Viterbi algorithm (Rezek & Roberts, 2005). Using these time-courses, the temporal characteristics 
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of each state were quantified according to four measures of interest: (1) Fractional Occupancy (FO): 

the proportion of time the state was active; (2) Mean Life Time (MLT): the average time spent in the 

state before transitioning to another state; (3) Number of Occurrences (NO): the number of times the 

state was active; and (4) Mean Interval Length (MIL): the average duration between recurring visits to 

that state. The spatial and temporal characteristics of the HMM states are fully described in Tibon et 

al., 2021; Figures 2 and 3). The states include three distributed frontotemporoparietal networks (FTP1, 

FTP2, FTP3), a higher-order visual network (HOV), two early visual networks (EV1, EV2) and two 

sensorimotor networks (SM1, SM2). The spatial maps associated with the states are shown in Figure 

2, Panel A.   

 

Figure 1. Overview of processing and analysis pipeline, adapted from Tibon et al. (2021).   

 

2.5 Relating HMM states to sleep quality and to cognition (Partial Least Squares analysis) 

For the brain-sleep analysis, we adopted a two-level procedure (Passamonti et al., 2019; 

Tsvetanov, Gazzina, et al., 2021). In the first-level analysis, we assessed the multidimensional 
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relationships between temporal characteristics of the HMM states and sleep quality using PLS 

implementation in Matlab, the Mathworks Inc. This analysis describes the linear relationships 

between the two multivariate data sets by providing pairs of latent factors, as linear combinations of 

the original variables that are optimized to maximize their covariance. It is similar to the canonical 

correlation analysis (CCA) used in our previous study (Tibon et al., 2021), which instead maximizes the 

correlation between the latent variables. Although both CCA and PLS are useful to characterize 

relationships between two datasets, PLS has been suggested as a more appropriate tool for mixed 

datasets  (Beaton et al., 2019; Grellmann et al., 2015), as is in our case, with the continuous and ordinal 

nature of the HMM and sleep data, respectively. All variables were z-scored before being subjected 

to the PLS analysis. First, we used a permutation-based PLS with 10,000 permutations to relate the 4 

temporal characteristics across all 8 HMM states (Set 1, 32 variables) to the 7 sleep measures (Set 2).  

Once we established the relationships between the HMM brain measures and the sleep 

measures, we asked whether the relationship between the HMM profile and the sleep profile (i.e., the 

relations between the participants’ scores on the latent variables obtained by the PLS analysis) varied 

with age, using a moderation analysis (see Tsvetanov et al., 2016, 2018, for a similar approach with 

different measures). Specifically, we constructed a second-level multiple linear model where HMM 

scores (on the latent variable), age, and their interaction term (HMM scores × age) were used as 

independent variables, and sleep scores (for the paired latent variable) were used as the dependent 

variable (all statistical tests were two-sided). 

We then conducted another PLS analysis to relate the 32 HMM measures (Set 1) to the 13 

cognitive measures (Set 2). This analysis resembles that in our previous study (Tibon et al., 2021) but 

uses PLS (instead of CCA) and a somewhat different sample (due to the exclusion of additional 

participants for which sleep data were not available). Similarly to our previous report, this analysis 

revealed a neural “shift” expressed as decreased occurrence of “lower-order” brain networks, and 

increased occurrence of “higher-order” networks, which was associated with decreased fluid 
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intelligence. The reason to repeat this analysis in the current study was to obtain PLS scores and 

loadings that would be comparable with those obtained by the abovementioned PLS analysis, relating 

the HMM states to the sleep measures. Using these comparable scores, we asked whether the neural 

shift that was observed in our previous study, is also related to the pattern of sleep quality observed 

in the current study. To this end, we correlated both the HMM loadings and the profile scores (in two 

separate analyses), obtained by the first PLS analysis (i.e., which related HMM states to sleep quality) 

with the HMM loadings and profile scores obtained by the second PLS analysis (which related HMM 

states to cognition). Significant correlations would indicate that the pattern that was obtained for 

sleep quality and the pattern that was obtained for cognition are associated with the same neural 

pattern.  

2.6 Data and code availability 

Raw data from the Cam-CAN project are available from http://camcan-archive.mrc-

cbu.cam.ac.uk, subject to conditions specified on that website. For a complete description of Cam-

CAN data and pipelines, see Shafto et al. (2014) and Taylor et al. (2017). In addition, pre-processed 

mean data used for analyses and figures, together with the analysis code, are available on: 

https://osf.io/6nh5w/?view_only=ce2a24c365554a0ea49424900fa41a95.    

3 Results 

3.1 Relating HMM states to sleep measures 

Our first step was to apply PLS to relate the 32 temporal characteristics of the HMM states (4 

metrics for each of the 8 states) to the 7 sleep measures. This analysis identified one significant pair 

of latent factors (p = .01, based on a null distribution of 10,000 permutations). Figure 2, Panel A 

presents the loadings of this significant pair. For Set 1 (HMM data), the three frontotemporoparietal 

states (FTP1, FTP2, FTP3), and one of the sensorimotor states (SM1) showed positive loadings for the 
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FO and NO measures, and negative loadings for the MIL measure. Furthermore, the first early visual 

state (EV1) showed negative loadings for FO, MLT, and NO and positive loadings for MIL. The second 

early visual state (EV2) displayed a similar pattern to that of EV1 for NO and for MIL, but not for NO 

(in which case the loadings for EV2 were positive). The higher order visual state (HOV) and the second 

sensorimotor state (SM2) were not strongly associated with this pattern of sleep quality (all loadings 

< .3). For Set 2 (sleep data), all of the components showed positive loadings (reflecting greater sleep 

dysfunction). The highest loadings were obtained for sleep efficiency, followed by sleep duration, and 

use of sleep medications. The lowest loadings were obtained for daytime dysfunction due to 

sleepiness. Taken together, poor sleep quality was associated with more and longer occurrences of 

states involving frontotemporoparietal regions and a state involving sensorimotor regions, and fewer, 

shorter occurrences of an early visual state.  

The results obtained with the PLS analysis identified a neural shift that resembles the one 

related to cognitive decline as observed in our previous study (Tibon et al., 2021). However, before 

exploring this association further, we asked whether the relationship between the HMM brain profile 

and the sleep profile differs across age groups and exists beyond age. For this moderation analysis, we 

constructed a multiple linear regression model that included participants’ scores for the HMM profile, 

their age and the interaction (HMM profile × age) as predictors, and participants’ scores for the sleep 

profile as the dependent variable. The HMM scores were significantly associated with sleep scores 

after accounting for the main effect of age (β = .05, t(560) = 2.4,  p = .017), demonstrating that the 

above brain-sleep relationship was not driven solely by age effects. The sleep scores were further 

associated with age (β = -.29, t(560) = -5.5,  p < .001), verifying previous findings of age-related decline 

in sleep quality (e.g., Gadie et al., 2017). The interaction between age and HMM profile was not 

significant (β = .01, t(560) = .63,  p = .5). 
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Figure 2. (A) Loadings obtained via the PLS analysis relating neural dynamics (HMM) measures with sleep measures. Solid 
outlines represent loadings greater than |.2|, whereas dashed outlines represent loadings smaller than |.2|. Loadings for 
network measures are shown in different colors, representing different types of states. HMM measures are indicated as FO 
(fractional occupancy, MLT (mean lifetime), NO (number of occurrences), and MIL (mean interval length). The various states 
are indicated as FTP (frontotemporoparietal), HOV (higher-order visual), EV (early-visual) and SM (sensorimotor). 
Corresponding HMM state maps (obtained from Tibon et al., 2021) are inset. For clarity, loadings for each network are shown 
separately, although in practice all equally contributed to a single PLS analysis. Loadings for the sleep measures are shown 
in gray (bottom-left panel). Sleep measures are sleep quality, latency, duration, efficiency, disturbance, sleep medication use 
(Meds), and daytime dysfunction (DayDis). (B) Scatter plot of the bivariate association between the loadings for the HMM 
measures obtained via the brain-sleep PLS analysis and the HMM measures obtained via the brain-cognition PLS analysis. 
Different colors reflect different types of states (FTP, HOV, EV, or SM), and correspond to the same color coding used in Panel 
A. (C) Scatter plot of the bivariate association between the scores for the HMM brain profile obtained via the brain-sleep PLS 
analysis and the HMM brain profile obtained via the brain-cognition PLS analysis. Two outliers were removed for the purpose 
of this visualization. This removal did not change the results (i.e., the correlation between these measures slightly increased 
and remained highly significant, r = .81, p < .0001). In this plot, each data-point represents one participant, whereas in Panel 
B above each data-point represents one measure.      

 

3.2 Relating HMM states to cognition (verification of previous findings)  

Next, we applied PLS to relate the 32 temporal characteristics of the HMM states (4 metrics for 

each of the 8 states) to the 13 cognitive measures. This verifies the results of our previous study (Tibon 

et al., 2021), but uses a comparable method and sample to those that were used here, to test the 
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association between HMM states and sleep. This analysis revealed a significant pair of latent variables 

(p = .01), depicting a pattern that highly resembled the pattern obtained in our previous study (two 

additional significant pairs depicted a different pattern, and were not explored further). The loadings 

obtained for this pair are shown in Supplementary Figure 1, together with the loadings obtained via 

CCA as in our previous study, in order to allow direct comparison. Although some of the loadings 

changed slightly, they were highly comparable with our previous results. Thus, here too, we observed 

that greater involvement of frontotemporoparietal states and reduced involvement of early visual 

states are associated with decreased fluid intelligence.  

3.3 Correspondence between HMM profiles  

Our final step was to investigate whether the neural shift that was associated with sleep 

dysfunction is the same as the one that was associated with decreased fluid intelligence. To this end, 

we correlated the HMM loadings obtained from the PLS analysis that related the HMM states to sleep 

measures, with the HMM loadings obtained from the PLS analysis that related the HMM states to 

cognitive measures. The correlation between these measures was highly significant, r = .83, p < .0001. 

However, as shown in Figure 2, Panel B, some states were more similar across the two PLS analyses 

than others. In particular, whereas the loadings obtained for the frontotemporoparietal, high-order 

visual, and somatosensory states were highly similar, noticeable variations were observed for the 

early-visual states. Finally, we correlated participants’ scores for the HMM profile obtained from the 

PLS analysis that related the HMM states to sleep measures with their scores for the HMM profile 

obtained from the PLS analysis that related the HMM states to cognitive measures. The correlation 

between these measures was also highly significant, r = .78, p < .0001.  

4 Discussion 

The results of our study show that transient neural dynamics, particularly those of 

frontotemporoparietal and early-visual states, are associated with sleep dysfunction. We found that 
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increased sleep dysfunction is associated with increased occurrence of brain states involving “higher-

order” networks and decreased occurrence of a brain state that involves an early visual network. 

Importantly, the same neural pattern was associated with decreased fluid intelligence and increased 

age (originally reported in Tibon et al., 2021, and verified in the current study). In our previous study 

(Tibon et al., 2021), borrowing from the approach that was applied to explain the posterior-to-anterior 

shift with ageing (PASA), commonly observed with fMRI during task (Davis et al., 2008; Glisky et al., 

2001; Grady, 2012; Grady et al., 1994; Morcom & Henson, 2018; Nyberg et al., 2012; Park et al., 2004; 

Park & Reuter-Lorenz, 2009; Raz & Rodrigue, 2006; West, 2000), we considered two competing 

accounts for the shift from “lower” to “higher” networks that we have observed. The functional 

compensation hypothesis suggests that greater activation of higher-order regions serves to 

compensate for impairments in posterior brain regions, in order to maintain levels of cognitive 

performance. Alternatively, the inefficiency account suggests instead that the increased activation in 

higher-order regions reflects reduced neural efficiency or specificity. The crucial difference between 

these two accounts is that, whereas the functional compensation hypothesis predicts that the shift 

would correlate with better cognitive performance, the inefficiency account predicts the opposite 

pattern. Our previous findings that the neural shift was associated with worse cognitive performance, 

suggested that it represents reduced neural efficiency, thereby supporting the latter account. The 

current study provides further support for the neural inefficiency account by verifying the relations 

between the neural shift and decreased cognition (observed in our previous study) with another 

analytical approach, and by showing that the neural shift is further related to another maladaptive 

pattern—increased sleep dysfunction. 

By using a novel data-driven method to infer brain states from MEG data, we were able to 

overcome some of the limitations of the more common use of fMRI to examine functional 

connectivity, such as confounding effects of vascular health, head motion and the ability to examine 

only very slow dynamics owing to low-frequency fluctuations of the fMRI response. Moreover, by 

using multivariate analyses to relate patterns of neural dynamics to patterns of sleep quality and 
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cognitive performance, we were able to investigate multifaceted profiles that are not captured well 

by summary measures. Indeed, not all measures were equally associated with the neural pattern that 

we have observed. More specifically, as we observed in our previous study (Tibon et al., 2021), the 

cognitive measures of fluid intelligence were highly associated with the neural pattern, whereas those 

that measure crystallised intelligence were not. Similarly, a novel finding of the current study, was that 

while the observed neural pattern was associated with an overall increase in sleep dysfunction, the 

strength of the association with individual sleep measures varied: it was highly associated with sleep 

duration, efficiency, and sleep medication use (loadings > .5), moderately associated with sleep 

quality, latency, and disturbance (loadings > .2), and only loosely associated with daytime dysfunction 

due to sleepiness. 

Using latent class analysis (LCA), Gadie et al. (2017) were able to classify individuals into four 

different classes representing “sleep types”, associated with distinct profiles of “sleep symptoms”. The 

probability of an individual showing the component profile associated with each class changed as a 

function of age for three of these classes labelled “good sleepers”, “inefficient sleepers”, and “delayed 

sleepers”. The component profile of the class labelled “inefficient sleepers” resembled the pattern 

observed in the current study (though notably, was also associated with increased sleep latency). This 

suggests that while age is associated with a general reduction in sleep quality, the neural shift 

observed in our study represents a more specific pattern of reduction. Importantly, our study shows 

that the relations between the neural shift and the sleep pattern cannot be fully attributed to age as 

a moderating factor (i.e., in our moderation analysis, these relations remained significant when 

controlling for age). Thus, in addition to its relation to ageing, the neural shift is further associated 

with inefficient sleep patterns that exist beyond age, throughout the entire adult lifespan.    

An important factor that was associated with the neural shift observed in the current study was 

usage of sleep medications (3rd highest loadings). Interestingly, studies have shown that some sleep 

medications are associated with changes in functional connectivity. For example, in a study by Pflanz 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 23, 2021. ; https://doi.org/10.1101/2021.07.23.453491doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.23.453491
http://creativecommons.org/licenses/by/4.0/


NEURAL DYNAMICS, SLEEP & COGNITIVE AGEING  17 
 

et al. (2015), resting-state functional connectivity was investigated with fMRI, following seven-day 

diazepam administration. The authors found increased connectivity in response to diazepam 

administration in the medial visual network and middle/inferior temporal network. Furthermore, in a 

recent study (Frölich et al., 2020) with a sample of older adults (aged 55-73), infusion of midazolam 

resulted in increased rsfMRI functional connectivity between the dorsal default mode network and 

the posterior salience network. In the current study additional data regarding the kind of sleep 

medications and/or the dosage that was used are not readily available, nor can we infer any causal 

relations between sleep medications and functional connectivity. Therefore, potential associations 

between specific prescriptions and neural patterns cannot be explored further. It is important to note, 

however, that while it is unlikely that the neural shift is solely explained by usage of sleep medications 

(as other sleep measures also had substantial contribution), it is still associated with this factor to 

some extent. These relations between sleep medications and neural patterns should be explored 

further in future studies, especially given our finding that the neural pattern that is associated with 

increased use of medications is linked to reduced cognitive performance and to neural inefficiency.       

In the current study, we observed a strong correlation between the loadings of the HMM 

measures obtained via the brain-sleep PLS analysis, and the HMM measures obtained via the brain-

cognition PLS analysis, suggesting that they represent a highly similar pattern. Nevertheless, not all 

HMM measures were similarly comparable. In particular, while the HMM measures describing the 

frontotempoparietal states were highly similar, those describing the early-visual states were not. This 

is mainly because the observed sleep pattern was only reliably related to one of the early-visual states, 

whereas the observed pattern of cognitive performance was associated with both. We speculate that 

the reason for this discrepancy is that cognitive performance depend more on the visual system than 

sleep quality, and are therefore more strongly associated with particular neural patterns that involve 

these regions.   
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One limitation of our study is that we used cross-sectional data, which precludes direct 

inferences about ageing. However, we are not aware of any longitudinal MEG data on such a large, 

representative population, thus our results could be useful to generate hypotheses for future studies. 

The limitations of the MEG methods used in this study are thoroughly discussed in Tibon et al. (2021). 

In short, some properties of the assumptions and application of the HMM approach (e.g., group 

concatenation, Gaussian observation model, coarse parcellation of ROIs, and a-priori specification of 

8 states) might result in oversimplification of the underlying neural dynamics. Nevertheless, some 

level of simplification is necessary for robust and interpretable modelling. Once the basic patterns are 

established, the parameters of the models can be adjusted to allow further optimization (see also 

discussion in Baker et al., 2014 and Quinn et al., 2018). Moreover, the current study used subjective 

reports of sleep quality. Although the PSQI questionnaire used for this purpose is well validated, it is 

yet to be determined whether the neural pattern that we have observed also correlates with objective 

measures of sleep quality (e.g., duration spent in Slow Wave Sleep; see review of various sleep 

measures in Hokett et al., 2021). Finally, the answers to the sleep questionnaire referred to the last 

month before the evaluation, and may not accurately represent long-term sleep patterns. Despite 

these limitations, our study verifies our previous findings, and further offers novel insights on the 

relationships between patterns of functional neural dynamics and sleep dysfunction in cognitive 

ageing.  
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Supplementary Materials 

 

A.  B.  

  
 

Supplementary Figure 1. Loadings obtained via the analysis relating brain network (HMM) measures with cognitive 

measures using PLS (Panel A) and CCA (Panel B). Overall, the results are highly similar. The CCA results displayed in Panel B 

were obtained using the same method reported in Tibon et al. (2021), but on a subset of the sample (with N=564 instead of 

N=594) due to the exclusion of participants with no sleep measures.  
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