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ABSTRACT

The site frequency spectrum (SFS) is a commonly used statistic to summarize
genetic variation in a sample of genomic sequences from a population. Such a
genomic sample is associated with an imputed genealogical history with attributes
such as branch lengths, coalescence times and the time to the most recent common
ancestor (TMRCA) as well as topological and combinatorial properties. We present
a Bayesian model for sampling from the joint posterior distribution of coalescence
times conditional on the SFS associated with a sample of sequences in the absence
of selection. In this model, the combinatorial properties of a genealogy, which is
represented as a coalescent tree, are expressed as matrices. This facilitates the
calculation of likelihoods and the effective sampling of the entire space of tree
structures according to the Equal Rates Markov (or Yule-type) measure. Unlike
previous methods, assumptions as to the type of stochastic process that generated the
genealogical tree are not required. Novel approaches to defining both uninformative
and informative prior distributions are employed. The uncertainty in inference due to
the stochastic nature of mutation and the unknown tree structure is expressed by the
shape of the posterior distributions. The method is implemented using the general
purpose Markov Chain Monte Carlo software PyMC3. From the sampled posterior
distribution of coalescence times, one can also infer related quantities such as the
number of ancestors of a sample at a given time in the past (ancestral distribution)
and the probability of specific relationships between branch lengths (for example, that
the most recent branch is longer than all the others). The performance of the method
is evaluated against simulated data and is also applied to historic mitochondrial data
from the Nuu-Chah-Nulth people of North America. The method can be used to obtain
estimates of the TMRCA of the sample. The relationship of these estimates to those
given by “Thomson’s estimator” is explored.

Keywords— coalescent theory; Bayesian inference; time to most recent com-
mon ancestor; site frequency spectrum

INTRODUCTION
The pattern of genetic variation in contemporary populations is the product of several
factors including the population demographic history, mutation and adaptation to an
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organism’s environment. Genetic variation data has been successfully used in areas
as diverse as tracing human prehistory and in identifying the origins both of genetic
diseases and conditions that may confer immunity to them. New advances continue to be
made powered by increases in both the availability of genomic data and in computational
power. However, the view we obtain of the past in this way is necessarily obscured by
the stochastic nature of the processes that created the data. Further, the validity of our
inferences is dependent on the assumptions underlying the models that are used to link
population history to observable data.

In recent times, the central component of most such models has been the coalescent
tree associated with a genomic sample. Such a tree represents a genealogical history
with attributes such as branch lengths, coalescence times and the time to the most recent
common ancestor (TMRCA) as well as topological and combinatorial properties (for
a summary see Simon and Huttley, 2021). Here we describe a method for estimating
branch lengths or, equivalently, coalescence times from an observed site frequency
spectrum (SFS) in the absence of selection and recombination. This method differs from
previous approaches in not requiring an assumption that the data was produced by some
particular known model or demographic history. Freedom from such assumptions is
valuable, given that the relationship of the coalescence times itself provides information
as to the demographic history of the population. For example, if a population has
experienced expansion and the sequences considered have not been influenced by
natural selection, the branches closest to the present will be relatively long compared to
those close to the root, i.e. the tree will be more “star-shaped” (Hein et al., 2005).

An estimate for the coalescence time for the case of n = 2 sequences was given by
Tajima (1983) (see also Tavaré et al., 1997), using analytic Bayesian methods. In this
simple case, there is only one coalescence time, which is also the time to the most recent
common ancestor (TMRCA), and the SFS is equivalent to the number of segregating
sites. From a Bayesian perspective, Tajima uses the Wright-Fisher model to derive the
prior distribution, although both Tajima and Tavaré et al. appear to have regarded the
problem in terms of estimation of the coalescence times for a specific sample resulting
from evolution under a Wright-Fisher model. Such an analytic method could not be
extended directly to larger sample sizes, because this would involve multiple possible
forms of the genealogical tree. Further advances on the problem made use of more
computation-intensive Monte Carlo methods. These involved repeated simulations of
evolutionary models, allowing various population genetic statistics to be calculated for
each sample tree generated by the simulation and then averaged over the set. Tavaré
et al. (1997) combined simulation with a rejection algorithm to provide a method of
estimating individual branch lengths from an observed number of segregating sites
on the assumption that the population was generated by a Wright-Fisher model. This
method had the benefit of relative simplicity, but did not use all of the information
contained in the SFS. A more complex approach based on importance sampling was
used in Griffiths and Tavaré (1994). This made use of the variant data at the level of the
individual sequences in the observed alignment, which provides more information than
the summary given by the SFS. However, this method also depended on the assumption
that the population had constant size or a specific known demographic history. It
involved sampling genealogies consistent with the data by a backward in time process
of generating successive mutation and coalescence events. Quantities such as branch
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lengths were then averaged over these sample genealogies (see also Felsenstein et al.,
1999; Stephens and Donnelly, 2000; Wakeley, 2009). Other researchers used Markov
Chain Monte Carlo (MCMC) methods to estimate other scalar parameters such as
effective population size and mutation rate (Kuhner et al., 1995) and the time since
a mutation event associated with a polymorphism (Markovtsova et al., 2000). These
methods also assumed that the data was produced by a Wright-Fisher model.

A significant technical advance was made by the introduction of simulation software
packages that could implement more complex evolutionary models, the most widely
used being Hudson’s ms (Hudson, 2002). These allowed rejection algorithms and related
approximate Bayesian computation (ABC) methods to be used to estimate parameters
associated with more complex models incorporating selection and recombination. Exam-
ples include estimation of the time since the fixation of an allele under positive selection
(Przeworski, 2003) and the time of origin and associated selection coefficient of such
an allele (Peter et al., 2012). These methods are more suitable for problems involving
smaller sets of scalar parameters and a relatively small number of scalar statistics sum-
marising the observed data. However, simulation software itself is now indispensable in
assessing the effectiveness of any inferential method in population genetics.

Some previous methods also addressed the question of estimating coalescence times
without making assumptions as to the underlying evolutionary model and are therefore
often referred to as “model-free” methods. Thomson et al. (2000) proposed as an
estimator of the TMRCA of a sample the average number of mutations segregating in
the sampled sequences divided by the mutation rate. This estimator is unbiased and
requires no assumptions as to the demographic history of the sample. A closely related
“model-free” estimator for the TMRCA, which does not, however, share the property
of being unbiased, was proposed by Tang et al. (2002). It requires knowledge of the
sizes of the two clades formed by the basal split of the tree. A “model-free” approach
that estimates all coalescence times of a sample, rather than the TMRCA alone, was
proposed by Meligkotsidou and Fearnhead (2005). This method requires that the full
genealogy (tree topology) of the sample and the number of mutations on each branch
are known. To address the question of how the specific tree topology is to be obtained,
the authors cite the method of Gusfield (1991). However, this solution only obtains an
instance of a tree that could have generated the data, which may not be the true tree
or even a likely estimate of it. A likelihood-based method of estimating tree topology
would generally involve calculating the joint maximum likelihood of the topology and
the branch lengths, as is done in phylogenetic inference. This would make a further
method to estimate branch lengths redundant. On the other hand, Thomson’s estimator
does not require any knowledge of tree shape. Unlike our method, Thomson’s estimator
does not extend to the estimation of all n−1 coalescence times associated with a sample
of size n. However, since the TMRCA is the final coalescence time, it provides a critical
comparison to our method.

A key development subsequent to most of the papers cited above is the availability of
powerful open source general-purpose MCMC software packages for Bayesian inference,
which facilitate modelling with a wide range of discrete, continuous and multivariate
probability distributions. We have made use of one of these software packages to
demonstrate a general method for estimating the joint posterior distributions of the
branch lengths of a genealogical tree, or the equivalent coalescence times, from a sample
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SFS, under the assumption of selective neutrality. The key advantage of this approach
over previous methods is that it does not require that the evolutionary process that
generated the tree, or the tree topology, be known. To achieve this, a novel uninformative
prior distribution on branch lengths / coalescent times is proposed (although informative
priors can also be designed). The fact that a Bayesian joint posterior distribution can
be sampled has benefits in its own right in that it allows probabilities to be calculated
for other hypotheses: for example, that one particular branch length is greater than
another or that the sample had a given number of extant ancestors at some point in
the past. The degree of uncertainty associated with estimates due to the stochastic
nature of mutation and uncertainty as to tree shape can be visualised in terms of the
“spread” of the posterior distributions. The method is also capable of being extended to
accommodate the possibility of errors having been introduced into the data by upstream
processes such as sequence read mapping and sequencing. Lastly, the method has the
benefit of simplicity. This is primarily due to the use of the matrix representation of
the combinatorial structure of genealogical trees, which simplifies both the sampling of
trees and the computation of likelihood.

We test the method using coalescent simulations arising from different demographic
scenarios. This demonstrates that valuable information about coalescence times can be
derived from SFS data in the absence of assumptions about demographic history. We also
show that significant improvements in inference can be achieved by using an appropriate
informative prior. The degree of improvement is influenced by the demographic history
of the population. The uncertainty in these inferences due to stochastic factors can be
visualised and quantified.

MATERIALS AND METHODS
The methods used in this paper draw from the theory set out in Simon and Huttley
(2021). The focus is again be on the genealogy of a genomic sample conceptualised
as a coalescent tree, and on the SFS as a summary of the observed sample data. The
genomic tree for a sample of n sequences will again have a set of branch lengths t2, . . . tn,
measured in generations. The total tree length T is the total time spent in the tree by all
sequences since the most recent common ancestor of the sample:

T =
n

∑
k=2

ktk

Our aim is to generate samples from the posterior joint distribution of branch lengths
relating to the genealogy. We address this problem in two parts: estimation of total
tree length T and estimation of the relative branch lengths (t2/T, . . . tn/T ). We develop
a Bayesian inferential model in each case, sample from the posterior distributions of
each model using MCMC and combine the results to obtain a sample from the posterior
distribution of branch lengths.

Estimating total tree length from the number of segregating sites
We will begin by defining a simple Bayesian model for the estimation of T . This can
be considered as one way of generalising the problem originally considered in Tajima
(1983). The SFS for a sample of n aligned sequences is defined as the vector s of
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numbers si for i = 1, . . . ,n−1, where si is the number of segregating sites at which the
mutant allele occurs in i members of the sample. The total number of segregating sites
Sn is then given by:

Sn =
n−1

∑
i=1

si

It is again assumed that mutations occur as a Poisson process, that is, the number of
mutations occurring in a single branch is given by a Poisson distribution with parameter
given by the product of the branch length and the per generation sequence mutation rate
µ . Let us initially assume that µ is known. Then the probability of an observed value of
y for Sn is given by the Poisson distribution with parameter µT :

P(Sn = y|T ) = e−µT (µT )y

y!

We will use a gamma distribution Gamma(k,θ) as a prior distribution for µT as it
is the conjugate prior to the Poisson distribution (Gelman et al., 2014, §2.6) (we use the
shape / scale convention for the gamma distribution). For an uninformative or diffuse
prior distribution we will use Gamma(1,∞). For this prior, the mode of the posterior
distribution of the Poisson parameter is equal to the maximum likelihood estimate.
Applying the method of conjugate priors (Gelman et al., 2014) then gives the following
result for the posterior distribution of the parameter µT :

µT ∼ Gamma(Sn +1,1).

Using the scaling property of the gamma distribution gives the following posterior
distribution for T :

T ∼ Gamma(Sn +1,
1
µ
). (1)

This posterior distribution has been described analytically, but we will use an MCMC
model in order to incorporate uncertainty in mutation rate. There are two sources of
uncertainty inherent in the use of an estimate of mutation rate. One is the sampling
error associated with the estimation of the average mutation rate over the entire genome.
Often, a more significant issue is the variance in mutation rate along the genome of
humans and other organisms (Hodgkinson et al., 2009; Simon and Huttley, 2020), that
is, the variance in mutation rate between segments of a given length. Our model using an
uninformative prior on total tree length will incorporate uncertainty about the mutation
rate by modelling it by a beta distribution with mean and standard error supplied to
the model. A beta distribution is chosen as it takes values on the unit interval and has
two parameters (c.f. Dunson and Tindall, 2000). It is also the conjugate prior of the
binomial distribution, which is the natural form of the likelihood of a binary probability
(or frequency) conditioned on sample data. Later in this Section, we also describe the
use of an informative prior distribution for total tree length. This allows a uniform prior
distribution on the mutation rate to be used.
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Inferring relative and absolute branch lengths
We again consider a sample of n sequences subtending a genealogical tree and this time
seek to infer the joint posterior distribution of the relative branch lengths from the SFS
of the sample. In equation (8) of Simon and Huttley (2021), the likelihood function for
the SFS was given by:

P(s|q) = pmult(s,q) =
(
∑

n−1
i=1 si

)
!

s1! . . .sn−1!
qs1

1 . . .qsn−1
n−1 (2)

where q is a vector of probabilities given by:

q = tAψ̄

Aψ̄ is the matrix representation of the tree partition class (TPC) ψ̄ associated with the
genealogical tree ψ subtending the sample; t is the vector of relative branch lengths
given by:

t = (t2, . . . , tn)/
n

∑
k=2

ktk

and pmult is the probability mass function of the multinomial distribution.
It is also necessary to define a prior distribution for the estimation of relative branch

lengths. The prior distribution will be defined over the joint parameters of TPCs and
vectors of relative branch lengths, the latter denoted by t. As in Simon and Huttley
(2021), the parameter space for TPCs is Ψ̄n with the Equal Rates Markov (ERM)
measure and the parameter space for relative branch lengths is the (n−2)-dimensional
simplex in Rn−1

+ given by

T= {ti ∈ Rn−1 : ti > 0 and
n−1

∑
i=1

(i+1)ti = 1}

The model parameter space for the inference of relative branch lengths is the Cartesian
product space Ψ̄n×T. The prior distribution on this space will be the Cartesian product
of two independent distributions defined on Ψ̄n and T respectively. The assumption that
these distributions are independent reflects our lack of knowledge of any correlation
between TPCs and relative branch lengths. The prior distribution on Ψ̄n will be a
categorical distribution with parameters given by the probabilities of each TPC under
the ERM measure.

The uninformative prior distribution on T will be the uniform distribution on this
space, which we denote W . In Simon and Huttley (2021) the linear bijection Jn from
4n−2 to T was defined as the diagonal matrix whose diagonal elements are 1

2 ,
1
3 . . . ,

1
n .

Since the linear transformation of a uniform distribution is a uniform distribution (Rudin,
1987), one can sample from W by sampling from the uniform distribution on4n−2 and
transforming by Jn. (The uniform distribution on4n−2 is a Dirichlet distribution with
all parameters set to 1.) The mean of this prior distribution on T is therefore given by:

E(W ) =

(
1

2(n−1)
,

1
3(n−1)

, . . . ,
1

n(n−1)

)
(3)
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Having thus defined a likelihood and (joint) prior distribution for our model, MCMC
software can be used to sample from the joint posterior distribution of relative tree
lengths and TPCs, given the SFS data. The TPC parameter is “integrated out” by
considering the branch length samples only, resulting in a marginal posterior distribution
for branch lengths (for marginal posterior distributions see Gelman et al., 2014, Chapter
3). This posterior distribution can then be multiplied with the posterior distribution of
total tree length. This results in what we can call a convolution posterior distribution of
absolute branch lengths. We will however, simply use the term “posterior distribution”,
unless we wish to draw attention to its derivation. Implementation uses the general-
purpose MCMC software package PyMC3 (Salvatier et al., 2016) and the relevant Python
code is provided in a github repository at https://github.com/helmutsimon/
bayescoalescentest. Bayesian point estimates can be derived in the usual fashion
as the expected value of the posterior distribution, known as the minimum mean square
error (MMSE) estimate as it minimises the mean squared error relative to that posterior
distribution (Jaynes, 2003, p. 172).

To sample tree matrices from Ψ̄n according to the ERM measure, we use the theory
set out in Simon and Huttley (2021) in which tree matrices represent sequences of
unordered partitions. A sequence of ordered partitions can be pictured as being generated
by the division of a set of n objects into n singletons by successively replacing the spaces
between the objects (initially there are n−1 of these) by dividers. The elements of the
sequence can be represented by integer indices indicating which of the remaining gaps
is filled at each step. In this representation, known as the Lehmer code (Lehmer, 1960;
Devroye, 1986, Chapter 13 p. 644), the first index is in the range 1, . . . ,n−1, the second
in the range 1, . . . ,n−2 and so on. Each index in the sequence represents the branching
event at level k, starting at k = 2, conditioned on the previous numbers in the sequence.
We can therefore sample uniformly from sequences of ordered partitions by a sequence of
independent categorical distributions with n−1,n−2, . . . ,2 categories. These sequences
of ordered partitions can be transformed into TPCs by forgetting the ordering of the
partitions, thus sampling from Ψ̄n according to the ERM measure. This allows the
use of a Metropolis-within-Gibbs MCMC proposal/acceptance method (implemented
in PyMC3 as CategoricalGibbsMetropolis), which samples from each of the
categorical distributions independently. Use of this proposal/acceptance method achieves
convergence of the Markov chain for larger sample sizes. The posterior distributions
of these indices can be interpreted in terms of the branching events in the tree. This is
clearest in the k = 2 case of n−1 categories, which represents the basal split into two
clades from the root of the tree.

Inference of derived quantities
The MCMC process defined above provides us with samples from the joint posterior
distribution of branch lengths. These can be used to obtain posterior distributions for
other related quantities. The joint posterior distribution of coalescence times (viewed
back in time from the present) can be obtained as cumulative sums of branch lengths.
Note that there is a bijective linear transformation that takes the ratios of branch lengths
to total tree length to the ratios of coalescent times to total tree length, which could
have been used to create a slightly more complex model to estimate relative coalescence
times directly.
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The last or (n− 1)st coalescence time is the sum of all branch lengths and hence
equal to the TMRCA. By restricting our attention to this last coalescence time, we obtain
a marginal posterior distribution for the TMRCA. We can use the expected value of this
marginal distribution as a point estimate of the TMRCA, which is an MMSE estimator
relative to the marginal distribution.

We can also use the posterior distribution of branch lengths to calculate what we
refer to as the ancestral probabilities associated with a specific genomic sample X . This
is the probability P(AX(t) = k) for 1≤ k ≤ n, where AX(t) is the number of ancestors
of X at time t. P(AX(t) = k) can be estimated by counting the number of variates in the
sample from the posterior distribution of coalescence times for which t lies between
the relevant coalescence times. P(AX(t) = k) can be considered as a Bayesian analogue
of the “ancestral process” of classical population genetics (Tavaré, 1984; Griffiths
and Tavaré, 1998), denoted by P(An(t) = k) where in this context An(t) denotes the
number of ancestors of a sample of size n at time t and the probability relates to a
specific evolutionary model, which is usually the Wright-Fisher model or a modification
involving some deterministic variation in population size. Here P(An(t) = k) is the
probability that An(t) = k for a random run of the evolutionary process. It might be
determined experimentally by multiple simulations of the process. In a similar way, one
can determine the probability (in Bayesian terms) of other hypotheses. For example,
one could count the MCMC variates to determine the probability that one branch length
ti is greater than another (t j), or that a particular branch is the longest.

Model-based prior distributions
In the previous sections, uninformative uniform prior distributions were employed
in the Bayesian models used to estimate relative and absolute branch lengths. This
is a reasonable choice if one has no prior knowledge as to the evolutionary process
that produced the data. However, we may have a prior belief that the population
evolved according to a particular demographic model, such as constant or exponentially
increasing population size. Such a model will define a probability distribution on the
space T of relative branch lengths, which we will denote by G. A prior belief in this
evolutionary model would be reflected by using G, rather than the uniform distribution on
T, as a prior distribution for the analysis of relative branch lengths in the MCMC model.
Although G cannot typically be expressed in terms of standard probability distributions,
one can use an approximation to G as a prior distribution, by matching the expected
value vector and covariance matrix of G. To do this, a coalescent simulation package is
used to generate samples from G. These variates are firstly transformed into the standard
simplex 4n−2 using the linear transformation J−1

n and then into variates in Rn−1 by
means of a log-ratio transformation as used in the statistical analysis of compositional
data (Aitchison, 1982) and implemented as the StickBreaking transform in PyMC3.
The transformation used in calculations for this paper is:

(x1, . . . ,xn) 7→

(
log

(
x1

(x1 . . .xn)
1
n

)
, . . . , log

(
xn−1

(x1 . . .xn)
1
n

))

The sample expectation vector and covariance matrix of these transformed variates in
Euclidean space are then calculated and used to define a multivariate normal (MVN)
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distribution with these parameters. This MVN distribution is used as the basis of the
prior distribution by reverse transforming the variates back into T.

The expected mean and standard deviation of the total tree length can also be derived
from simulations of the model. These can be used as parameters defining the gamma
prior distribution for total tree length.

Data
Empirical data pertaining to the Nuu-Chah-Nulth people was obtained from Griffiths
and Tavaré (1994, Table 1).

Software
Scripts and Jupyter notebooks developed for this work were written in Python version
≥3.5 and are freely available under the General Public License at https://github.
com/helmutsimon/bayescoalescentest.

Synthetic data was generated using msprime (Kelleher et al., 2016), which is a
Python library implementing a version of the Hudson ms (Hudson, 2002) coalescent
simulation software. Each msprime simulation yields a genealogical tree with mutations
added. A range of parameters can be set, in particular, a wide range of demographic
histories. The resultant site frequency spectrum, the coalescence times and the tree
partition class can be determined from the tree objects returned. Inferred branch lengths
or other parameters can thus be compared to the actual values resulting from a specific
simulation.

Dependencies included cogent3 2019.12.6a (Knight et al., 2007), pyMC3 3.11.0
(Salvatier et al., 2016), theano 1.0.4 (Al-Rfou et al., 2016), arviz 0.11.1 (Kumar
et al., 2019), scipy 1.2.1 (Virtanen et al., 2020), msprime 0.7.0 (Kelleher et al.,
2016), numpy 1.16.3 (Virtanen et al., 2020), pandas 0.24.2 (McKinney, 2010),
more-itertools 8.7.0 (Rose and Bayles, 2012), click 6.7 (Ronacher, 2009),
scitrack 0.1.3 (Huttley, 2016), matplotlib 3.0.3 (Hunter, 2007) and seaborn
0.9.0 (Waskom et al., 2017).

Data availability statement
The authors state that all data necessary for confirming the conclusions presented in the
article are represented fully within the article. Supplementary Information, data sets, run
logs and scripts produced for this work are available at Zenodo https://zenodo.
org/record/5121182, doi 10.5281/zenodo.5121182 under the Creative Commons
Attribution-Share Alike license.

RESULTS
Testing inference using simulations with a uniform prior
we first illustrate the method by using synthetic data generated by msprime for a range
of different sample sizes and demographic scenarios in Figure 1. In these cases the
sample size n = 5 was used. We can directly compare the posterior distributions for
coalescence times to the actual coalescence times for a single simulation run. Figure
1a shows coalescent times from a simulation with constant population size, Figure 1b
from a population experiencing exponential growth (at a rate of 10−4 per generation)
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and Figure 1c from a more complex demographic scenario of constant population size
(going forward in time) followed by a population bottleneck followed by exponential
growth (see Supplementary Information Section 1 for details). In each figure, the
posterior distributions of coalescence times are plotted for k = 1, . . . ,n−1 and the actual
coalescence times are shown by vertical lines. The “spread” of the distribution reflects
uncertainty due to the stochastic nature of mutation and the unknown tree structure. In
Figure 1b, one can observe significant underestimation of the first two coalescence times.
We will discuss possible reasons for this below.

These examples also illustrate the estimation of the TMRCA. The “highest” coa-
lescence time (labelled k = n− 1) is also the TMRCA, and Figures, 1a and 1c show
quite good agreement between the marginal posterior distribution of the TMRCA and
the true values. The posterior distribution also provides an indication of the accuracy
that can be expected from these estimates. The TMRCA itself can be estimated with
less computational effort using Thomson’s estimator (Thomson et al., 2000), which is
shown as a dotted black line on these figures. In Figure 1a the MMSE estimate of the
TMRCA is not in good agreement with the true value, although it is close that obtained
using Thomson’s estimator.

A set of figures using the same population models, but a sample size of n = 8 are
shown in Supplementary Information Section 2. These show improved estimates for the
constant size and exponentially increasing population models in particular, possibly due
to a higher Sn.

Simulations using model-based priors
One object of using an uninformative prior distribution in Bayesian inference is to
maximise the influence of the observed data on the outcome relative to that of the
prior distribution. While the uniform Dirichlet prior distribution defined on relative
branch lengths is intended to be uninformative, it does have an expected value whose
components have the relative proportions 1

2 ,
1
3 . . . ,

1
n (equation 3). That is, the mean

branch lengths decrease as k increases from 2 to n, albeit more slowly than for the
Wright-Fisher distribution. This characteristic of the prior distribution has the potential
to bias results. An example was provided by Figure 1b, which analyses a sample of size
n = 5 from a simulated population undergoing exponential growth. In such a case, the
coalescence times nearest to the present are expected to be relatively large, contrary to
the case for the uniform prior distribution. Figure 1b shows that the first two coalescence
times were significantly underestimated.

We investigated this matter further by comparing the use of a uniform (uninformative)
prior to a MVN (model-based) prior also taking account of sample size and the number of
segregating sites. We selected a number of models, with various sample sizes, mutation
rates and population growth rates, and ran 100 simulations for each. The resulting
samples of relative branch lengths were first used to derive the parameters for the MVN
prior using the method in the sub-section Model-based prior distributions above. The
MCMC method was then used to derive point (MMSE) estimates of the vectors of
branch lengths from the SFS produced by each of the 100 simulations, using both
choices of prior distribution. The accuracy of each estimate relative to the true values
was measured by the mean squared error (MSE), taken over the 100 simulations. That
is, a quadratic loss function was selected for the comparison. This choice was made to
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(a) Constant size population model. The SFS for the simulated sample is (18, 1, 0, 10).
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(b) Population model with growth parameter of 0.0001. The SFS for the simulated
sample is (48, 4, 3, 0).
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(c) Demographic model involving a population bottleneck. (see Supplementary
Information Section 1 for details). The SFS for the simulated sample is (17, 0, 0, 11).

Figure 1. Posterior density functions of coalescence times obtained from simulated
samples of size n = 5 using different population models. The actual coalescence times
being estimated are shown as vertical lines. The numbers in the legend represent the
order of coalescence times counting backward from the most recent coalescent event to
the most distant (the TMRCA). The Thomson estimate for the TMRCA is shown as a
black dotted line.

be consistent with general practice and the use of MMSE point estimates. The MSE was
also calculated for estimates of the TMRCA, including estimates made by Thomson’s
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method. The results are shown in Table 1. Subtable 1a shows results for a population
with a constant population size and a fixed mutation rate. We see that for each of the
sample sizes shown the MSE with the MVN prior is lower than that with the uniform
prior, but the margin is more pronounced for the larger sample sizes. Subtable 1b shows
results for the same constant population size evolutionary model as for Subtable 1a,
but with 3× mutation rate. The errors are lower than in Subtable 1a for all sample
sizes and both prior distributions. Subtable 1c shows results for a different evolutionary
model, namely a population with a relatively rapid growth rate of 10−2. We see that the
reduction in MSE using the MVN prior compared to the uniform prior is more dramatic
than for the constant size population.

The Thomson estimates of the TMRCA are better than those using the uniform prior,
possibly excepting the smallest sample sizes. The relative performance of the MVN
prior and the Thomson estimator vary with mutation rate and evolutionary model. In the
case of an expanding population, the MVN prior strongly outperforms Thomson.

n Sn Branch lengths TMRCA
——————— ————————————-

Uniform MVN Uniform MVN Thomson
10 10.1 17.5 13.5 11.4 10.9 13.0
25 14.3 32.0 16.3 32.7 16.3 23.6
50 16.2 66.1 23.0 74.2 19.7 22.5

(a) Growth rate = 0, θ = 3.6

10 30.86 10.2 8.45 6.04 5.20 6.86
25 40.51 11.2 10.4 9.41 5.58 5.85
50 49.51 39.3 13.6 38.3 7.99 8.22

(b) Growth rate = 0, θ = 10.8

10 11.4 14.8 3.74 20.3 0.40 6.40
25 21.6 10.2 2.72 39.6 0.57 10.1
50 45.4 5.33 1.90 36.4 0.55 7.78

(c) Growth rate = 10−2, θ = 800

Table 1. Comparison of the use of uniform and MVN prior distributions to estimate
branch lengths and TMRCA using Bayesian inference for a range of models. The first
two columns show the sample size (n) and mean number of segregating sites (Sn). The
other columns show the MSE for branch lengths and TMRCA under the two priors and
for the TMRCA under Thomson’s estimator. (a) A constant size population model.
Errors are shown in units of 109 generations squared. (b) A constant size population
model with a higher mutation rate. Errors are shown in units of 109 generations squared.
(c) An exponentially increasing demographic model. Errors are shown in units of 104

generations squared. In each instance 100 trials were used.

To further illustrate the effect of using an MVN prior for an expanding population,
the analysis illustrated in Figure 1b was rerun using a prior distribution based on the
correct model population growth rate of 0.0001. The outcome shown in Figure 2 is in
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substantially better agreement with the true values than was obtained using the uniform
prior as in Figure 1b.
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Figure 2. Derived posterior distributions for coalescence times using the same data as
in Figure 1b and a posterior distribution based on a population growth rate of 0.0001,
consistent with the model that produced the data. Actual values are shown as vertical
lines. The numbers in the legend represent the order of coalescence times counting
backward from the present.

Data from the Nuu-Chah-Nulth population
We analysed mitochondrial DNA from the native American Nuu-Chah-Nulth people of
Vancouver Island using a classic data set that originally appeared in Ward et al. (1991)
and has been the subject of several studies (Griffiths and Tavaré, 1994; Kuhner et al.,
1995; Marjoram and Tavaré, 2006). This was undertaken to demonstrate the application
of the method to empirical data and to determine the extent to which our results agreed
with previous analyses using different methods.

Griffiths and Tavaré (1994) considered 55 samples of a mitochondrial sequence of
352 bps, containing 18 segregating sites. They assumed, on the basis of archaeological
evidence, that the female population had remained at a constant size of 600 for > 6000
years. The value of Tajima’s D for the data is -0.5, which is consistent with the
assumption of constant population size. Basic results on the Wright-Fisher model (Hein
et al., 2005) tell us that, without conditioning on the data, the expected TMRCA for
the sample is 1178 generations and the expected total tree length is 5491 generations.
Griffiths and Tavaré first estimate the sequence mutation rate and standard deviation,
conditioned on the data and these demographic assumptions, to be 4.0± 1.2× 10−3.
We used a simpler model to estimate the mutation rate by MCMC, using only the total
number number of segregating sites to represent the observed data. We used a prior
distribution on total tree length as given by the Wright-Fisher model and a uniform
prior distribution on mutation rate. This resulted in an estimate of 3.95±1.4×10−3 for
mutation rate, which is in good agreement with Griffiths and Tavaré. Griffiths and Tavaré
then estimated the TMRCA of the sample conditioned on the data at 720 generations,
using an importance sampling method (see also the discussion in Felsenstein et al.,
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1999). The estimate of the TMRCA using Thomson’s method together with Griffiths
and Tavaré’s estimate of the mutation rate is 595.5 generations.

We analysed the data using two different prior distributions on relative branch
lengths: an uninformative (uniform) prior and a prior based on the Wright-Fisher model.
In the latter case, we used the MVN approximation method described in Materials and
Methods. Both models involve simultaneous estimation of the branch lengths and the
mutation rate, so an informative prior is required for one of these quantities. When using
a uniform prior on relative branch lengths, we used a beta prior distribution for mutation
rate with parameters derived from our estimate of 3.95±1.4×10−3 for the mutation
rate. When using an MVN prior on branch lengths, we used a uniform prior for the
mutation rate.

The results obtained using a uniform prior distribution on relative branch lengths are
shown as a heatmap in Figure 3a. The heatmap illustrates the probability distribution
function for each coalescence time. The probability distribution function values are
normalised relative to their maximum for visual clarity. Such a heatmap representation
is more intelligible for large sample sizes than the line plots shown earlier. In this case,
the MMSE estimate of the TMRCA is 533.2 generations, the MMSE estimate of the
total tree length is 6583.4 generations and the MMSE estimate of the mutation rate is
3.37±1.3×10−3. The results obtained using an MVN prior are shown in Figure 3b. In
this case, the MMSE estimate of the TMRCA is 766.8 generations, the MMSE estimate
of the total tree length is 5095.3 generations and the MMSE estimate of the mutation
rate is 4.04±1.5×10−3. As might be expected, the estimate of the TMRCA obtained
using a prior based on the Wright-Fisher model is closer to that obtained by Griffiths
and Tavaré using a method that assumed this model.

In order to investigate the varying influence of the uniform prior distribution on
different sample sizes, we also analysed a random sub-sample of size 12 from the
full sample of 55 using this prior distribution. In this case the MMSE estimate of the
TMRCA was 653.3 generations and the MMSE estimate of the mutation rate was again
3.37±1.3×10−3.

As stated in Materials and Methods, the MCMC model samples tree matrices
by sampling from sequences of ordered partitions using a sequence of independent
categorical distributions. These distributions represent branching events at each level
of the tree. Therefore the MCMC results also give information about the tree structure,
most clearly the sizes of the 2 clades formed by the basal split at the root of the tree. For
this sample the most likely basal split is 24/31 with p = 0.56. The next most likely are
19/36 (p = 0.19) and 12/43 (p = 0.17). (The probabilities we give are for unordered
partitions: the ordered partitions 24/31 and 31/24, for example, are equivalent and
expected to be equiprobable). See Supplementary Figure S4.

DISCUSSION
Previous use of Bayesian methods
Related problems for very simple cases have previously been addressed using analytic
Bayesian methods. These include calculating branch lengths when the sample size n = 2
(Tajima, 1983; Tavaré et al., 1997; Walsh, 2001) and the case where Sn = 0 (Dorit et al.,
1995; Donnelly et al., 1996). The example closest to our work is Tajima (1983). This
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Figure 3. A heatmap representation of the posterior distribution of coalescence times
estimated from 55 mitochondrial samples from the Nuu-Chah-Nulth people. The
posterior mean estimate of the sample TMRCA is shown by a vertical red line. (a) An
uninformative (uniform) prior distribution was used. (b) An multivariate normal prior
distribution derived from the Wright-Fisher model was used.

considers the case n = 2 and uses a prior distribution for T given by the Wright-Fisher
model, that is, the exponential distribution with parameter 1

4N . This is the same as
the gamma distribution Gamma(1,4N). Hence, using the method of conjugate priors,
Tajima’s posterior distribution for the total tree length (twice the coalescent time) is,
using our notation, given by:

Gamma(S2 +1,
4N

(4N +1)µ
).

Comparing this result with equation (1) shows that in this case the use of different prior
distributions makes little difference to the outcome, provided that the population size is
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reasonably large.

Choice of prior distribution
Applications of Bayesian inference require explicit consideration of the choice of a prior
distribution. The constant-size Wright-Fisher model may seem an obvious choice from
which to derive a prior distribution. This choice is warranted if we have a reasonable
prior belief that the size of the population has been constant over a period of time, as
appeared to be the case in the Nuu-Chah-Nulth example. We have proposed the uniform
distribution on the space of valid relative branch lengths as a preferable choice when
no prior knowledge is available regarding the model that produced the data. If we
have a prior belief that a given model may have produced the data, a prior distribution
approximating the distribution of relative branch lengths associated with that model can
be used. We have described a general method for approximating any model that can be
simulated, by using a multivariate normal approximation transformed to the standard
simplex. Other methods of approximation may also be effective, such as a kernel
density estimate (KDE) using software such as the KernelDensity class in scikit-learn
(Pedregosa et al., 2011). However, PyMC3 does not support this method for multivariate
distributions.

We investigated the bias that can arise from use of the uniform prior distribution
by comparing the outcomes with those of inferences for which the prior distribution
is derived from an approximation to the simulation model. The results are shown in
Table 1. Comparing each entry in Subtable 1b to the corresponding entry in Subtable 1a
we see that, all other things being equal, a higher mutation rate, which leads to more
segregating sites and hence more data, will result in better estimates. This is as expected.
We further see that the relative advantage of an informative prior distribution relative to
an uninformative prior generally decreases with more data (more segregating sites). This
is also consistent with the principle that the relative influence of the prior will decrease
with additional data. On the other hand, one can see a greater bias resulting from the
uniform prior when the true distribution of branch lengths is very different to that under
the uniform prior. This is illustrated for the case of a relatively high exponential growth
rate of 10−2 (Subtable 1c), which results in the branch lengths for k = n being the largest
on average, while mean branch lengths under the uniform distribution decrease as k
increases.

Comparing results for different values of n in Subtable 1a, we see that the accuracy
of estimates of branch lengths and of the TMRCA using the uniform prior decreases
as n increases. We see the same effect, although to a lesser extent, in Subtable 1b.
That the estimation of a one-dimensional population genetic parameter is subject to
diminishing returns as sample size is increased is well known (Felsenstein, 2005). When
estimating the joint probability distribution of branch lengths or coalescence times of
genomic samples from a single population, the number of parameters being estimated
also increases with sample size. Such an addition of new parameter dimensions through
larger samples may negate any improvement in estimates unless the new samples add a
sufficient quantum of new data (Gelman et al., 2014, §4.3). As the information available
from a larger sample is spread over a larger number of parameter dimensions, the
relative influence of the prior distribution may increase. The reason that increasing
sample size does not have a direct effect on the amount of available data lies in turn
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with the correlation of the ancestries of the genomic sequences in the sample. For the
Wright-Fisher model, the amount of additional information (the mean Sn) only increases
∼ ∑

n−1
j=1

1
j ≈ log(n) (Ewens, 2004, §9.6), which is not sufficient to compensate for the

increase in the number of dimensions of the parameter set. The problem is inherited by
marginal posterior distributions (Gelman et al., 2014, §4.3), such as the TMRCA in our
case. A further example is provided by the Nuu-Chah-Nulth data set. In this case, the
use of a sample size n = 55 resulted in a lower TMRCA estimate than for a sub-sample
of n = 12, although a sub-sample cannot have a higher TMRCA than a full sample.
However, this “curse of dimensionality” is not evident in the case of an exponentially
increasing population in Subtable 1c. Here, increasing sample size appears to result in
some degree of improvement in the accuracy of estimates, particularly in estimating
joint branch lengths using the uniform prior. We can see from the second column of this
Subtable that Sn increases approximately ∼ n and therefore the additional available data
keeps pace with the dimensionality of the space in which it exists. This in turn results
from the fact that in a population increasing in size, the ancestries of elements of the
sample are not as highly correlated. The potential benefit or otherwise of increasing
sample size can thus to some extent be predicted by the rate of increase in Sn. It can also
be seen from Table 1 that any negative effect of increasing sample size is less when a
suitable prior distribution is used. This is to be expected, as the effect of the “curse of
dimensionality” in these examples is to give greater weight to the prior distribution.

Inference of derived quantities
A feature of this method is the inference of the joint posterior distribution of coalescence
times or branch lengths. As stated previously, this can be used as the basis for computing
other probabilities and distributions relevant to the sample. An example is given by
the ancestral probabilities defined in Subsection Inference of derived quantities above.
To illustrate, Figure 4, shows such ancestral probabilities derived from the posterior
distributions for the data used in Figure 1b (exponentially increasing population size).
Further illustrations of ancestral distributions are shown together with the relevant
posterior distributions of coalescent times for simulations using sample size n = 8 in
Supplementary Information Section 2.

The Nuu-Chah-Nulth example
The practical effect of choice of prior distribution was illustrated in our analysis of
Nuu-Chah-Nulth data, where both a uniform and (approximate) Wright-Fisher prior
were used. The differing outcomes are exemplified by the respective point estimates for
the TMRCA of 533 and 767 generations. The magnitude of this difference reflects the
relative sparseness of the data (18 segregating sites occurring in 55 mitochondrial DNA
samples). In fact, the estimate using the uniform prior was higher for a sub-sample of
size 12 than for the full sample of size 55, as discussed above.

Some further observations can be made from our analysis. It can be seen from
Figure 3 that the “spread” of the posterior distributions of coalescent times obtained was
less when an informative prior was used, as one would expect. It can also be observed
that Figure 3b shows characteristics more typical of a Wright-Fisher model, in that the
coalescence times near the root of the tree are widely spaced, reflecting the relatively
large inferred branch sizes for k = 2 and k = 3 in particular. We also saw that the most
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Figure 4. The ancestral probability distributions corresponding to the model and data
used in Figure 1b (exponentially increasing population size). The plot for k = 1, . . . ,5
(Legend) shows the estimated probability that there are exactly k extant ancestors of the
sample at the time t shown on the horizontal axis. The coalescent times, at which k
ancestors of the sample reduce to k−1 ancestors, are again shown as vertical lines.

probable value for the basal split (24/31) had a posterior probability of 0.56. The fact that
such a degree of uncertainty as to the basal split may exist needs to be considered when
making population genetic inferences that rely on this knowledge (see, for example,
Tang et al., 2002, referred to in the Introduction, and Yang et al. 2018).

We note that the Nuu-Chah-Nulth data is problematic due to the low population size,
particularly relative to the sample size of 55. This means that the assumption common
to the coalescent models used in this paper and by Griffiths and Tavaré that sample size
sufficiently small relative to population size that more than one coalescence is unlikely
in a single generation, does not apply.

Thomson’s estimator for the TMRCA
We previously referred to Thomson’s estimator for the TMRCA (Thomson et al., 2000)
as a precursor to “model-free” inference of population genetic parameters related to a
sample of sequences. For a sample of n sequences, an SFS s1, . . . ,sn−1 and a sequence
mutation rate of µ , Thomson’s estimator is calculated by the following formula:

T̂MRCA =
∑

n−1
i=1 isi

nµ

This expression has an intuitive interpretation as the average number of mutations in
a sampled sequence, divided by the mutation rate µ , where only mutations that do not
appear in the entire sample, i.e. those that are known to have occurred subsequent
to the most recent common ancestor of the sample, are considered. The Thomson
estimator is easily calculated and it is an unbiased estimator (Hudson, 2007). That is, it
is unbiased relative to the probability distribution of mutations in a single genealogical
tree. Calculation of the estimate does not depend on prior knowledge of properties of
the genealogical tree such as the basal split (cf. Tang et al., 2002) or the tree topology
(cf. Meligkotsidou and Fearnhead, 2005). However, properties of the estimator such
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as variance do depend on properties of the genealogical tree (Hudson, 2007). The
application of Thomson’s estimator does require a prior estimate of the mutation rate.
However, the method could no doubt be extended to quantify its sensitivity to the
uncertainty which necessarily exists in any estimate of the mutation rate.

Our results have shown that Thomson’s estimator often gives a result similar to the
mean of the posterior distribution for the TMRCA. The methods are in fact related in that
they can both be derived from the same model. However, Thomson’s estimator is derived
by the method of moments rather than Bayesian inference, as we show in Supplementary
Information Section 4. It can be seen that Thomson’s method estimates the TMRCA
directly, rather than as a sum of estimates of branch lengths, so the adverse effect of
the “curse of dimensionality” is not as great as for the marginal Bayesian posterior
distribution method. However, it is not clear from Table 1 whether larger sample sizes
actually lead to significant improvement in Thomson estimates of the TMRCA and there
may be scope for further theoretical work on this. Further, Subtable 1c shows that for
some demographic histories, a strong choice of prior distribution can outweigh this
benefit. Overall, it is clear that whenever the Bayesian method is applied, Thomson’s
estimate should also be calculated for comparison.

Why use the site frequency spectrum?
The SFS has been widely used as a summary statistic in population genetic inference
(Nielsen et al., 2012; Han et al., 2013). In principle, more complete variant data could be
obtained that identified, for every site segregating in the sample, the specific sequences
in which the mutant allele appears. The likelihood function for such a set of full variant
data depends not only on the TPC, but requires knowledge of the tree topology, as well
as of relative branch lengths. Even for low sample sizes, where each TPC corresponds
in a one-to-one fashion to a tree topology, the likelihood functions for the SFS and the
full variant data generally differ and hence the posterior distributions of branch lengths
will differ also. In other words, the SFS is not a sufficient statistic for inference of
branch lengths. However, from a practical standpoint, SFS data has the benefit that
it can be obtained from pooled sequence data and does not incur the cost or possible
introduction of error due to haplotype phasing (Liu and Fu, 2015; Anand et al., 2016).
As a consequence, for many non-model species, SFS data will remain the most prevalent
type (Han et al., 2013). In Simon and Huttley (2021) a method was given for reducing
bias resulting from sequencing error in the calculation of the statistic ρ used for testing
evolutionary neutrality. This involved modifying the likelihood equation to remove low
frequency variants from the analysis. This approach could also be applied to the MCMC
method described in this paper by modifying the likelihood equation (2) in the same
way.

Bhaskar and Song (2014) have analysed an idealised situation in which the SFS data
is produced by some specific defined stochastic generative process and the expected
value of the SFS taken over multiple runs of this process is known with precision. They
showed that any reasonable demographic history can be inferred from the expected
value of the SFS under these conditions. On the other hand, the present paper deals
with scenarios closer to the “real world” in which one only has knowledge of SFS data
resulting from a single run of an unknown process. This necessarily results in uncertainty,
which is expressed in the shape of the posterior distribution. Nevertheless, the results of
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Bhaskar and Song (2014) suggest that the SFS can be considered to approach sufficiency
in some limiting sense.

Summary and future work
We have proposed a method for computing posterior distributions for the coalescent
times associated with a sample of sequences. The method does not make assumptions
about the generative process for trees, but does assume that it is independent of mutation,
that is, all mutations are selectively neutral. We used a Bayesian MCMC approach
based on sampling from the space of TPCs, or tree matrices, jointly with relative branch
lengths. This is effective because the likelihood function for the SFS can be computed
directly from these parameters and sampling from them is equivalent to sampling from
the full space of trees for the purpose of computing this likelihood. The relationship of
the combinatorial structure of coalescent trees to the SFS was highlighted in Griffiths
and Tavaré (1998). While that paper and the numerous other papers utilising its methods
generally focused on computing expectations taken over the space of tree matrices using
equation (3.3) of Griffiths and Tavaré (1998), we have taken a sampling approach which
facilitated the use of Markov Chain Monte Carlo techniques. We also defined novel
prior distributions for this purpose, covering the case where there is a belief as to the
demographic history of the population that produced the data as well as the case where
there is none.

A strength of the Bayesian method is that the joint distribution of branch lengths can
be derived. This allows for representation of ancestral probabilities and other related
quantities. The cost of this is a “curse of dimensionality” effect as the number of
parameters to be estimated (the branch lengths) increases with sample size. This is
intrinsic to the problem of estimating the full complement of branch lengths, rather than
being specific to this method.

The use of Bayesian methods provides a clear indication of the degree of uncertainty
in results arising from the stochastic nature of mutation and from our lack of knowledge
of the actual tree structure. Both the simulation and Nuu-Chah-Nulth results demonstrate
that the posterior distributions of branch lengths or coalescent times can be quite highly
dispersed. It follows that point estimates should be treated with caution and credible
intervals preferred.

There are a number of potential areas for future work extending the above methods.
We have shown that Thomson’s estimator for the TMRCA does not suffer from the
“curse of dimensionality” to the same degree as our Bayesian approach. It may be
possible to combine the benefits of the two approaches, by using the Thomson estimate
of the TMRCA to condition the prior distribution used in a Bayesian analysis. Another
broad extension is to seek to estimate the demographic history of a population from the
SFS. The simplest approach is to use the MMSE estimate of branch lengths in place of a
maximum likelihood estimate in the calculation of skyline plots as presented in Pybus
et al. (2000) and Strimmer and Pybus (2001).
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