
1

1 Reconstruction of a generic genome-scale metabolic 

2 network for chicken: investigating network connectivity 

3 and finding potential biomarkers

4 Ehsan Salehabadi1, Ehsan Motamedian1, Seyed Abbas Shojaosadati1,*

5 1Biotechnology Group, Department of Chemical Engineering, Tarbiat Modares University, 

6 Tehran, Iran

7 Correspondence: Seyed Abbas Shojaosadati, Department of Biotechnology, Faculty of 

8 Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran.

9 E-mail: shoja_sa@modares.ac.ir

10

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.22.453438doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.22.453438
http://creativecommons.org/licenses/by/4.0/


2

11 Abstract

12      Chicken is the first sequenced avian that has a crucial role in human life for its meat and 

13 egg production. Because of various metabolic disorders, study the metabolism of chicken cell 

14 is important. Herein, the first genome-scale metabolic model of a chicken cell named iES1300, 

15 consists of 2427 reactions, 2569 metabolites, and 1300 genes, was reconstructed manually 

16 based on databases. Interactions of metabolic genes for growth were examined for E. coli, S. 

17 cerevisiae, human, and chicken metabolic models. The results indicated robustness to genetic 

18 manipulation for iES1300 similar to the results for human. iES1300 was integrated with 

19 transcriptomics data using algorithms and Principal Component Analysis was applied to 

20 compare context-specific models of the normal, tumor, lean and fat cell lines. It was found that 

21 the normal model has notable metabolic flexibility in the utilization of various metabolic 

22 pathways, especially in metabolic pathways of the carbohydrate metabolism, compared to the 

23 others. It was also concluded that the fat and tumor models have similar growth metabolisms 

24 and the lean chicken model has a more active lipid and carbohydrate metabolism. 

25 Keywords: Genome-scale metabolic model, Chicken cell, Flux balance analysis, 

26 Transcriptomics data integration, Single and double gene deletion analyses, PCA
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28 1. Introduction

29      Metabolism is an important cellular process in a living cell. Thus, a deep understanding of 

30 metabolic networks is required [1]. Collected biological data about metabolic pathways has led 

31 us to  reconstruct a genome-scale metabolic network that can be mathematically represented 

32 [2]. Constraint-based metabolic models are known to be structured models that consider a cell 

33 a multi-component system and contain detailed intracellular process information; while 

34 because of the black box nature of the models for many cases of unsupervised learning methods 

35 in deep-learning, further processing may be required to interpret the biological meaning of the 

36 model [3]. Therefore, metabolic models will be able to predict the conditions imposed on the 

37 cell more reliably [4]. This approach will bring the model prediction as close to reality as 

38 possible by considering constraints on the upper bounds of the metabolic reaction fluxes [5]. 

39 Besides, metabolic models gain higher predictive power by integration with omics data, which 

40 in this respect, their prediction will be more valid than other data-driven models [6] . In recent 

41 years, genome-scale metabolic models (GEMs) have been increasingly developed due to the 

42 advances in genome sequencing and annotation techniques [7,8]. GEMs build a bridge between 

43 genotypic data and phenotypic traits [9].

44 The importance of GEMs was strengthened when it was reported that manually and automated 

45 metabolic models have been submitted for more than 6200 organisms worldwide. More than 

46 200  of these models belong to eukaryotes [10]. Following the reconstruction of the 

47 saccharomyces cerevisiae GEM in 2003 as the first eukaryotic model [11], the reconstruction 

48 of eukaryotic models became prevalent so that in 2007, the first human GEM RECON1 was 

49 reconstructed [2], and human GEMs continued to be updated with the expansion of the network 

50 [12], improvement of lipid metabolism [13], energy metabolism [14], and structural 

51 information [15]. Other studies in this area include mouse model reconstruction, which is 
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52 known as the first attempt to reconstruct a mammalian model based on genomic data [16]. The 

53 mouse model was also updated in subsequent years using a human model [17]. Chinese 

54 Hamster Ovary (CHO) cells are the other interesting eukaryotic models that have been recently 

55 reconstructed because of their extensive applications in the biopharmaceutical industries 

56 [18,19].While metabolic networks has been reconstructed for most of the important 

57 mammalians in the human life, no attempt has been yet made to reconstruct a metabolic 

58 network for chickens as an important source of food. Chickens are important eukaryotes 

59 because of their large population in animal husbandries and rural life as well as the annually 

60 high consumption of their egg and meat [20]. Studies on chicken first began in 1628 with an 

61 investigation on the functions of its arteries and veins. Then, chicken genetic research improved 

62 when the chicken’s first genetic map was constructed in 1936 [21]. Finally, in 2004, the genome 

63 sequencing of chicken wherein scientists had estimated 20000 to 23000 genes for chicken was 

64 released [22]. Since the last decades, genetic engineering has greatly improved, especially in 

65 the field of chickens growth and feed efficiency [23]; however, these genetic improvements 

66 have led to intensifying metabolic disorders [23]. In chickens, there are various metabolic 

67 disorders including those with environmental origins, such as oxygen or light regime, feeding 

68 strategy, as well as growth-related causes such as extraordinary growth. Some of these common 

69 disorders are fatal [24]. Thus, the development of a comprehensive metabolic model can be a 

70 platform to study the metabolism of chicken. Furthermore, such model can guide us to the 

71 treatment and even prevention of various diseases in the chicken.

72 In this study, for the first time, a comprehensive genome-scale metabolic reconstruction for a 

73 chicken cell (named iES1300) was reconstructed. Flux balance analysis (FBA) [25], and single 

74 gene deletion as well as double gene deletion analyses were applied to compare robustness of 

75 iES1300 and three other important models for growth. Furthermore, transcriptomics data were 

76 integrated with iES1300 to construct four types of chicken cell lines, including fat, lean, 
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77 normal, and tumor. The models were compared to determine essential metabolic differences 

78 for growth.

79 2. Material and Methods

80 2.1 The procedure of genome-scale model reconstruction for gallus 

81 gallus

82

83 Fig 1. Schematic representation of (a) step-by-step genome-scale metabolic reconstruction and (b) 
84 using transcriptomics data extracted by online gene expression databases (c) to achieve context-
85 specific models by the integration algorithms.

86

87      Fig 1 illustrates the overall procedure of iES1300 reconstruction and building specific 

88 models. Using the annotation of genome sequencing for Gallus gallus [22], a draft model was 

89 generated based on the reconstruction protocol [26]. For this purpose, we applied the KEGG 

90 database [27] and a pathway-by-pathway analysis of Gallus gallus metabolism. The draft 

91 consists of all metabolic reactions and their corresponding genes, enzymes, and metabolites 

92 collected from the KEGG, BiGG [28] and CHEBI [29] databases. Reaction and metabolite 

93 abbreviations were also extracted from BiGG. If there were not any reactions or metabolite 

94 names, we added new names. Mass and charge balance as well as the reversibility of each 

95 reaction were also performed. based on the literature, the intracellular pH of 7.2 was considered 

96 for charge balance [30]. Moreover, gene-to-reaction association information was extracted 

97 from the related literature and gene orthology was obtained from close organisms. Subcellular 

98 location information was taken from UNIPROT [31]. Information from CELLO [32] and 

99 EukmPLoc v2.0 [33] was also used for the prediction of cellular location when the localization 

100 information was not available in UNIPROT. These two databases use the amino acid sequence 
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101 of the expressed protein in the FASTA format. CELLO can also use gene nucleotide sequences 

102 to predict the location of metabolic reactions. To find transport reactions, information from the 

103 REACTOME database was used [34]. Further, regarding lack of data for growth-associated 

104 maintenance (GAM) and some of the metabolites related to glycogen and lipid contents that 

105 appeared in the biomass formation reaction, these data were selected from the CHO model 

106 [18]. Furthermore, the amount of non-growth associated maintenance (NGAM) was taken from 

107 a mouse cell [35]. Also, for the biomass reaction generation, the existing information for 

108 chicken, including amino acid percentage and DNA components percentage was used. In 

109 addition, amino acid coefficients information was taken from the High-performance Integrated 

110 Virtual Environment (HIVE) database [36] and nucleotide information of the chicken genome 

111 data in NCBI [37]. More details about biomass reaction are available in the S2 file. The gap-

112 filling process was also established so that the added reactions made the model capable of 

113 growing.

114

115 2.2 In silico simulations condition

116      To solve linear programming problems, COBRA toolbox in MATLAB 2017b software and 

117 the glpk solver package were utilized [38]. For intracellular reversible reactions, lower and 

118 upper bounds were set at -1000 and 1000
𝑚𝑚𝑜𝑙

𝑔𝐷𝐶𝑊.ℎ, respectively. Contrarily, for intracellular 

119 irreversible reactions, lower and upper bounds were set at 0 and 1000 
𝑚𝑚𝑜𝑙

𝑔𝐷𝐶𝑊.ℎ, respectively. The 

120 upper bound of all the exchange reactions was set at 1000 
𝑚𝑚𝑜𝑙

𝑔𝐷𝐶𝑊.ℎ. An RPMI-like culture 

121 medium was also selected for the simulation of the medium, and the lower bounds of exchange 

122 reactions were fixed based on [39]. Detailed components of the RPMI-like culture medium are 
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123 represented in the S2 file. Besides, the biomass reaction was selected as the objective function 

124 in all of the simulations.

125 2.3 Comparison of the network

126      To date, a large number of studies have used different methods of network topology analysis 

127 to evaluate metabolic networks in terms of phylogenetic relationships[40]. Therefore, this 

128 analysis of iES1300 to see how phylogenetically close it is to its peers was applied. We 

129 performed the single- and double-gene deletion analyses to compare iES1300 with the 

130 metabolic models of human (RECON1) [2], Saccharomyces cerevisiae (iMM904) [41], and 

131 Escherichia coli (iJO1366) [42] to evaluate all metabolic networks in terms of phylogenetic 

132 relationships[40]. These analyses indicated that iES1300 was more flexible and robust 

133 compared to other prokaryotic and eukaryotic models. GR ratio (predicted growth rate after 

134 gene deletion per growth rate for wild type) was also applied to indicate the efficacy of single- 

135 or double-gene deletion. According to the method presented by [43], we determined sick and 

136 lethal genes based on the single-gene deletion analysis, while the interactions of genes, 

137 synthetic lethal, and synthetic sick genes were specified based on the double-gene deletion 

138 analysis. Finally, to compare the four models, the results of the single-gene deletions and the 

139 number of interactions were normalized by dividing the number of genes in each model, 

140 whereas the results of the double-gene deletions were divided by the square of the number of 

141 genes in each model.

142 2.4 Integration of gene expression data

143      Considering HCC as an important disorder in the chickens liver [44], and the negative 

144 effects of adiposity on the economics of the poultry industries, especially in the case of meat 

145 quality [45], gene expression data from four species of chicken, including chicken liver control 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.22.453438doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.22.453438
http://creativecommons.org/licenses/by/4.0/


8

146 samples of hepatocellular carcinoma [46] , normal cell lines [47], and adipose tissue samples 

147 of lean and fat [48] were taken from ArrayExpress [49].  In our previous research[50], we 

148 indicated that TRFBA[51] and GIMME[52] are successful algorithms, especially for prediction 

149 of growth. So, both algorithms were applied to generate high-quality context-specific models. 

150 First, GIMME was used to remove reactions supported by genes with low expression levels. 

151 Then, TRFBA was employed to constrain the upper bound of the remaining reactions in the 

152 model according to the expression level of their supporting genes. In fact, TRFBA first 

153 converted all of the reversible reactions of a metabolic model into irreversible and 

154 “withoutOR”. Next, it added a set of constraints to limit the rate of reactions [51] as follows: 

155 ∑𝑖 ∈ 𝐾𝑗 𝑣𝑖 ≤  𝐸𝑗 × 𝐶                                                                                                                 (1)

156 Where vi is the reaction flux of i, Ej is the expression of the gene j, Kj is the set of indices of 

157 reactions supported by metabolic gene j, and C is a constant parameter that converts the 

158 expression levels to the upper bounds of the model reactions. This coefficient indicates the 

159 maximum rate supported by one unit of expression level of a gene; thus, the unit for C is mmol 

160 gDCW−1 h−1. 

161 A threshold of 0.25 and cutoff of 0.9 were also used for GIMME, and the parameter of TRFBA 

162 (C) for each cell line was changed in a stepwise approach according to the method presented 

163 in the next section.

164

165 2.5 Differentiation of cell lines using principal component analysis

166      After applying GIMME, the stepwise TRFBA was employed by stepwise change in C 

167 similar to the method presented by [50]. C was changed from zero to Cbrk with a step size of 

168 0.1 of Cbrk, hence, nine flux distributions were constructed for each cell line. Cbrk is the point 

169 at which the growth rate does not change with an increase in the value of C [50]. In fact, TRFBA 

170 was used to maximize the growth rate for each cell. On the other hand, to avoid the well-known 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.22.453438doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.22.453438
http://creativecommons.org/licenses/by/4.0/


9

171 degeneracy of solutions, the Manhattan norm of the flux distribution was minimized while the 

172 optimal growth rate was given as constraint [53]. Correlated reactions with growth were 

173 determined for each cell line by calculating the Pearson correlation coefficient between each 

174 reaction flux and growth rate so that reactions with a coefficient more than 0.9 (P-value  0.05) 

175 were considered correlated. In the next step, the common growth-correlated reactions for the 

176 four cell lines were selected, and PCA was performed to differentiate the cell lines using the 

177 selected reactions.

178 3. Results and Discussions

179 3.1 Characteristics of the reconstructed model

180      The reconstructed model contained 2427 biochemical reactions from 95 metabolic 

181 subsystems, 1300 genes, and 2569 metabolites. Of these reactions, 1910 reactions were gene-

182 associated reactions and 295 of them were non-gene-associated. The remaining reactions were 

183 pseudo reactions, which were mostly the exchange reactions. During the gap-filling process, 

184 67 reactions were added to the model to make it capable of growing. Fig 2a categorizes the 

185 reactions of iES1300 into nine main subsystems. As shown in this figure, among these 

186 subsystems, lipid and energy metabolism have the largest and the smallest distributions, 

187 respectively. Fig 2b, on the other side, determines that iES1300 consists of 10 subcellular 

188 locations, named cytosol, mitochondrion, extracellular space, endoplasmic reticulum, Golgi 

189 apparatus, lysosome, peroxisome, cytosolic membrane, endosome, and nucleus. This figure 

190 also shows that cytosol has the largest metabolite distribution. In Fig 2c, we can see similar as 

191 well as different reactions of iES1300 that compared with the two important mammalian 

192 metabolic GEMs. Fig 2c indicates that iES1300 has a relatively high similarity with the 

193 Recon2v4 and iCHOv1 networks.  The new reactions of iES1300 may refer to the HMR 

194 reactions existing in the Recon3D reaction list used in iES1300, spontaneous reactions and also 


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195 the reactions with different subcellular locations. Moreover, comparison of gene-associated 

196 reactions of iES1300 with three GEMs (Fig 2d) indicated that iES1300 had a lower ratio of 

197 non-gene-associated reactions to the total number of reactions of each model. Pseudo reactions 

198 are also referred to the exchange, demand, sink, biomass, and ATP maintenance reactions.

199

200 Fig 2. Characteristics of the Reconstructed Model. (a) In iES1300, there are 9 main metabolism 

201 categories of which the lipid metabolism is responsible for the largest reaction distribution. (b) 

202 Cytosol is considered to have the largest metabolite distribution. (c) Investigating the number of 

203 reactions shared by three important mammalian models. The newly added reactions in iES1300 in 

204 comparison to the two other models can be discovered. (d) Examination of the gene-to-reaction 

205 association’s ratios (To the total number of reactions of each model) in the four important mammalian 

206 models exhibits that iES1300 has much lower orphan reactions compared to the other models.

207

208 3.2 Comparison of iES1300 with the other eukaryotic and 

209 prokaryotic models 

210      Three different types of organism cells were chosen to be compared with iES1300 using the 

211 single- and double-gene deletion analyses. Table 1 presents that the effect of single- and 

212 double-gene deletions on growth of multicellular organisms are much lower than those of 

213 unicellular organisms. The lower GR ratio of genes with interactions in two multicellular 

214 species also showed that compared with unicellular models, multicellular ones had more 

215 robustness and flexibility to genetic perturbations. In addition, the analyses confirmed that the 

216 trait of iES1300 was similar to the eukaryotic models. 

217

218
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219 Table 1. Results of single and double gene deletion analysis on four metabolic models using FBA 
220 approach

Cell lines Number of Genes Ratios

Growth-Related 

Genes

Growth-Related 

Double-Genes

Genes with 

Interaction

iES1300 1300 0.05 0.0007 0.09

RECON1 1905 0.056 0.0002 0.07

iMM904 905 0.16 0.0014 0.016

iJO1366 1367 0.21 0.0013 0.15

221

222

223 3.3 Evaluation of metabolic similarities for cell lines 

224      Growth vs. C/Cbrk for each model is presented in Fig 3. In this figure, we can see that the 

225 growth patterns of fat and tumor cell models are nearly analogous. In addition, metabolisms of 

226 lean model is more susceptible to the change of C compared to normal.

227

228 Fig 3. The different patterns of the growth sensitivity to the normalized parameter of TRFBA 

229 algorithm (C/Cbrk), are a source for differentiation of the four models.

230

231 Furthermore, by applying PCA for the common growth-related reactions, it was found that the 

232 normal and lean models were significantly different from tumor and fat models (Fig 4a). The 

233 PCA results also indicated that the normal chicken cell was the most different cell line from 

234 the other cell lines. Fig 4b illustrates that by using the first principal component, 85% of the 

235 difference between normal cell metabolism and other cell lines can be explained. We further 

236 presented the difference of lean chicken cell with other cell lines by the second principal 
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237 component with approximately 15% variance. It can be seen in Fig 4a that the fat model has 

238 metabolic similarities to tumor model. Therefore, we can state that the normal model had key 

239 metabolic differences from lean, fat, and tumor chick cell metabolisms. Focusing on these 

240 differences and targeting them can prevent such metabolic disorders in chickens. Results of 

241 PCA also verified that a considerable number of reactions that shifted along the PC2 were 

242 orthogonal to the reactions that appear in PC1, indicating that the lean and the normal models 

243 have presumably separate growth mechanisms. 

244

245 Fig 4. PCA for extracting the reactions that play the role of biomarkers. (a) PCA shows that the 

246 36 flux distributions created by the combination of two integration algorithms, GIMME[52], and 

247 stepwise TRFBA[51] are successfully categorized into four different groups so that each group 

248 belongs to one cell line. (b) The variance explanation chart indicates that the 1st principal component 

249 is responsible for about 85% of the variance. The other 15% can be explained by the 2nd principal 

250 component. (c) The main differentiated reactions in PCA. 28 reactions are shown to have participated 

251 in the differentiation of the fat, lean, normal and tumor cells. Other reactions with lower absolute PC 

252 values were not investigated. The complete list of the reaction names is available in the S2 file. 

253

254 Fig 4c also shows the 28 main reactions in the differentiation of fat, lean, tumor, and normal 

255 chicken cell lines. Reactions with low values of absolute principal components were not 

256 considered because their differentiated flux distributions were insignificant.

257 Besides, it is worth mentioning that the fat and tumor chicken models had strong resemblances, 

258 mostly because of their glucose, nucleotide, and lipid metabolism activities and many essential 

259 amino acid exchange reactions of these two models. These results are presented in the S2 file, 

260 where all the differentiated reactions in PCA are explained. Research works, especially in the 

261 field of obesity and Hepatocellular Carcinoma (HCC), indicated that in obesity, fat 

262 accumulation leads to liver malfunction, and consequently the liver cannot send out more 

263 triglycerides by very-low-density lipoprotein (VLDL) than that are synthesized. This 
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264 intrahepatic triglyceride increasing would, in turn, result in fatty liver, and consequently liver 

265 failure and HCC [54,55]. In the case of iES1300, lots of relationships and similarities were 

266 observed, especially in three pathways of lipid metabolism, including Fatty Acid Synthesis 

267 (FAS), sphingolipid, and glycerophospholipid Metabolisms. Similarities in the flux patterns of 

268 FAS could lead both tumor and fat models to equally produce Palmitoyl-COA, which is a key 

269 metabolite in the progression of many other lipid pathways. Sphingolipid metabolism is one of 

270 the metabolic pathways, which is affected by FAS. This metabolic pathway is known for 

271 having some bioactive metabolites involved in the regulation of cell growth [56]. Therefore, it 

272 can be one of the primary sources of similarity in both models. Tracking sphingolipid and 

273 glycerophospholipid metabolisms has also revealed that some of their major metabolites play 

274 a key role in the biomass objective function reaction. Given that the nucleotides are widely 

275 used in various functions of all cells, and because of their relation with cell proliferation to 

276 DNA replication and RNA production [57], the more balance in the nucleotide metabolism 

277 activity could result in more equivalency of nucleotide production used for biomass generation. 

278 Moreover, it has been proved that obesity can systemically impact glucose metabolism by 

279 elevating glucose and insulin level, which favors cancer cell progression [58]. It can be 

280 presumed that the similarity in these three main metabolisms (glucose, nucleotide, and lipid 

281 metabolisms) controlling cell growth and proliferation affects the similarity between the 

282 amounts of many biomass reactants produced in tumor and fat models. This similarity could 

283 lead to the identical cell growth patterns in the tumor and fat models rather than the normal and 

284 lean models.

285 PCA revealed that in the 1st Principal Component, which differentiated the normal chicken 

286 model from other models, especially tumor model, there were numerous distinguished 

287 reactions in three metabolisms, including nucleotide, carbohydrate, and lipid metabolism. 

288 Although number of these reactions were higher in the tumor cell metabolism than in the 
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289 normal cells, the results demonstrated that glycolysis and pentose phosphate pathways were 

290 the most critical metabolic pathways in diversities of normal and tumor chicken models. It is 

291 also noteworthy that PC1 results of the 28 leading differentiated reactions indicated that the 

292 glycolysis pathway in tumor cell metabolism had higher activity toward the production of 3-

293 phosphoglycerate, which is a key metabolite in the development of glycine, serine, and 

294 threonine metabolism. On this account, the tumor cells are expected to be more active than a 

295 normal cell in this metabolic pathway. This assertion could be justified by knowing that serine 

296 and glycine provide the main precursors for tumor cell metabolism [59]. It has been also 

297 observed that despite the fact that most reactions happen in the tumor cell, the normal cell could 

298 produce significant amounts of ribose-5-phosphate. Further investigations have shown that in 

299 the next step, this metabolite is converted to 5-phospho-ribose 1-diphosphate, which plays an 

300 influential role in the progression of nucleotide metabolism. It is important to note that 

301 nucleotides can be synthesizable from two main metabolisms of de novo synthesis and salvage 

302 pathways [57]. The proliferating cells such as cancer cells are more eager to synthesize their 

303 required nucleotides through de novo synthesis [60].  Similarly, in the present study, iES1300 

304 demonstrated that the preference of normal chicken cell to use recycling of its nucleosides and 

305 nucleobases through salvage pathways is much higher than tumor cell. 

306 On the other side, for the 2nd Principal Component, which differentiated the lean cell line model 

307 from the others, especially fat model metabolism, various differentially flux distributions were 

308 observed. Results illustrated that in many metabolisms, because of several positive shifts along 

309 the PC2 axis, the metabolic activity of lean chicken can be more than that of fat chicken. 

310 However, a few of them were identified to be significant. Intriguingly, we perceived that the 

311 activity of enzyme phosphoglucomutase in the production of glucose-6-phosphate and the way 

312 it is used can be the dominant source of differences between lean and fat models. In the lean 

313 model, a considerable amount of glucose-6-phosphate heads towards inositol phosphate as well 
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314 as ascorbate and aldarate metabolisms to produce significant amounts of uridine diphosphate 

315 glucose (UDPG). Since UDPG is a key precursor in starch and sucrose metabolism, it was 

316 expected that the lean model had much more activity on this pathway. Additional investigations 

317 indicated that the increase in activity of lean model was not due to glycogen production and 

318 storage, but it resulted from the production of glucose by 4-alpha-glucanotransferase. As a 

319 result, the starch and sucrose metabolism was considered a key metabolic pathway, and the 

320 principal source of cell metabolism for glucose generation and utilization. Glucose is consumed 

321 in the lean model at a significantly higher rate, even in adipose tissue. Previous studies on the 

322 relationship between glycogen and lipid oxidation in the liver and muscles  have also shown 

323 that the glycogen storage reduction could increase lipid oxidation by stimulation of cellular 

324 energy state [61,62]. Likewise, in obese adipocyte cell metabolism, the lower gene expression 

325 of fatty acid pathways because of defection in mitochondrial function  resulting from a decrease 

326 in the mitochondrial acetyl-CoA concentration has already been established [13]. In this 

327 research work, iES1300 represented a significant diversity in the flux distributions of the lean 

328 and fat models, especially flux of three important reactions in cholesterol metabolism, fatty 

329 acid oxidation, and glyoxylate and dicarboxylate metabolism are significantly different. These 

330 reactions contributed to the production of mitochondrial acetyl-CoA and subsequently 

331 significant discrepancy in fatty acid oxidation metabolism was observed.

332 Conclusion

333      Chickens are the animals most associated with humans in rural life and animal husbandries, 

334 chickens are the most associated animals with humans to produce meat and egg. As a result, a 

335 metabolic model of the chicken cell will help us understand more about this organism’s 

336 behavior and prevent disease outbreaks. Accordingly, to reconstruct the first genome-scale 

337 metabolic model of the chicken cell as well as the chicken biological and genomic data were 
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338 manually collected in the form of a draft from different available bioinformatics databases and 

339 used after performing the gap-filling process. The final model consisted of 2427 reactions, 

340 2569 metabolites, and 1300 genes. The chicken model was compared with three other 

341 important models to evaluate the interaction of metabolic gene networks. This comparison 

342 demonstrated the relative similarity of the chicken's gene network to human. After model 

343 reconstruction, the transcriptomics data of the four cell types of lean, fat, normal, and tumor 

344 were integrated using the two algorithms of GIMME and TRFBA. Finally, by implementing 

345 PCA, we concluded that PCA, in addition to properly differentiating cell types from each other, 

346 has recommended important biomarkers. These biomarkers mostly participates in different 

347 metabolic pathways such as carbohydrate metabolism, to distinguish normal cells from three 

348 other cell lines.
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523 Supporting Information 

524 S1 File. The Excel and SBML version of the reconstructed model. In this supplementary 

525 file, a zip file containing the Excel and SBML version of the reconstructed chicken cell model 

526 is attached.

527 S2 File. Detailed information of the model. In this supplementary file, detailed information 

528 in the form of Excel sheets that has been mentioned in the paper including protein and DNA 

529 components coefficients, simulated growth medium, all and the main differentiated reactions 

530 from PCA results are available.
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