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Abstract

Pre-exposure prophylaxis (PrEP) is an important pillar to prevent HIV transmission.
Because of experimental and clinical shortcomings, mathematical models that integrate
pharmacological, viral- and host factors are frequently used to quantify clinical efficacy
of PrEP. Stochastic simulations of these models provides sample statistics from which
the clinical efficacy is approximated. However, many stochastic simulations are needed
to reduce the associated sampling error. To remedy the shortcomings of stochastic
simulation, we developed three numerical methods that allow predicting the efficacy of
arbitrary prophylactic regimen directly from a viral dynamics model, without sampling.
We apply the methods to various hypothetical dolutegravir (DTG) prophylaxis
scenarios. The approaches are verified against one another, as well as state-of-the-art
stochastic simulation. While the methods are more accurate than stochastic simulation,
they are superior in terms of computational performance. For example, a continuous
6-month prophylactic profile is computed within a few seconds on a laptop computer.
The methods’ computational performance, therefore, substantially expands the horizon
of feasible analysis in the context of PrEP, and possibly other applications.

Author summary

Pre-exposure prophylaxis (PrEP) is an important tool to prevent HIV transmission.
However, experimental identification of parameters that determine prophylactic efficacy
is extremely difficult. Clues about these parameters could prove essential for the design
of next-generation PrEP compounds. Integrative mathematical models can fill this void:
Based on stochastic simulation, a sample statistic can be generated, from which the
prophylactic efficacy is estimated. However, for this sample statistic to be accurate,
many simulations need to be performed.

Here, we introduce three numerical methods to directly compute the prophylactic
efficacy from a viral dynamics model, without the need for sampling. Based on several
examples with dolutegravir (DTG) -based short- and long-term PrEP, as well as
post-exposure prophylaxis we demonstrate the correctness of the new methods and their
outstanding computational performance. Due to the methods’ computational
performance, a number of analysis, including formal sensitivity analysis are becoming
feasible with the proposed methods.
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Introduction 1

Since its transfer to human in the early 20th century [1], HIV remains a major public 2

health treat. According to UNAIDS estimates, approximately 38 million individuals 3

worldwide are infected with the human immunodeficiency virus (HIV) [2]. HIV 4

continues to spread and the latest incidence estimates amount to about 1.7 million new 5

infections in 2019 [2]. Sub-Saharan Africa is hit hardest by the HIV pandemic, and due 6

to COVID many services, including HIV control and treatment, had been suspended, 7

which could lead to a long-term re-surge in infections [3]. 8

Nowadays, about 30 antiviral compounds are available that can stop HIV replication 9

and prevent the acquired immunodeficiency symdrome (AIDS) and AIDS-related 10

death [4]. However, unlike many other infections, no cure is available to clear HIV, 11

which can persist in latent reservoirs for decades [5, 6]. Available treatments therefore 12

have to be taken life-long to prevent the relapse of virus from latent reservoirs and to 13

prevent AIDS. As a consequence, much focus around fighting HIV turned towards HIV 14

prevention. While a vaccine would be the ideal tool for the purpose, intrinsic difficulties 15

have so far precluded the development of an effective vaccine against HIV [7]. However, 16

based on the successes in antiviral drug discovery, recent years have seen an increasing 17

interest in utilising antivirals not only for treatment, but also to prevent HIV 18

transmission. Two general strategies are currently implemented for this purpose: (i) 19

Treatment-as-prevention (TasP) intends to put individuals with an HIV diagnosis 20

immediately on treatment, which essentially makes them non-contagious by decreasing 21

the number of viruses they can expose to uninfected individuals [8]. (ii) Pre-exposure 22

prophylaxis (PrEP) on the other hand prevents establishment of HIV infection after 23

exposure [9, 10]. 24

Currently, two oral PrEP options, the patent-expired two-compound combination 25

Truvada, as well as the patent-protected two-compound combination Descovy are 26

available. However, many more drugs are investigated for re-purposing [11, 12], or under 27

de novo development [13], including topically-applied drugs, long-acting injectibles, as 28

well as drug eluting implants [14] [15]. 29

However, demonstrating clinical efficacy of novel PrEP compounds constitutes a 30

formidable task. Clinical efficacy of PrEP is understood as the reduction in the number 31

of infected individuals in a treatment- vs. a control arm of a clinical trial [9]. A major 32

statistical problem arises from the fact that HIV transmission probabilities are 33

extremely low (e.g. < 3% during unprotected sex [16]; far less for condom- or PrEP 34

usage, and when potential transmitters take antiviral therapy). Hence, the number of 35

evaluable data points (= infected individuals in a trial treatment and control arm) are 36

extremely low and prone to chance events. Since the approval of Truvada-based PrEP, 37

novel PrEP interventions have to be compared with Truvada, worsening the statistical 38

problem considerably [17]. E.g. the recent DISCOVER trial evaluating the efficacy of 39

emtricitabine plus tenofovir alafenamide (Descovy) against Truvada was conducted over 40

8756 person-years [10], yielding as little as 22 evaluable data points (infections). 41

Statistically empowering such a study quickly exceeds organizational and monetary 42

capacities. The statistical limitation has two consequences: (a) The determination of 43

concentration-prophylaxis relations, threshold concentrations and contributions of 44

transmitted and acquired drug-resistance cannot be rigorously deduced from clinical 45

data, non-withstanding ethical concerns. (b) The hurdles to introduce next-generation 46

PrEP regimen are immense: Trials consume huge monetary resources and require 47

several years. This compromises the advancement of next-generation PrEP and likely 48

affects its costs. It is therefore absolutely crucial to discern promising from less 49

promising interventions a priori. 50

Auxiliary tools based on integrative mathematical modelling may help to better 51

understand the parameters contributing to clinical PrEP efficacy [18]. In particular, 52
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how drug dosing may alter the risk of acquiring HIV infection, depending on its timing 53

and the magnitude of viral exposure. 54

A key feature of HIV biology is that transmission is highly inefficient. For example, 55

< 3% of unprotected sex acts between sero-discordant partners result in HIV 56

infection [16]. Moreover, the number of genetically distinct founder viruses is extremely 57

low [19]. This argues that stochastic processes play an important role during early 58

infection, and that, in the majority of exposures, the virus becomes eliminated before it 59

irreversibly infects the new host. Therefore, stochastic modelling and simulation 60

approaches are used to estimate the efficacy of PrEP by integrating various host-, viral- 61

and drug-specific parameters. For fixed drug concentrations, Monte-Carlo schemes, 62

analytical, as well as probability generating ODE systems have been developed [20–22]. 63

These approaches have been extended to include time-varying drug concentrations by 64

integrating pharmacokinetic characteristics, as well as realistic dosing schemes, but were 65

restricted to particular drugs, drug classes or prophylactic schemes [23,24]. Recently, a 66

numerically exact Monte-Carlo approach was introduced that can be universally applied 67

to study the effects of dosing, pharmacokinetics, drug adherence, timing and extend of 68

viral exposure on the risk of HIV infection [11,12]. Despite its advantage, the 69

introduced stochastic simulation approach is still computationally prohibitive, in a sense 70

that it would not allow to compute a PrEP efficacy from a history of drug dosing ‘on 71

the fly’, e.g. to be useful in a health app or computer program that empowers PrEP 72

users, akin to [25]. 73

In this work, we derive three numerical methods from an established viral dynamics 74

model of HIV infection [26,27] that overcome aforementioned limitations. These 75

methods estimate the probability of viral extinction using a set of low-dimensional 76

deterministic Ansatz functions that are either solved iteratively or with standard 77

numerical solvers. The fastest of the three methods allows to quantify PrEP efficacy 78

within fractions of a second on a standard computer and is numerically exact up to the 79

tolerance level of an ODE-solver. All developed methods fully integrate drug 80

pharmacokinetics, which allows to estimate the influence of drug dosing, drug 81

adherence, timing and magnitude of viral exposure on PrEP efficacy. 82

We illustrate the methods with the second-generation integrase inhibitor 83

dolutegravir (DTG). Taking advantage of the outstanding performance of the developed 84

methods, we presented several show cases to display their possible applications: By 85

estimating (i) both pre- and post-exposure prophylaxis with different dosing of the drug, 86

as well as timing- and extent of virus exposure, (ii) prophylactic protection profiles over 87

a 6 month dosing history, as well as (iii) timing- and probability of viral establishment 88

with different exposures. 89

Methods 90

Below, we will introduce a within-host HIV dynamics model, as well as a 91

pharmacokinetic-pharmacodynamic model of the second-generation integrase 92

dolutegravir, which serve as a common basis to derive and demonstrate the presented 93

numerical methods to compute HIV prophylactic efficacy. We will then introduce the 94

three proposed methods: Next Transition Method (NTM), Constant Time Step Method 95

(CTSM) and the Probability Generating System (PGS). A formal derivation of the 96

methods can be found in Supplementary Text S1. Pseudo-codes for the respective 97

methods are found in Supplementary Texts S2-4. In Supplementary Text S5 the 98

equations for each method are derived in the case where the model is extended for 99

long-lived and latently infected cells. While the second- (CTSM) and third- (PGS) 100

method are related, in Supplementary Text S6 we show how to derive the third method 101

(PGS) from the first (NTM). 102
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HIV viral dynamics model 103

We adapted the viral dynamics model from [26,27]. We use this model, because it allows 104

to mechanistically integrate the mechanisms of action of all approved drugs (and drug 105

classes) [26] and because it allows to integrate both drug-specific in vitro and in vivo 106

parameters [24]. In its most basic form, the considered viral replication cycle consists of 107

free infectious viruses V, early infected T-cells (T1), and productively infected T-cells 108

(T2). The dynamics can be defined by six reactions R1 to R6 with propensities a1−6: 109

R1 : Clearance of free virus, V→ ∗ a1 = (CL+CLT · Tu) · V (1)

R2 : Clearance of T1-cell, T1 → ∗ a2 = (δPIC + δT1
) · T1 (2)

R3 : Clearance of T2-cell, T2 → ∗ a3 = δT2
· T2 (3)

R4 : Infection of a suscept. cell, V → T1 a4 = β · Tu · V (4)

R5 : Integration of viral DNA, T1 → T2 a5(∅) = k · T1 (5)

R6 : Production of new virus, T2 → V +T2 a6 = NT · T2, (6)

where we assume that the integrase inhibitor dolutegravir (DTG) inhibits proviral 110

genome integration (reaction R5), with details outlined below. Moreover, we assume 111

that a T2-cell continuously produces viruses (with reaction rate R6) until it is cleared 112

(continuous virus production model). The basic model is depicted in Fig 1. Utilized 113

model parameters and their interpretations are given in Table 1. 114

Fig 1. Schematic of the utilized viral dynamics model. V, T1, T2 denote virus,
early infected T-cells and productively infected T-cells respectively. Each reaction is
denoted by its reaction propensity a1 − a6. Briefly, a free virus can either be cleared
(with reaction propensity a1), or infect a susceptible T cell with rate a4 to yield an early
infected cell T1. These cells denote a state where the virus has penetrated the host cell,
but has not yet integrated its proviral DNA into the host cell’s genome, thus not yet
producing viral offspring. Early infected cell T1 can either be cleared with rate a2 or
the proviral DNA irreversibly become integrated into the host cells DNA with rate a5 to
yield a productively infected T-cell T2. T2 cells start producing infectious progeny virus
with rate a6, or they may get cleared by the immune system with rate a3.

Pharmacokinetics and pharmacodynamics of dolutegravir 115

Dolutegravir (DTG) is a second-generation integrase inhibitor which may potentially be 116

used as prophylaxis against HIV. Moreover, we study it because of its similarity to 117

carbotegravir, which is in clinical development as a next-generation PrEP compound. 118

To evaluate the PrEP utility of DTG, we utilize a previously developed 119

pharmacokinetic-pharmacodynamic model of the drug [11]. 120
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Table 1. Parameters for viral dynamics model.

Parameter Description Value Reference

CL clearance rate of free virus by the immune system 2.3 [28,29]

CLT clearance rate of the free virus during unsuccessful infection CLT =
(

1
ρrev
− 1
)
· β [26]

Tu level of uninfected T-cells in the disease-free state Tu = λT/δT
ρrev probability of successful reverse transcription 0.5 [30,31]
β lumped rate of infection of T-cells 8 · 10−12 [32]
λT birth rate of uninfected T-cells 2 · 109 [33]
δT death rate of uninfected T-cells 0.02 [34]
δPIC rate of intracellular destruction of pre-integration complex (PIC); 0.35 [31,35]
δT1 rate of clearance of T1-cells 0.02 [34]
δT2

rate of clearance of T2-cells 1 [36]
k rate by which T1-cells are transformed into T2-cells 0.35 [31]
NT rate of production of infectious progeny virus 670 [26,34]

All parameters are in units [1/day], except for λ [cells/day] and β [1/(day·virus)]

Pharmacokinetics of dolutegravir 121

We utilize the non-linear mixed effects pharmacokinetic model introduced in [11]. In 122

brief, a two-compartment model with first order absorption describes the plasma 123

concentrations time profiles of dolutegravir (DTG) after oral drug administration. 124

Individual parameters for a population of HIV-negative individuals were sampled from 125

the distributions defined in [11] (Table 2 therein). The structural pharmacokinetic 126

model is given by the following set of ordinary differential equations (ODEs): 127

d

dt
Z1 = −ka · Z1 (7)

128

d

dt
D =

d

dt
Z2 =

ka
Vc/Fbio

· Z1 −
CL/Fbio
Vc/Fbio

· Z2 −
Q/Fbio
Vc/Fbio

· Z2 +
Q/Fbio
Vp/Fbio

· Z3 (8)

129

d

dt
Z3 =

Q/Fbio
Vc/Fbio

· Z2 −
Q/Fbio
Vp/Fbio

· Z3 (9)

where Z1 represents the amount of drug in the dosing compartment, and Z3 denotes the 130

DTG concentration in the peripheral compartment. D = Z2 is the DTG concentration 131

in the blood plasma, i.e. the value of interest. In a therapy, the value Z1 increases 132

whenever a dosing event τk occurs: Z1,t = Z1,t + dosek. 133

Pharmacodynamics of DTG 134

Since DTG is an integrase inhibitor, it acts intracellularly by preventing the integration 135

of viral DNA. This effect can be translated into a decrease in propensity function a5 by 136

a factor 1− ηD 137

a5(t) = (1− ηD(t)) · k · T1 (10)

where ηD(t) denotes the direct effect of DTG at time t, which is modelled using the 138

Emax-equation [37]: 139

ηD(t) =
Dm
t

ICm50 +Dm
t

(11)

where Dt is the drug concentration in the blood plasma at time t. IC50 represents the 140

plasma drug concentration by which the activity of proviral integration is inhibited by 141

50%, and m denotes a hill coefficient. In this work IC50 = 89 [nM] and m = 1.3 is used, 142

which are values after protein adjustment [38] (free drug hypothesis). 143

July 6, 2021 5/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.22.453374doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.22.453374
http://creativecommons.org/licenses/by/4.0/


Prophylactic efficacy 144

The prophylactic efficacy ϕ is defined as the reduction of infection risk for a prophylactic 145

regimen S, compared to the infection probability in the absence of prophylaxis: 146

ϕ(Yt,S) = 1− PI(Yt,S)

PI(Yt,∅)
(12)

where PI(Yt,S) and PI(Yt,∅) denote the infection probabilities in the presence and 147

absence of a prophylactic regimen S for a given virus state (e.g. exposure) Yt at time t. 148

We consider a prophylactic regimen to be a continuous function of drug concentrations. 149

The state of the viral compartments Yt is defined as Yt = [V, T1, T2]T , where V , T1 and 150

T2 are the numbers of viruses, T1-cells and T2-cells, respectively. For the absence of 151

prophylaxis, PI(Yt,∅), analytical solutions have been presented in [38]. For a 152

prophylactic regimen S they need to be determined numerically. 153

The infection probability is the complement of the extinction probability PE . We 154

thus have 155

PI(Yt,S) = 1− PE(Yt,S) (13)

where

PE(Yt) := P

Y∞ =

0
0
0

 ∣∣∣∣∣ Yt =

VT1

T2

 .

In words, the probability that all viral compartments will eventually go extinct, starting 156

from state Yt at time t. Under the reasonable assumption of statistical independence, 157

akin to [38], we can define the extinction probability as: 158

PE (Yt,S) =
(
PE(V̂ ,S)

)V
·
(
PE(T̂1,S)

)T1

·
(
PE(T̂2,S)

)T2

(14)

where V̂ , T̂1, T̂2 represent the unit vectors: 159

V̂ =

1
0
0

 , T̂1 =

0
1
0

 , T̂2 =

0
0
1

 (15)

Thus, if PE(V̂ ,S), PE(T̂1,S) and PE(T̂2,S) can be determined, the prophylactic 160

efficacy can also be calculated using eq (12)–(14), 161

Low-dimensional deterministic Ansatz functions 162

In this section, we present three methods to compute the extinction probability for the 163

unit vectors PE(V̂ ,S), PE(T̂1,S) and PE(T̂2,S), which enable the integration of 164

arbitrary pharmacokinetic profiles resulting from some prophylactic regimen S. As 165

noted before, this would enable calculating prophylactic efficacy for arbitrary 166

drug/dosing regimen. 167

Distribution of state transition events 168

The viral dynamic model illustrated in Fig. 1 is interpreted as a continuous time,
discrete state Markov process [39]. Therefore, the time when a particular state
transition happens is exponentially distributed according to the reaction propensities.
In the viral replication cycle, if the initial state is Y0 = [1, 0, 0]T , there are two possible
next states: (i) the virus is cleared Yτ = [0, 0, 0]T , or a T1-cell emerges Yτ = [0, 1, 0]T ,
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where τ is a random, exponentially distributed waiting time, until a reaction fires. The
probability density function (PDF) for state transition V→ T1 can be derived as:

fV→T1
(x) = (1− Fa1

(x)) · fa4
(x)

= (1− (1− e−a1x)) · (a4e
−a4x)

= a4e
−(a1+a4)x

(16)

where Fa1(x) is the cumulative probability of state transition V→ ∅ between time
point 0 and x, and fa4

(x) is the probability density function for transition V→ T1. In
words: The probability that V→ T1 occurs and V→ ∅ has not occurred yet.
Corresponding derivations hold for the process T2 → T2 + V:

fT2→T2+V(x) = (1− Fa3(x)) · fa6(x)

= (1− (1− e−a3x)) · (a6e
−a6x)

= a6e
−(a3+a6)x

(17)

For the process T1 → T2, the probability distribution fa5
(x) is different since the values 169

of a5 are time-dependent when an integrase inhibitor is applied (as in our example) that 170

affects the reaction according to its pharmacokinetic-pharmacodynamic (PK-PD) 171

properties and its dosing history. Using a Taylor approximation, the probability 172

distribution for fT1→T2(x) can be derived as (Supplementary Text S1): 173

fT1→T2(x) = (1− Fa2(x)) · fa5(x) = a5(x)e−(a2x+
∫ x
0
a5(t) dt) (18)

Method 1: Next Transition Method (NTM) 174

The precondition for the NTM method is that the concentration-time profile of the 175

prophylactic regimen S must be known in advance. This can be achieved by solving the 176

deterministic pharmacokinetic equations (7)–(9) for a particular dosing schedule using 177

standard ODE-solvers. Given these pharmacokinetic profiles, the NTM method delivers 178

an extinction probability-time profile. Mathematically, the method calculates PE (Yt,S). 179

Now, we can compute PE

(
Yt = V̂ ,S

)
to denote the extinction probability of unit 180

vector V̂ , i.e. the probability that a single virus that exists at time t will be cleared in 181

the future. The other two values of interest, which will be outlined further below, are 182

the extinction probability for a T1 cell and for a T2 cell, PE

(
Yt = T̂1,S

)
and 183

PE

(
Yt = T̂2,S

)
, respectively. For brevity, we will skip S in the notations, keeping in 184

mind that everything refers to a prophylactic strategy with some underlying PK-PD 185

profile that affects reaction rate a5 in a time-dependent manner. 186

The extinction probability of one virus at time t, i.e. PE

(
Yt = V̂

)
, consists of two 187

parts: the probability of direct extinction, with the value a1

a1+a4
; and the probability 188

that virus is first transformed to T1, and eventually gets cleared. Since we already know 189

the probability distribution of state transition V→ T1, we can split the time into small 190

steps so that the probability of V→ T1 can be accurately approximated for each time 191

step. We then get (detailed derivation in Supplementary Text S1): 192

PE

(
Yt = V̂

)
=

a1

a1 + a4
+
∞∑
i=1

d1(t, i) · PE
(
Yt+i·∆t = T̂1

)
(19)

where ∆t is a sufficiently small time step and i denotes the number of steps beginning 193

from time point t. The variable d1(t, i) is a function that represents the probability that 194
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the state transition V→ T1 occurs within the ith time step, i.e. 195

τV→T1
∈ [t+ (i− 1) ·∆t, t+ i ·∆t] and is given further below. 196

PE

(
Yt = T̂2

)
is calculated analogously: 197

PE

(
Yt = T̂2

)
=

a3

a3 + a6
+
∞∑
i=1

d3(t, i) · PE
(
Yt+i·∆t = T̂2

)
· PE

(
Yt+i·∆t = V̂

)
(20)

where d3(t, i) denotes the probability that the state transition T2 → V + T2 occurs 198

within the ith time step. In the equation above, we assumed statistical 199

independence [38], such that 200

PE
(
Yt+i·∆t = [1, 0, 1]T

)
= PE

(
Yt+i·∆t = T̂2

)
· PE

(
Yt+i·∆t = V̂

)
. 201

Since the value of a5 varies over time, the first term in PE

(
Yt = T̂1

)
is derived in a 202

more general way (Supplementary Text S1): 203

PE

(
Yt = T̂1

)
=

(
1−

∞∑
i=1

d2(t, i)

)
+
∞∑
i=1

d2(t, i) · PE
(
Yt+i·∆t = T̂2

)
(21)

where the first term is the complement probability of transition T1 → T2 occurring 204

some time after t. 205

The probability functions d1(t, i), d2(t, i), d3(t, i) for the respective state transitions
can be computed based on eq (16)–(18) as outlined in Supplementary Text S1.

d1(t, i) = − a4

a1 + a4
e−(a1+a4)i∆t

(
1− e(a1+a4)∆t

)
d2(t, i) = ∆t · a5(t+ i ·∆t) · e−(a2·i·∆t+

∫ t+i·∆t
t

a5(x)dx)

d3(t, i) = − a6

a3 + a6
e−(a3+a6)i∆t

(
1− e(a3+a6)∆t

) (22)

The set of equation for this method is given by eqs (19)–(22). This method is solved 206

iteratively backwards using dynamic programming, as exemplified in the pseudocode 207

given in Supplementary Text S2. 208

This method has foundations in the embedded Markov Chain, focusing on all possible 209

one-step state transitions and their corresponding probability. To simulate the 210

time-dependent probabilities of state transition, we performed a time-discretization into 211

sufficiently small steps ∆t. Here, we assumed that the extinction probabilities stay 212

approximately unchanged inside each step (we make a zero-order Taylor approximation 213

to compute d2(t, i)), as outlined in the derivation in Supplementary Text S1. Of course, 214

higher-order approximations can also be used. If the time-discretization is omitted 215

altogether, we derive the third method (PGS) as outlined in Supplementary Text S6. 216

Method 2: Constant Time Step Method (CTSM) 217

Method 1 can already solve the extinction probability deterministically for a given 218

pharmacokinetic profile, but its computational run time can be further improved. In 219

order to improve the performance, we propose a different set of Ansatz functions to 220

approximate the extinction probability for V̂ , T̂1 and T̂2 deterministically. 221

This method is based on a time-discretization of the underlying time-continuous
Markov process into time steps ∆t. From the constructed discrete-time Markov chain,
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we can compute the extinction probabilities for e.g. state V̂ at time point t as follows:

PE

(
Yt = V̂

)
=P

(
Yt+∆t = 0 | Yt = V̂

)
+

P
(
Yt+∆t = T̂1 | Yt = V̂

)
· PE

(
Yt+∆t = T̂1

)
+

P
(
Yt+∆t = V̂ | Yt = V̂

)
· PE

(
Yt+∆t = V̂

) (23)

with the following interpretations: P
(
Yt+∆t = 0 | Yt = V̂

)
denotes the probability that

the virus is eliminated in time span [t, t+ ∆t); P
(
Yt+∆t = T̂1 | Yt = V̂

)
is the

probability that the state transition V→ T1 occurs in [t, t+ ∆t) and PE

(
Yt+∆t = T̂1

)
is the probability that a T1-cell that exists at time t+ ∆t will eventually be eliminated.
Finally, the probability that no state transition occurs in [t, t+ ∆t) is given by

P
(
Yt+∆t = V̂ | Yt = V̂

)
= 1− P

(
Yt+∆t = 0 | Yt = V̂

)
− P

(
Yt+∆t = T̂1 | Yt = V̂

)
.

The terms P
(
Yt+∆t = 0 | Yt = V̂

)
and P

(
Yt+∆t = T̂1 | Yt = V̂

)
can be derived

based on the calculations for the distribution of state transition events, as outlined in
Supplementary Text S1. Using these derivations, the the final expression for

PE

(
Yt = V̂

)
is

PE

(
Yt = V̂

)
=

a1

a1 + a4

(
1− e−(a1+a4)∆t

)
+

a4

a1 + a4

(
1− e−(a1+a4)∆t

)
· PE

(
Yt+∆t = T̂1

)
+ e−(a1+a4)∆t · PE

(
Yt+∆t = V̂

) (24)

Similarly, for PE

(
Yt = T̂1

)
we get:

PE

(
Yt = T̂1

)
=

a2

a2 + a5(t)

(
1− e−(a2+a5(t))∆t

)
+

a5(t)

a2 + a5(t)

(
1− e−(a2+a5(t))∆t

)
· PE

(
Yt+∆t = T̂2

)
+ e−(a2+a5(t))∆t · PE

(
Yt+∆t = T̂1

) (25)

and for PE

(
Yt = T̂2

)
:

PE

(
Yt = T̂2

)
=

a3

a3 + a6

(
1− e−(a3+a6)∆t

)
+

a6

a3 + a6

(
1− e−(a3+a6)∆t

)
· PE

(
Yt+∆t = T̂2

)
· PE

(
Yt+∆t = V̂

)
+ e−(a3+a6)∆t · PE

(
Yt+∆t = T̂2

) (26)

Similar to the next transition method (NTM), when implementing the constant time 222

step method, we make a zero-order Taylor approximation to a5(s) as visible in eq (25) 223

and assumed that all extinction probabilities PE stay unchanged for each time step 224

s ∈ [t, t+ ∆t). The implementation for this method is outlined in the pseudo-code in 225

Supplementary Text S3. Similar to the previous method, the CTSM is solved iteratively 226

backwards in time using dynamic programming. 227
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Method 3: Probability Generating System (PGS) 228

In the CTSM, we constructed a discrete-time Markov Chain for time steps ∆t and
approximated a5(s) within such a time-step s ∈ [t, t+ ∆t) using a zero-order Taylor
approximation, i.e. a5(s) ≈ a5(t). Because of this approximation, the precision of the
method depends on ∆t. On the contrary, for the PGS we will take ∆t→ 0 to derive a
set of continuous Ansatz functions. With this idea in mind, we differentiate
eqs. (24)–(26) to derive the following set of ordinary differential equations
(Supplementary Text S1):

dPE

(
Yt = V̂

)
dt

= a1 ·
(
PE

(
Yt = V̂

)
− 1
)

+ a4 ·
(
PE

(
Yt = V̂

)
− PE

(
Yt = T̂1

))
dPE

(
Yt = T̂1

)
dt

= a2 ·
(
PE

(
Yt = T̂1

)
− 1
)

+ a5(t) ·
(
PE

(
Yt = T̂1

)
− PE

(
Yt = T̂2

))
dPE

(
Yt = T̂2

)
dt

= a3 ·
(
PE

(
Yt = T̂2

)
− 1
)

+ a6 ·
(
PE

(
Yt = T̂2

)
− PE

(
Yt = T̂2

)
· PE

(
Yt = V̂

))

(27)

Given a5(t) and initial values, equations above can be solved by any ODE solver, as 229

outlined in in Supplementary Text S4. 230

Implementation and availability 231

Pseudocodes for the three methods are described in detail in Supplementary Texts S2–4. 232

All methods were implemented in Python 3.8, using SciPy 1.5.0, Numpy 1.18.5, Pandas 233

1.0.5 and matplotlib 3.2.2. Codes are available from 234

https://github.com/KleistLab/PrEP.git. 235

Algorithmic specifications 236

Next transition method (NTM). For NTM, we chose a time step of ∆t = 1 min. 237

Furthermore, the method requires look-ahead horizons k1, . . . , k3 which are 238

automatically determined for a given precision parameter ξ (Supplementary Text S2). 239

Throughout the manuscript we use ξ = 0.999. 240

In this work, we extended the end time point for an extra τ = 100hours so that the 241

values in the target time interval are accurate. This value of extra time can be 242

determined roughly from the half life of considered drugs, e.g τ ≈ 7 · t1/2, where 243

t1/2 ≈ 14.5hours denotes the half life of DTG. The above stated criterium guarantees 244

that the drug concentrations at Te + τ are < 1% of the trough concentrations. Lastly, 245

the method is solved backwards from an end time Te + τ to some start time Ts. At 246

Te + τ , we initialize the extinction probabilities with the values in the absence of drugs, 247

e.g. PE(YTe
= V̂ ,S) = PE(V̂ ,∅), PE(YTe

= T̂1,S) = PE(T̂1,∅) and 248

PE(YTe = T̂2,S) = PE(T̂2,∅), which can be determined analytically [38]. 249

Constant time step method (CTSM). For CTSM, we set ∆t = 1 min. 250

Noteworthy, the simulation time horizon must exceed the time horizon of interest to 251

ensure that the drug concentration is approaching 0. This is done as explained for the 252

NTM. We then initialize the extinction probabilities with the values in the absence of 253

drugs before solving the set of equations backwards in time. 254

July 6, 2021 10/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.22.453374doi: bioRxiv preprint 

https://github.com/KleistLab/PrEP.git
https://doi.org/10.1101/2021.07.22.453374
http://creativecommons.org/licenses/by/4.0/


Probability generating system (PGS). The PGS does not require to pre-define 255

a time-step (this is done by the ODE solver). Like with the other methods, the 256

simulation time horizon is extended analogously and the extinction probabilities are 257

initiated with the values in the absence of drugs. We use solve ivp in SciPy [40] with 258

the LSODA solver (linear multistep method) and default settings to solve the system of 259

ODEs backwards in time. 260

EXTRANDE. We implemented the exact stochastic simulation method 261

EXTRANDE with configurations identical to [11]. 262

Pharmacokinetics. Pharmacokinetic profiles for DTG were pre-computed from 263

eqs (7)–(9) using solve ivp in SciPy [40] with default solver and default settings, for 264

the respective prophylactic regimens S. Depending on the algorithm, Dt was either 265

evaluated at discrete time points t = i ·∆t (NTM, CTSM), or linearly interpolated 266

(PGS, EXTRANDE). Using the pharmacokinetic profiles, the time-dependent value of 267

ηD(t), eq (11) was determined and used in the respective algorithms. Depending on the 268

analysis, we either simulated DTG pharmacokinetics for a representative individual, or 269

by drawing pharmacokinetic parameters for 1000 virtual individuals from the parameter 270

distributions defined in [11]. 271

Simulation of pre- and post-exposure prophylaxis 272

Single viral challenge. For single viral challenges the profiles of 273

PE(Yt = V̂ ,S), PE(Yt = T̂1,S) and PE(Yt = T̂2,S) were computed using NTM, CTSM 274

and PGS with configurations outlined above. 275

Multiple viral challenges. Using the new methods, we can also compute the 276

prophylactic efficacy following multiple viral challenges: Under the assumption of 277

statistical independence [38], the extinction probability following multiple viral 278

challenges is the product of extinction probabilities for single viral challenges at their 279

corresponding time points. I.e.:, 280

ϕ(Y{ti},S) = 1−
PI(Y{ti},S)

PI(Y{ti},∅)
. (28)

with {ti}, i = 1, . . . , n denotes a set of n viral exposures and

PI(Y{ti}) = 1−
∏
i

PE(Yti)

due to statistical independence, where PE(Yti) is computed as described above. 281

If n viral exposures occur at the same time ti = t, we have

PI(Y{ti}) = 1−
(
PE(Yt)

)n
.

To assess the validity of this assumption we also simulated multiple viral challenges with 282

EXTRANDE and compared the results. 283

Computation of density function of the extinction event 284

So far, we computed the probability that viral extinction is eventually happening after 285

viral exposure at some time t; PE

(
Yt = V̂ ,S

)
. I.e., we only care if extinction 286

eventually occurs, regardless of when it happens. 287

The introduced methods can however also be used to estimate the probability that 288

the extinction occurs in a specific time range. To solve for this probability, we can e.g. 289

alter the initial conditions of the PGS. In essence, we are interested in the extinction 290

probability within a time range [t0, te]. Since equations (27) are solved backwards in 291
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time (Supplementary Text S4), we initialize the set of ODEs with the probability that 292

the extinction occurs at the final time point te, for example P
(
Yte = 0 | Yte = V̂

)
for 293

the first ODE (eq. (27)). This probability is obviously 0. Consequently, the set of ODEs 294

eq. (27) is initialized with values [0, 0, 0] and then solved backwards in time until t0. 295

The derived probabilities have the following interpretation: they denote the probability 296

that a single virus, single T1 and single T2, transmitted at time point t0 are cleared in 297

the time range [t0, te]. For example, if we want to determine the probability that virus 298

is cleared te = 10 days after exposure to one infectious virus (at day t0) for some 299

prophylactic regimen, we set the time span of the ODE set eq. (27) to [0, 10], initialize 300

the ODE with [0, 0, 0]T at te = 10 and solve the PGS backwards to t0 = 0 to derive 301

P
(
Yte = 0,S | Yt0 = V̂

)
in the first equation of the PGS, eq. (27). For a given 302

pharmacokinetic (PK) profile Dt this process has to be repeated for different values of 303

te to reconstruct the entire cumulative probability density function (CDF) with the 304

correct PK profile. The probability density function (PDF) can be derived 305

straight-forward from the CDF. Similarly, the procedure also allows to compute the 306

corresponding probabilities for arbitrary numbers of initial viruses (statistical 307

independence assumption), eq. (14). 308

Results 309

Efficacy of PrEP-on-demand with DTG 310

Using the three proposed methods, we computed the time course of the extinction 311

probability PE(Yt,S) and the corresponding prophylactic efficacy ϕ(Yt,S) for a 3-days 312

once daily short-course oral 50mg DTG prophylaxis, that was either initiated shortly 313

after viral exposure (post-exposure prophylaxis, PEP) or before virus exposure 314

(pre-exposure prophylaxis, PrEP). Fig. 2A shows the profiles of the extinction 315

probability and Fig. 2B depicts the corresponding prophylactic efficacy. In Figure 2, for 316

illustration, we depict these quantities for Yt = V̂ , Yt = T̂1 and Yt = T̂2 individually. 317

From these quantities, the extinction probability for an arbitrary initial state can be 318

calculated based on eq (14). All three proposed methods yielded indistinguishable 319

results. In the figure we therefore only display the results of the PGS. 320

From a computational point of view, PEP and PrEP are computed within the same 321

execution of the proposed methods: A pharmacokinetic trajectory (brown dashed line in 322

Fig. 2A & B) is placed on the time axis and the methods are backwards propagated to 323

some time before the first dose of the drug was given. Any time points before the first 324

dose denote PEP, whereas PrEP refers to time points after the first dose of the drug. 325

For example, the value of the red line in Fig. 2B at t = −2 (days) indicates that the 326

efficacy of a 3 days 50mg oral DTG post-exposure prophylaxis, that was initiated 2 days 327

after exposure to a single virus particle, is about 35%. If exposure occurred at t = 0 328

(coinciding with the first drug intake), the efficacy would be ≈ 90%. As described above, 329

the new methods therefore compute a prophylactic efficacy profile for a time span of 330

interest, i.e. every point on this time-efficacy curve represents the prophylactic efficacy 331

ϕ(Yt,St0) conditioned that the viral exposure occurred at the indicated time point and 332

the prophylactic regimen S was started at t0 = 0. 333

From a biological point of view, Figure 2B nicely highlights the role of the molecular 334

target of the integrase inhibitor DTG within the viral replication cycle [38]: The drug is 335

able to potently prevent infection if it emanates from a virus V or a T1 cell 336

(compartments proceeding its molecular target process), but not from a T2 (a 337

compartment succeeding its molecular target process). 338

While the three proposed methods yielded indistinguishable results for the presented 339
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Fig 2. Prophylactic efficacy for 3-days once daily short-course oral 50mg
DTG. The extinction probabilities were computed by PGS, for a representative
individual with pharmacokinetic parameters ka = 2.24h−1, Vp/Fbio = 0.73 L,
Q/Fbio = 0.0082 L/h, CL/Fbio = 0.85 L/h and Vc/Fbio = 17.7 L. Observation began
from two days before the first dose (the drug-doses are marked by arrows), until the
10th day after the first dose of DTG. The X-axis denotes the timing of viral exposure
relative to the first dose, i.e. negative values represent a viral exposure before the first
dose of DTG (post-exposure prophylaxis, PEP), whereas positive values represent
pre-exposure prophylaxis (PrEP) scenarios. A: DTG plasma concentration (dashed
brown line) and the extinction probability profiles, with regards to one virus PE(V̂ ,S),
one T1-cell PE(T̂1,S) and one T2-cell PE(T̂2,S) are shown by solid red, green and blue
lines. B: DTG plasma concentration (dashed brown line) and the corresponding
prophylactic efficacies for one virus ϕ(V̂ ,S), one T1-cell ϕ(T̂1,S) and one T2-cell
ϕ(T̂2,S) are shown by solid red, green and blue lines.

example (Fig. 2), their run times were markedly different, Table 2: While NTM 340

required about three minutes on a AMD R5 core with 3.6 Ghz and 16 GB RAM, CTSM 341

only needed 5.9 seconds and PGS ran in a fraction of a second. Notably, if stochastic 342

simulation was performed (as in [11]), several thousand stochastic samples need to be 343
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generated to approximate the prophylactic efficacy ϕ(Yt,S) from the sample statistic 344

for a single time point t.

Table 2. Run time of the proposed methods.

Method run time [s]

NTM 185.14
CTSM 5.88
PGS 0.21

Run time to compute the prophylactic profiles in Fig. 2 on an single AMD R5 core with
3.6 Ghz and 16 GB RAM.

345

Comparison with stochastic simulation (EXTRANDE) 346

Previously, an exact hybrid stochastic simulation method called EXTRANDE was 347

introduced in [41]. We subsequently adapted the algorithm to estimate PrEP efficacy 348

against HIV [11,12]. Here, we used EXTRANDE to verify the accuracy of the proposed 349

methods. Fig. 3 shows the predicted efficacy of a three days prophylaxis with either 2 or 350

50mg oral DTG started at t = 0 using EXTRANDE vs. the proposed methods. In 351

contrast to Fig. 2 (drug-centered evaluation), here we perform an exposure-centered 352

evaluation to calculate ϕ(Yt0 = V̂ ,Sti). I.e. the virus exposure occurs t0 = 0 and the 353

first dose is taken at time ti ∈ {−23,−18,−12,−6,−3,−1, 2, 4, 6, 12, 18, 24} hours 354

before/past the viral exposure. In words: the prophylactic efficacy if exposure to a single 355

virus particle occurred at time t0 = 0 and the 3-day prophylaxis was initiated at time ti. 356

In Fig. 3, we can see that the three proposed methods yield highly similar results 357

(overlapping green, blue and orange lines) and moreover that the results of the proposed 358

methods form smooth lines. The results of EXTRANDE fluctuate randomly around the 359

results of the proposed methods. From a biological standpoint we see that the 360

prophylactic efficacy 50mg DTG is almost double compared to 2mg. Moreover, we see 361

that the prophylactic efficacy deteriorates much faster for PEP than for PrEP. I.e., if 362

DTG is taken as PEP, it needs to be taken shortly after the exposure. For PrEP-on 363

demand, the efficacy changes only marginally if PrEP is initiated within 24 hours prior 364

to exposure. 365

In terms of run time, EXTRANDE requires thousands of simulations to achieve 366

statistically reliable meaningful results. In Fig 3, for each of the 12 time points we ran 367

10 000 simulations with EXTRANDE, which took about two hours for all points using 368

multi-treading (12 treads). By contrast, using the proposed methods, the values of all 369

time points can be extracted from a single run, i.e. ϕ(Yt0 = V̂ ,Sti) = ϕ(Y−ti = V̂ ,St0), 370

with run times depicted in (Table 2). 371

Obviously, the pharmacokinetic profiles can be arbitrarily altered, which allows to 372

assess the prophylactic efficacy of any regimen S, e.g. with regards to the drugs taken, 373

their dose, the administration frequency and the timing of drug intake, as outlined 374

above. 375

PrEP efficacy for multiple viral challenges and different 376

inoculum sizes 377

Another interesting application of the proposed methods is to assess the impact of the 378

exposure on the prophylactic efficacy, e.g. to assess the sensitivity of ϕ(Yt,St0) with 379

regards to Yt. We have shown previously by simulations [23] that the prophylactic 380

efficacy depends on the inoculum size (= how many viruses enter a replication-enabling 381
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Fig 3. Prophylactic efficacy for PrEP and PEP computed by EXTRANDE
and the new methods. 2 mg (lines below) and 50 mg (lines above) DTG were
ingested for three days, respectively. The extinction probabilities were computed by
EXTRANDE and the three new methods, for a representative individual with
pharmacokinetic parameters ka = 2.24h−1, Vp/Fbio = 0.73 L, Q/Fbio = 0.0082 L/h,
CL/Fbio = 0.85 L/h and Vc/Fbio = 17.7 L. The prophylactic efficacy was computed
using eq. (12) for initial state Y0 = [1, 0, 0]T . The X-axis represents the timing of the
first DTG dose relative to the virus challenge, which is marked by the arrow.
EXTRANDE was run 10 000 times for each condition. The error bars denote the 95%
confidence bounds for the ensemble estimate, computed using the Greenwood’s
formula [42].

environment). Also, in [24], we used stochastic simulation to assess prophylactic efficacy 382

after multiple viral challenges. Here, we demonstrate how the proposed method can be 383

used to address these questions. 384

Multiple Challenges. Multiple viral challenges can be computed straight-forward 385

as exemplified in the Methods section. In Table 3 we show the estimated prophylactic 386

efficacy for different PrEP regimen (either 3 or 7 doses of 2 or 50mg DTG started at 387

t0 = 0) with multiple challenges to a single virus particle, computed using both PGS 388

and EXTRANDE. Foremost, as a sanity check, we can see that both methods yield 389

congruent results for all tested conditions. We can also see that higher dose, as well as a 390

longer time course (seven vs. three days) of DTG dosing improves the prophylactic 391

efficacy, even if more viral challenges occur during the short-course prophylaxis. Also, 392

we observe a interesting interplay between the number of exposures and their timing: 393

For example, if two exposures occur at 1 and 24h after the first dose of DTG vs. three 394

exposures at 1, 24 and 72h after DTG initiation, we see a decrease in efficacy. However, 395

when we compare two exposures occur at 1 and 72h after the first dose of DTG vs. 396

three exposures at 1, 24 and 72h after DTG initiation, we see a slight increase in 397

efficacy. This has the following reason: In the presented example, the prophylactic 398
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efficacy (relative risk) after multiple challenges is given by: 399

ϕ(Y{ti},S) = 1−
PI(Y{ti},S)

PI(Y{ti},∅)
. (29)

where {ti}, i = 1, . . . , n denotes a set of n viral exposures. 400

Table 3. Prophylactic efficacy in case of multiple viral challenges.

Dose # Doses Exposure time
Prophylactic efficacy [%] Probability of Infection [%]
EXTRANDE PGS PI(Y{ti},S) PI(Y{ti},∅)

2mg
3 1, 24h 39.64± 1.05 40.52 11.11 18.68
3 1, 72h 27.72± 1.13 27.02 13.63 18.68
3 1, 24, 72h 29.90± 0.91 29.64 18.76 26.67
7 1, 24, 72, 144h 44.31± 0.73 44.92 18.66 33.87

50mg
3 1, 24h 82.71± 0.59 82.58 3.25 18.68
3 1, 72h 72.21± 0.74 72.27 5.18 18.68
3 1, 24, 72h 73.33± 0.60 73.79 6.99 26.67
7 1, 24, 72, 144h 87.31± 0.37 87.25 4.31 33.87

2 or 50mg oral DTG was ingested for 3 and 7 days respectively starting at t0 = 0, and 2–4 viral exposures occurred at the
time ’Exposure time’ hours after DTG initiation. During each exposure one infectious virus entered a replication-enabling
compartment. The corresponding prophylactic efficacy was computed by PGS and EXTRANDE, respectively. For each
condition EXTRANDE was run 100 000 times. The 95% confidence bounds of the EXTRANDE estimate was computed using
the Greenwoods formula [42]. The probability of infection after multiple viral challenges with- and without drug (PI(Y{ti},S)
and PI(Y{ti},∅)) were computed with PGS and are depicted in the last 2 columns. Utilized pharmacokinetic parameters were

ka = 2.24h−1, Vp/Fbio = 0.73 L, Q/Fbio = 0.0082 L/h, CL/Fbio = 0.85 L/h and Vc/Fbio = 17.7 L.

Now, if PI(Y{ti},∅) increases faster with the number of exposures than PI(Y{ti},S), 401

a scenario may arise, in which the prophylactic efficacy (= relative risk reduction) may 402

be higher, although more exposures happened. I.e. the contextual information, ’when 403

did the exposure(s) occur relative to the drug dosing ’ is relevant. For example, if many 404

exposures happened at times of almost full protection, the exposed person would be 405

better off than if only a few exposures happened at times of low protection. 406

Inoculum size. Fig. 4 shows how the profile of prophylactic efficacy is affected by 407

the number of inoculated viruses. This can be calculated from the solution of the PGS 408

is a straight forward way, akin to eq. (14) (statistical independence assumption). In 409

Fig. 4, we observe that different inculum sizes lead to an (exponential) scaling of the 410

prophylactic efficacy, and that the efficacy deteriorates, when large numbers of viruses 411

are able to reach a replication-competent compartment. 412

Long-term prophylactic efficacy 413

Because of its superior computational performance, the PGS can also be applied to 414

estimate prophylactic efficacy over very long time scales for population 415

pharmacokinetics (Pop-PK). I.e., typically pharmacokinetic variability is described by 416

statistical models, such as non-linear mixed effects models (NLME), e.g. in [11]. If the 417

pharmacokinetic characteristics of an individual are not known, a Pop-PK model may 418

still be used to accurately capture likely pharmacokinetic profiles in an individual, given 419

a dosing history. The PGS would then allow to predict the profile of prophylactic 420

protection if the individual was exposed to virus at any time during the observation 421

horizon. Note that this type of analysis is usually not feasible with stochastic methods, 422

due to computational demands (for each time point in the profile, several thousand 423

stochastic simulations would be required). 424
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Fig 4. Profiles of prophylactic efficacy for different inoculum sizes. The
experimental setup was chosen identical to Fig 2. To calculate the prophylactic efficacy
profiles, an exponential scaling is applied to the solutions of the PGS (eq (14)). The
solutions are plugged into eq (12).

In Fig. 5, we show the estimated long-term efficacy profile for a chronic, 6-month 425

once-daily 50mg oral DTG regimen for different levels of adherence. For each adherence 426

level the computation was conducted on 1000 virtual individuals sampled from the 427

Pop-PK model to capture inter-individual differences in drug pharmacokinetics. The 428

red line and the grey ranges denote the median, interquartile and 2.5%− 97.5% ranges 429

of prophylactic efficacy under consideration of inter-individual differences in the 430

pharmacokinetic profiles. With PGS it took about 24 min in total to compute the 431

6-month prophylactic profiles for 1000 virtual individuals and a given sequence of dosing 432

events (determined by the adherence level), i.e. less than 1.5s for each individual on an 433

AMD R5 core with 3.6Ghz and 16GB RAM (standard laptop). This computation could 434

also be easily parallelized, which would reduce the run time considerably (the entire 435

simulation took about 5 min on the same computer with 12 threads). 436

Density function of the extinction event 437

Using the approaches outlined in the Methods section, it is also possible to compute 438

when the actual extinction event happens after exposure. This is highly useful in 439

determining how long a prophylaxis on-demand should be given. 440

Fig. 6 shows the cumulative probability of extinction, as well as the density function 441

of the extinction event, computed using the PGS for a 3days 50mg DTG regimen that 442

was initiated at t0 = 0, coinciding with viral exposure. In these simulations, akin to the 443

last example, we sample virtual individuals from the Pop-PK model. 444

Fig 6A and B depict the cumulative-, as well as the density function of the 445

extinction event after exposure to a single initial virus. Fig 6C and D show the 446

corresponding distributions after exposure to 20 viruses. From the figures, we can see 447
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Fig 5. Long-term prophylactic profile with different levels of adherence.
N = 1000 virtual patients were sampled from the pharmacokinetic parameter
distributions defined in Table 2 of [11]. 50 mg dose of DTG / day was ingested in this
six-month-long regimen with adherence level of 0.75, 0.5, 0.33 and 0.25. The red line
depicts the median predicted prophylactic efficacy, whereas the dark- and light grey
areas present the quartile range and the 2.5%− 97.5% range respectively. The
prophylactic efficacy was computed for Y0 = [1, 0, 0]T .

that the cumulative probability of viral extinction is much lower after exposure to 20- 448

compared to one virus (panel A vs. C). Moreover, we can see that, after exposure to a 449

single virus, extinction most likely occurs shortly after exposure, e.g. within 1–2 days. 450

In contrast, when 20 viruses are inoculated, extinction is most likely happening at day 4 451

after exposure, and that it is still likely that extinction may occur up to 10 days after 452

exposure when a 3days 50mg DTG prophylaxis is applied. Moreover, extinction is less 453

likely to happen: After exposure to 20 viruses, extinction occurs in 10 days with about 454

75% probability (median), compared to 98% after exposure to a single virus. 455

In other words, our modelling highlights that the prophylactic efficacy depends on 456

the magnitude of exposure. Moreover, the duration to eliminate the virus is prolonged 457

when more virus becomes inoculated. Essentially, this suggests that large inocula, which 458

may occur after blood transfusions, needle stick exposures, or tissue rupture during 459

sexual contact may require longer duration of prophylaxis to prevent infection. 460

July 6, 2021 18/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.22.453374doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.22.453374
http://creativecommons.org/licenses/by/4.0/


3 days 50mg DTG, 1 initial virus

3 days 50mg DTG, 20 initial viruses

Days after viral exposure Days after viral exposure

Fig 6. Cumulative probability and probability density function of
extinction event. N = 1000 virtual patients were sampled from the pharmacokinetic
parameter distributions defined in Table 2 of [11]. 50 mg dose of DTG / day was
ingested for three days, first dose was taken at t0 = 0, coinciding with viral exposure. A:
cumulative extinction probability for one initial virus. B: probability density function of
extinction for one initial virus. C: cumulative extinction probability for 20 initial
viruses. D: probability density function of extinction for 20 initial viruses. The red and
green lines depict the respective median values, whereas the dark- and light grey areas
present the quartile range and 2.5%− 97.5% confidence range, taking inter-individual
pharmacokinetic differences into account.

Discussion 461

The prophylactic efficacy of novel drug candidates against HIV is determined by the 462

complex interplay of enzymatic, cellular, viral, immunological, pharmacological, as well 463

as behavioural factors [18]. Some of these factors can be described in experimental 464

surrogate systems [43]. However, their complex interplay, which determines clinical 465

efficacy, can usually not be fully described using in vitro or ex vivo experiments. 466

Moreover, animal models for HIV prophylaxis are suitable for proof-of-concept studies, 467

but may still be confounded by inter-species differences, as well as differences in the 468

viruses used [44]. Lastly, while clinical studies of HIV prophylaxis are useful to assess 469
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the relevant efficacy endpoint, they do not allow to disentangle the complex interplay 470

between the aforementioned factors, because of inherent limitations in the study design, 471

sample sizes and the inability to measure the joint interplay of parameters that 472

determine clinical efficacy. Therefore, it remains a formidable challenge to identify 473

factors that alter prophylactic efficacy, or parameters that can be improved by the 474

development of novel drugs or drug formulations for HIV prophylaxis. 475

Mathematical models [11,12,21–24,28,45–47] have become an essential tool to 476

complement our knowledge about prophylactic efficacy of antiviral compounds, as they 477

are able to put the different parameters in context and test their relevance for 478

determining prophylactic efficacy. Stochastic simulation methods are currently the gold 479

standard for estimating prophylactic efficacy from these models [11, 12, 21–24,28,46, 47]. 480

Essentially, to estimate prophylactic efficacy with stochastic simulation approaches, a 481

large number of stochastic trajectories is sampled and subsequently classified into 482

infection or extinction events to derive a sample statistic of, for example, the probability 483

of infection P̂I(Yt,S). More recently, the extra reaction algorithm for networks in 484

dynamic environments (EXTRANDE) [41] was adapted in [11] to couple 485

pharmacokinetics with intrinsically stochastic viral dynamics following exposure, and to 486

accurately classify stochastic trajectories. Despite the advantages of stochastic 487

approaches, the disadvantages are also very clear: To obtain meaningful statistics, many 488

stochastic simulations need to be conducted to accurately determine the sample 489

statistics P̂I(Yt,S). The latter makes the stochastic methods expensive in terms of 490

overall computational time, such that many important in silico experiments are 491

infeasible. In particular, the scope of sensitivity analysis with regards to aforementioned 492

factors in integrated, multiscale-models is usually limited. In this work, we introduce 493

three low-dimensional approaches to estimate the prophylactic efficacy in considerably 494

less time, in a single run. We envision that these approaches can greatly expand the 495

scope of analysis with regards to estimating prophylactic efficacy, by allowing to analyse 496

the long-term effect of prophylaxis, as well as performing sensitivity analysis. 497

Stochastic simulation methods sample trajectories of the whole system, where any 498

state may arise during simulation. However, in the context of prophylaxis, one is only 499

interested in the probabilities of extinction (and its complement, infection). Therefore, 500

for each state, only those parts that contribute to the extinction event need to be 501

considered. Because the probability of extinction for an arbitrary state can be expressed 502

with the extinction probabilities of the respective unit vectors (eq (14); statistical 503

independence), only extinction probabilities for unit vectors need to be computed. This 504

is the main idea behind the three proposed low-dimensional Ansatz functions. 505

The first method (Next Transition Method (NTM)) is based on the embedded 506

Markov chain described in [11]. The method was inspired by the idea that the 507

probability distributions of state transitions V→ T1, T1 → T2 and T2 → T2 + V can 508

be determined, as shown in eqs. (16)– (18). Starting from the unit vector, this method 509

considers all possible one-step transitions. We used three functions to denote a 510

probability function, i.e. d1(t, i), d2(t, i) and d3(t, i). These functions represent the 511

probability that the corresponding transition occurs in the discrete time interval 512

[t+ (i− 1) ·∆t, t+ i ·∆t). The time-dependent functions (d2(t, i) in our case) are then 513

approximated (zero order Taylor approximation) for small time spans ∆t and the 514

extinction probabilities are iteratively computed backwards in time using dynamic 515

programming, as outlined in Supplementary Text S3. 516

The constant time step method (CTSM) is based on the discrete-time Markov chain 517

of the underlying virus dynamics model. Similar to the NTM, the time was discretized 518

into fixed time steps ∆t for which the probability flux is computed (eqs. (24)–(26)). In 519

this method, time-dependent functions, e.g. a5, are approximated by a zero-order 520

Taylor approximation for each time step ∆t. Like NTM, the extinction probabilities are 521
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iteratively computed backwards in time using dynamic programming, as outlined in 522

Supplementary Text S4. 523

For both NTM and CTSM, ∆t must be determined beforehand (see S2 Text and S3 524

Text). In CTSM, only the next time step ∆t is considered, and no look-ahead horizons 525

is needed, which makes the method more efficient than NTM (see Table 2). Compared 526

to NTM, the implementation of CTSM is also simpler as only one time step must be 527

considered in each iteration. 528

Lastly, the Probability Generating System (PGS), eq. (27) can easily be derived 529

from the CTSM by replacing the constant time step ∆t by an infinitesimally small step 530

dt. The method is therefore based on a continuous-time Markov process. Because of the 531

time continuity, the explicit approximations in NTM and CTSM are not necessary in 532

the PGS. In our implementation of the method, we solved the pharmacokinetics 533

beforehand and then wrapped the values of a5 into a function that can be called directly 534

from within the PGS’s ODEs, which are solved backwards in time. It is notable that a 535

backward ODE solver must be used in the implementation, and the use and 536

configuration of different ODE solvers will have an impact on the accuracy and efficacy 537

of this method. However, since modern ODE-solvers use adaptive step sizes, less 538

computations may be needed to ensure accurate results, in comparison to a constant 539

step size method (like NTM or CTSM), Table 2. 540

The set of ordinary differential equations (eq. (27)) derived for the PGS is related to 541

the Kolmogorov backward equations [48], which was used in [22]. The major 542

improvement of our work is to combine this Ansatz with the PK-PD profile of the 543

prophylaxis (eq. (10)) so that the prophylactic efficacy can be computed with arbitrary 544

prophylactic dosing schedules. 545

While the PGS is directly related to the CTSM, we show in Supplementary Text S6, 546

how to derive PGS from the NTM. Hence, we demonstrated that the three proposed 547

methods describe the same process, using different formalisms and approximations. 548

In Figure 3, we also compared the methods head-to-head to demonstrate the 549

equivalence of the obtained results. Figure 3 also shows results of stochastic simulations 550

with EXTRANDE, which delivers consistent, but less accurate results. Likewise, 551

Table 3 shows the consistency of prediction with PGS and EXTRANDE, regarding the 552

prophylactic efficacy for different DTG regimens with multiple viral exposures. 553

Using the proposed methods, we can also perform analyses that are computationally 554

infeasible with stochastic simulations. As shown in Figure 5, the long-term prophylactic 555

efficacy profiles were computed using PGS with four different values of adherence and a 556

virtual patient cohort of 1000 individuals. This type of analysis allows to quantify 557

sensitivity with regards to adherence and inter-individual pharmacokinetic variability. 558

The analysis showed that DTG can protect highly adherent individuals from acquiring 559

HIV infection and that inter-individual differences are most strongly affecting 560

prophylaxis at times of inconsistent use of the prophylaxis. Moreover, when several 561

consecutive pills are missed, prophylactic efficacy may drop below 50%. Interestingly, 562

the long-term prophylactic efficacy computation took less than 2 seconds for one virtual 563

patient. To compute the corresponding profile with EXTRANDE, for example if an 564

efficacy estimate is to be computed for every hour using 5000 simulations, a total of 565

24× 365× 5000 ≈ 44 million simulations for a single adherence level would need to be 566

conducted. Besides computational time, power consumption (and possible carbon 567

imprint) could therefore be considerably reduced using the proposed methods. 568

Another possible application of the proposed methods is the possibility to estimate 569

the time of the extinction event, Fig. 6. As a showcase of a sensitivity analysis, we 570

estimated, for a 3-days 50mg DTG regimen, the probability density function of the 571

extinction event, when a single, versus 20 viruses were initially reaching a 572

replication-competent physiological compartment. The analysis showed that the time to 573
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viral extinction is increased for larger inoculum sizes (more viruses). This analysis thus 574

highlights the complex interplay between viral exposure and prophylaxis that can be 575

analysed with the proposed methods and be used to optimize HIV prophylaxis. With 576

regards to data, interestingly, in vaginal SHIV viral challenge models, which are typically 577

conducted with large inoculum sizes, late viral breakthrough has been observed [49,50]. 578

The presented methods have been derived for the model depicted in Fig. 1 and need 579

to be adjusted if other viral dynamics models were used. In Supplementary Text S5, we 580

derive the three methods for an extended viral dynamics model that additionally 581

considers long-lived cells (e.g. macrophages) and infected T cells, which may turn 582

dormant, e.g. become latently infected. It is well established that these latent reservoirs 583

are a major obstacle to the elimination of HIV during therapy [51]. While these 584

reservoirs are established early in infection, it is unclear whether they alter prophylactic 585

efficacy. To test this hypothesis, we used the proposed methods for the extended viral 586

dynamic model (Supplementary Text S5). When comparing the results with those from 587

the simpler model, we however found that the impact of the reservoirs on prophylactic 588

efficacy was negligible. 589

In summary, we propose three novel methods that can estimate the efficacy of 590

arbitrary prophylactic regimen and viral exposures within seconds. The three methods 591

allow to integrate individual PK/PD profiles and viral dynamics into a single framework 592

and they are more exact than state-of-art hybrid stochastic simulation schemes, like 593

EXTRANDE. We envision that the new methods can be applied in many circumstances, 594

in which the stochastic simulation is computationally infeasible, such as parameter 595

sensitivity analysis or long-term efficacy estimation. To this end, the proposed methods 596

may even be suitable as part of an App, which may help PrEP users to monitor and plan 597

their PrEP regimen. Moreover, the general schemes may be adapted to study related 598

biomedical questions, like prophylactic efficacy in other pathogens or vaccine efficacy. 599
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Supporting information 600

S1 Text The supplementary text contains a supplementary derivations for 601

all proposed methods (NTM, CTSM and PGS). 602

S2 Text The supplementary text contains a complete pseudo-code and 603

the implementation details for the Next Transition Method (NTM). 604

S3 Text The supplementary text contains a complete pseudo-code and 605

the implementation details for the Constant Time Step Method (CTSM). 606

S4 Text The supplementary text contains a complete pseudo-code and 607

the implementation details for the Probability Generating System (PGS). 608

S5 Text The supplementary text entails the derivation of the equations 609

for the NTM, CTSM and PGS for a extended viral dynamic model that 610

contains long-lived and latently infected viral reservoirs. 611

S6 Text The supplementary text derived the Probability Generating 612

System (PGS) from the Next Transition Method (NTM). 613
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