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Abstract
Emerging multiplexed imaging platforms provide an unprecedented view of an increasing
number of molecular markers at subcellular resolution and the dynamic evolution of tumor
cellular composition. As such, they are capable of elucidating cell-to-cell interactions within the
tumor microenvironment that impact clinical outcome and therapeutic response. However, the
rapid development of these platforms has far outpaced the computational methods for
processing and analyzing the data they generate. While being technologically disparate, all
imaging assays share many computational requirements for post-collection data processing. We
convened a workshop to characterize these shared computational challenges and a follow-up
hackathon to implement solutions for a selected subset of them. Here, we delineate these areas
that reflect major axes of research within the field, including image registration, segmentation of
cells and subcellular structures, and identification of cell types from their morphology. We further
describe the logistical organization of these events, believing our lessons learned can aid others
in uniting the imaging community around self-identified topics of mutual interest, in designing
and implementing operational procedures to address those topics and in mitigating issues
inherent in image analysis (e.g., sharing exemplar images of large datasets and disseminating
baseline solutions to hackathon challenges through open-source code repositories).
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1 Introduction
The spatial organization and dynamic interactions of cells in a tumor microenvironment
profoundly impact cancer clinical outcomes and therapeutic responses. Researchers within the
Cancer Systems Biology Consortium (CSBC) and the Physical Sciences - Oncology Network
(PS-ON) are actively interrogating these interactions by highly-multiplexed and/or time-resolved,
subcellular resolution imaging platforms. However, the rapid development of the imaging
platforms has far outpaced the computational methods for processing and analyzing the data
they generate, in part because method development is often borne independently and repeated
by individual research groups. To accelerate the development of computational methods and
close the gap between data collection and analysis, the CSBC/PS-ON Image Analysis Working
Group (IAWG) has been focused on consolidation of development efforts across research
groups and effective dissemination of image analysis tools and ideas across the CSBC/PS-ON
centers and with external consortia, including the Human Tumor Atlas Network (HTAN) and
Human BioMolecular Atlas Program (HuBMAP).

In high-dimensional digital pathology, dozens of spatially resolved molecular markers are
collected from millions of cells per specimen, providing an unprecedented view of single cells in
the setting of an intact tissue. Technologies such as cyclic immunofluorescence (CyCIF) (Lin et
al., 2018), co-detection by indexing (CODEX) (Goltsev et al., 2018), imaging mass cytometry
(IMC) (Giesen et al., 2014), and multiplexed ion beam imaging (MIBI) (Angelo et al., 2014)
measure co-localized abundance of 50–100 proteins and protein modifications. Likewise, live
cell tracking experiments characterizing scores of unique conditions can include hundreds of
cells imaged in multiple channels every 6–20 minutes over several days (Neumann et al., 2010;
Quaranta et al., 2009; Tyson et al., 2012). These modern approaches yield orders of magnitude
more data than traditional haematoxylin and eosin (H&E) and immunohistochemistry (IHC)
staining. For example, a single canonical whole-slide image produced by CyCIF is on the order
of tens of gigabytes, which raises new challenges for data storage, processing and analysis that
were not critical for the more traditional imaging methods.

To unlock potential biological or clinical insight, the analysis software for highly multiplexed
and/or time-resolved images must address a range of image processing tasks. A canonical
workflow includes image stitching and registration, illumination correction, cell and nuclear
segmentation and/or tracking, assignment of cell type identity, and recognition of high-level
spatial or temporal features that may be characteristic of disease phenotypes. Each step comes
with its own set of challenges, and lessons learned by one research group are not always
effectively communicated to other groups, even within the same consortium. Software
engineering challenges also abound, with open-source software designed around specific
image processing steps (e.g., segmentation) but with little consideration for interoperability or
integration within a larger end-to-end pipeline framework. This is in stark contrast to sequence
data—both single-cell and bulk modalities—for which well-established frameworks, such as
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GATK (Auwera and O’Connor, 2020), Seurat (Satija et al., 2015) and Galaxy (Afgan et al.,
2018), effectively combine software modules for processing a raw sequence file through
alignment, quantification, differential gene expression and pathway enrichment to identify
potential associations with a phenotype of interest.

Our objective was to identify and begin to address impediments to image analysis shared by the
biomedical research community. To achieve this, we hosted a two-day workshop in January,
2020 in Seattle, WA, where we invited members of CSBC/PS-ON centers and external speakers
to highlight challenges that hold particular relevance to their work. A subset of the presented
challenges was selected to be addressed in a hackathon held in March, 2020 in Nashville, TN.

To our knowledge, this is the first effort to address multiple aspects of the canonical image
analysis workflow within a hackathon format. While all hackathons involve some amount of
preliminary planning and organization (Ahmed et al., 2018; Connor et al., 2019; Fecho et al.,
2019; Ferreira et al., 2019; hackseq Organizing Committee 2016, 2017), the hosting of a formal
face-to-face workshop has allowed us to not only define hackathon challenges, but also
formalize the larger workflow connecting them. Unlike previous image analysis hackathons that
focused on further development and application of specific tools, e.g., 3D Slicer (Kapur et al.,
2016) and Fiji (Schindelin et al., 2012), we allowed the participants to utilize any existing
methods and encouraged the development of new ones. Our approach also differed from online
competitions such as the Kaggle 2018 Data Science Bowl on nuclear segmentation (Caicedo et
al., 2019) and the Cell Tracking Challenge (Ulman et al., 2017), in which teams work remotely
and benefit from relatively long time periods to solve one specific task. Instead, we brought
together researchers at one physical location, which furthered our additional consortia-wide
goals of providing an educational experience to trainees, spurring collaboration within the
consortia, and disseminating research perspectives across diverse backgrounds. Here, we
summarize our logistical efforts and the resulting output of the 2020 workshop and hackathon,
as well as provide our perspective for the future of collaborative large-scale image analysis.

2 Methods

2.1 Image analysis working group
The IAWG is a joint forum within which CSBC and PS-ON scientists, as well as external invited
speakers, share their image analysis and visualization results and discuss open research
questions. These questions reflect the diversity of biological domains and imaging modalities of
CSBC and PS-ON. Researchers in CSBC employ imaging techniques (e.g., CyCIF, CODEX,
MIBI, multiplexed IHC, and time-lapse fluorescence microscopy) to study biological phenomena
such as tumor-immune interactions and the tumor microenvironment, drug resistance/sensitivity,
metastasis, and tumor heterogeneity across many cancer types. Often, the imaging data are
integrated with other widely-used systems biology methods, including sequencing, mechanistic
modeling, machine learning, evolution / ecology, and network inference. In contrast, researchers
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in PS-ON combine imaging with approaches from the physical and mathematical sciences to
study mechanical cues, transport phenomena, bioelectric signals, thermal fluctuations, and
spatio-temporal organization of cancer at scales ranging from subcellular to organ and whole
organism. CSBC and PS-ON share a coordinating center that facilitates collaboration (including
support for the IAWG workshop and hackathon), resource sharing, and education and outreach
across the two consortia and with the external scientific community.

2.2 Workshop

2.2.1 Pre-workshop planning and funding
Initial monthly presentations of the IAWG revealed a substantial overlap in image analysis
interests and challenges shared by CSBC and PS-ON researchers. This motivated us to host a
workshop oriented around computational image analysis challenges that could realistically be
addressed in a subsequent two-day hackathon. Because we anticipated that such challenges
would transcend biological domains and specific imaging modalities, we advertised the
workshop within the CSBC/PS-ON community and broadly in other consortia leveraging
imaging, including HTAN, HuBMAP, the BRAIN Initiative - Cell Census Network (BICCN), and
the Kidney Precision Medicine Project (KPMP).

We asked those interested in attending to submit an application briefly describing: (1) an
imaging-based computational challenge relevant to the cancer community, shared across
multiple imaging modalities, with specific questions to address in a hackathon; (2) prior relevant
work (their own or from the literature); and (3) data required to address the challenge, their
availability, and whether they include any necessary annotated ground truth. The applications
highlighted active areas of interest within the field. We grouped challenges described in the
applications into four broad categories corresponding to stages in a canonical image processing
workflow: (1) image registration and quality control; (2) segmentation of cells and subcellular
structures; (3) downstream analyses, including cell type calling, cell tracking, and the discovery
of spatial patterns; and (4) visualization and the integration of individual image processing steps
into a larger automated pipeline. We organized the talks into sessions reflecting these canonical
stages (Figure. 1a). Additionally, we invited three keynote speakers whose work intersected
these stages and whose organizations were actively engaged in biomedical image acquisition
and analysis: Drs. Susanne Rafelski (Allen Institute for Cell Science), Juan Caicedo (Broad
Institute), and Matthew Cai (The Chan Zuckerberg Initiative).
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Figure 1: Image analysis workshop structure and participation. a. The workshop agenda
followed the steps of a canonical image processing workflow. Each box highlights the most
prominent topics covered during each session. b. Institutes and data acquisition technologies
represented by the workshop participants. Technologies marked “other” encompass electron
microscopy and radiology, while “NA/Agnostic” refers to computational labs that don’t generate
data.
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The explicit goal of the workshop was the generation of 2–3 page summaries describing each
potential challenge. Prior to the workshop, attendees were provided with a template for these
summaries, which included the same information solicited in the application (challenge idea,
prior relevant work, and required data), as well as whether the challenge was best addressed
collaboratively or competitively and, in either case, how to evaluate success. Example
summaries representative of each of the four canonical stages were drafted based on several of
the applications.

Institute Consortium
Workshop
Attendees

Hackathon
Attendees Student Postdoc

Staff
Scientist Faculty Other

Allen
Institute Unaffiliated 3 2 0 0 2 0 2

ASU Unaffiliated 0 1 1 0 0 0 0

Broad
Institute Unaffiliated 1 0 0 0 1 0 0

City of
Hope CSBC 1 1 0 0 2 0 0

CZI Unaffiliated 1 0 0 0 1 0 0

Emory HTAN 1 1 0 0 0 1 0

Harvard CSBC, HTAN 2 5 1 1 3 0 0

ISB HTAN, IDC 4 0 0 0 4 0 0

IU/IUPUI
CSBC, KPMP,
PSON 2 5 4 1 0 1 0

Mark III Unaffiliated 1 0 0 0 0 0 1

Michigan Unaffiliated 1 0 0 0 0 0 1

Moffitt CSBC 1 1 0 0 1 0 0

NCI CSBC, PS-ON 2 0 0 0 0 0 2

OHSU CSBC, HTAN 7 6 5 0 2 1 0

QMUL CSBC 0 1 1 0 0 0 0

Sage CSBC, PS-ON 1 1 0 0 1 0 0

Simons
Foundation Unaffiliated 1 1 0 1 0 0 0

Stanford CSBC, PSON 5 2 0 2 1 0 0

Susan G.
Komen Unaffiliated 0 1 0 0 1 0 0

UBC Unaffiliated 1 1 1 0 0 0 0

UCSD CSBC 1 1 1 0 0 0 0
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UCSF CSBC 1 0 0 1 0 0 0

Vanderbilt
CSBC, HTAN,
HuBMAP 8 19 9 2 6 3 1

Wake
Forest CSBC 1 0 0 0 0 1 0

Weill
Cornell PSON 0 1 1 0 0 0 0

Total 46 50 24 8 25 7 7
Table 1: Workshop and hackathon attendee summary.

2.2.2 Workshop implementation and management
The workshop took place Jan 19–20, 2020 at the Institute for Systems Biology (ISB) in Seattle,
WA. The 46 attendees represented 12 institutions active in CSBC/PS-ON, as well as related
consortia including HTAN, HuBMAP, the Imaging Data Commons (IDC), and KPMP (Table 1).
Attendees were geographically distributed and came from laboratories employing a range of
imaging modalities (Figure. 1b). They were predominantly early stage investigators (6 assistant
professors and 1 associate professor), trainees (12 graduate students and 3 postdocs), and
staff scientists (18). The size of the workshop fostered engagement and more than half of the
attendees (25 of the 46) gave presentations. With the exception of the keynote speakers, we
requested that all presenters structure their talks around one or more specific image analysis
questions that could be expanded into a hackathon challenge. Each speaker was given a
20-minute time slot and encouraged to include the information previously described in the
example summaries. To facilitate further discussion of these challenges after the talks, we
scheduled ample additional time and allocated space for informal conversations.

The workshop culminated in seven challenge ideas spanning image registration, automated
marker gating, quantification of epithelial polarity in organoids, cell segmentation, quantification
of PD1 asymmetry in immune cells, rare cell type identification in noisy data, and cell type
inference from morphology and spatial distribution (Table 2). These ideas captured open
research questions in the imaging field, though the questions continued to evolve through
selection for and execution at the hackathon.
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Challenge Problem Statement Goal

Image
registration

Deformations in tissue that arise in
iterative staining approaches (e.g.,
CyCIF, 4i, IHC, MiFish) complicate
alignment.

Align images in a “z” stack (e.g.,
across rounds of staining or serial
sections) to maximize the correlation of
nuclei stains between consecutive
images in the stack.

Automated marker
gating

Sample-sample variation in marker intensity
owing to batch- and tissue-specific effects
complicates efforts to compare markers in
multiplex images across tissues and time
points.

Automatically and consistently “gate”
markers across tissues (i.e., to
differentiate between expressed and
unexpressed levels of marker expression).
Predictions will be compared to
manually-curated gating.

Quantification of
epithelial polarity in
organoids

Cells in organoids self organize and
become polarized: specific proteins and
organelles are oriented towards the center
of the gland, whereas other cell components
are expressed at the periphery.
De-polarization may be associated with
cancer.

Define a metric of organoid polarity and
obtain values of this metric for each
organoid in the provided data.

Cell segmentation Developing a pipeline to segment nuclei
and other cellular components (cell
boundaries, subcellular structures, etc.)
has traditionally been slow and
incremental.

Develop general guidelines for
successfully optimizing segmentation
algorithms via a competition. Teams
will attempt to develop optimized
segmentation algorithms for four
different segmentation tasks within the
hackathon.

Quantification of
PD1 asymmetry
in immune cells

PD1 localization is asymmetric on a
subset of cells during T-cell–tumor cell
interactions and this asymmetry is
thought to be related to T-cell activation.

Develop a suitable metric and
analytical pipeline for measuring the
amount of polarization of
membrane-bound markers (e.g. PD1).

Rare cell type
identification in
noisy data

Known biology dictates the existence of
certain rare cell subpopulations, but
standard clustering methods fail to
detect these robustly.

Given a cell type definition (specified
as marker expression), accurately find
all cells of that type.

Cell type
inference from
morphology and
spatial
distribution

Morphological characteristics may be
relevant to discerning cell types but have
not yet been used in cell type calling.

Predict cell types (defined by
characteristic marker expression)
using morphological features (area,
perimeter, eccentricity, etc.) and
cell-cell proximity information
(encoded as an undirected graph).

Table 2: Image analysis challenges nominated by workshop participants. Bolded
challenges were selected for the hackathon.
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2.3 Hackathon

2.3.1 Pre-hackathon planning
Selection of challenges
Given the large number of challenge ideas (Table 2) relative to the number of attendees we
could support (~40), we decided to limit the number of hackathon challenges. To ensure the
attendees would be invested in the final set of selected challenges, we asked hackathon
registrants to vote on their top three choices through a web-based form, which also captured
additional information, such as their affiliated institutions, position held, and any special compute
resource requests. This allowed for the assessment of both the interest in each of the proposed
challenges and the willingness to contribute to different challenges in case a challenge had
insufficient overall interest (less than three first-choice votes). Five of the seven challenges had
sufficient interest and were selected for the hackathon (Table 2), with the Segmentation
challenge garnering the largest proportion of interest (10 of 33 first-choice votes). Each
challenge was assigned a champion, who ensured requisite data were transferred to Vanderbilt
prior to the hackathon and who acted as a scientific advisor and hackathon liaison to the teams.
Champions included the hackathon organizers, as well as Eliot McKinley (Vanderbilt University)
and Seth Winfree (Indiana University) for the Segmentation Challenge.

Computational support
Through a partnership with Mark III Systems, Core Scientific provided access to an NVIDIA
DGX2 containing 16 NVIDIA 32GB V100 GPUs and 4 X 24 core CPUs and 1 TB storage
web-accessible from their datacenter in Dalton, GA; these resources were distributed among
the participating groups. Mark III Systems also provided administrative support by preparing
JupyterLab environments with software requested by attendees during registration, as well as
on-site assistance to manage the environments. All data to be used for each of the challenges
(~500 GB total) was preloaded onto storage accessible by each of the compute instances.
Notably, the collection and assembly of these large datasets from different sources and their
deposition onto the different devices was a relatively time-consuming process, taking many
hours of effort due to network latency and throughput limitations. As a backup, ten external 1 TB
SSD hard drives were also preloaded with the full datasets, proving invaluable for the
hackathon, due to the inability of several groups to use their preferred software tools within the
prepared compute environments and allowing those groups to work locally without incurring the
time-consuming overhead of downloading the data themselves.

Registrants were from over twenty different institutions (Table 1), with multiple from Vanderbilt
and Vanderbilt University Medical Center (19), Oregon Health & Science University (6), Indiana
University (including IUPUI and the School of Medicine, 5), Harvard University and Harvard
Medical School (5), Stanford (2), and the Allen Institute for Cell Science (2). Trainees comprised

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.22.451363doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.22.451363
http://creativecommons.org/licenses/by-nc-nd/4.0/


a larger percentage of hackathon attendees (60%; 30 of 50) than of workshop attendees (24%;
11 of 46).

2.3.2 Hackathon execution
The hackathon was hosted March 4–6, 2020 by Vanderbilt University to address the five
selected challenges (Table 2). The Segmentation Challenge was set up in a competitive format
and the (13) participating individuals were divided into three teams of three to five participants
each. The remaining four challenges each had a team consisting of at least five participants.
Work toward addressing the challenges was performed over two and a half days, coordinated
by champions for each challenge and culminated with each team presenting their selected
challenge and the solution they developed; this provided immediate feedback and guidance on
future steps from the image analysis community.

3 Results
In this section, we provide an overview of analyses performed by the participants of every
challenge. The code of all prototype solutions is publicly available on GitHub (Table 3), but
additional work is required to generate well-documented easy-to-use software modules from the
initial codebase. We conclude by summarizing the findings of each challenge in the context of
the overall image analysis workflow and highlight notable gaps that we intend to address in
future hackathons.

Challenge Code

Image Registration https://github.com/IAWG-CSBC-PSON/registration-challenge,
https://github.com/jvizcar/MultiplexImagingRegistration

Segmentation https://github.com/IAWG-CSBC-PSON/Segmentation-challenge

PD1 Asymmetry https://github.com/IAWG-CSBC-PSON/pd1-asymmetry

Rare Cell Types https://github.com/IAWG-CSBC-PSON/rare-cell

Cell Morpho-Typing https://github.com/IAWG-CSBC-PSON/morpho-type,
https://github.com/jvizcar/SageMultiplexInteractors

Table 3: Location of the code repositories for every challenge

3.1 Image registration challenge
Iterative staining-based assays (e.g., CyCIF) involve successive rounds of staining with a small
number of antibodies (~4) conjugated to different fluorophores. These individual images need to
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be registered into a single composite, a task that often leverages a nuclear stain common
across rounds (e.g., DAPI). For lower dimensional assays that can not rely on a shared stain
across rounds, we explored registering images via auto-fluorescence.

During the hackathon, we observed that we could register a “moving” image in one round to a
“target” image in a second round using the green channel (Alexa Fluor 488)—despite the fact
that the fluorophore was conjugated to a different protein in each of the rounds (e.g., PCNA in
round 1, CK5 in round 2, aSMA in round 3, etc.). We hypothesized that registration was
exploiting the strong background fluorescence of the green dye. We provided further evidence
for this hypothesis in additional analyses following the hackathon. In this follow-up work, we
eliminated the possibility that registration was leveraging spatially overlapping signal between
the different proteins in the two rounds by aligning the moving image to a target image
consisting of only the background in the green channel. This often approached the resolution of
the alignment obtainable using the DAPI channel shared across rounds in a healthy tonsil
tissue, a healthy breast tissue, and a breast cancer cell line sample (Figure 2). Further, with one
exception in the breast tissue, the background-derived registration aligned images with a
resolution likely sufficient to associate cellular markers across rounds (i.e., that of a typical
eukaryotic cell, ~10𝝻m).
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Figure 2: Image registration using background signal is similar to that obtained using
DAPI. Mean distance from round 1 image (R1; y axis) to images in all other rounds (n=10)
before registration (“Unregistered”), following rigid registration using the DAPI channel [“DAPI
(Rigid)”], or following a non-rigid registration using the background channel [“Background
(Non-rigid)”] in tissue microarray images from healthy tonsil tissue (left), healthy breast tissue
(center), or HC1143 breast cancer cell line (right). Distance is calculated by defining AKAZE
(Alcantarilla et al., 2013) keypoints in both images, matching the keypoints across images,
summarizing the distance between matched keypoints using target registration error (TRE)
(Maurer et al., 1997), and scaling TRE (whose denominator is the diagonal of the image in
pixels) by the length of the image diagonal in microns. Non-rigid registration was performed
using SimpleElastix (Marstal et al., 2016); rigid registration was performed using
AKAZE-based keypoint matching in OpenCV (Bradski, 2000).

3.2 Segmentation challenge
Developing a pipeline to segment nuclei and other cellular components (cell boundaries,
subcellular structures, etc.) has traditionally been slow and incremental. Several tools are
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available that can apply the multiple steps required for optimum segmentation, including Cell
Profiler, ImageJ, Matlab, and the Cell and Structure Segmenter developed at the Allen Institute
for Cell Science. The time required to develop these pipelines is a hindrance to extracting
biologically useful information, yet there are very few guidelines to facilitate the process. Thus, a
main goal of this challenge was to identify general guidelines for successfully optimizing
segmentation algorithms. The challenge was structured as a competition, where teams
competed to perform various segmentation tasks on several large datasets with a focus on
balancing segmentation accuracy with the ability to process all the data. Only laptops brought to
the hackathon or the compute environments made available to all attendees were allowed, as
the use of an external high-performance computing environment would have provided an unfair
advantage. The Allen Cell and Structure Segmenter (Chen et al., 2020) was pre-installed within
the compute environments provided to all teams.

Five different cancer-relevant segmentation tasks were identified, representing a range of
different features, with all requiring initial nuclear segmentation (Table 4). Each task had an
associated dataset consisting of fluorescence microscopy images (color images of typical
histopathological evaluation using H&E counterstaining were not considered). Datasets were
provided by members of the IAWG or were selected from publicly available resources. Each
dataset contained many visual fields of information, some stitched into image montages and
some containing multiple channels obtained from the same field of view. The total size of all
image data combined was over 250 GB, making the volume of data for processing a significant
hurdle.
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Dataset name References Data type Segmentation
Task

Deliverables

Vanderbilt_live_cell Tyson DR,
unpublished

Time-lapse imaging
of fluorescent nuclei
in drug-treated cells

Nuclear boundaries
of viable cells
(exclude nuclear
fragmentation)

Nuclear
segmentation map

Vanderbilt_colon https://doi.org/10.117
2/jci.insight.93487

MxIF of colon cancer
(nuclei + 9 channels)

Plasma membrane
boundaries

Nuclear
segmentation map &
whole-cell
segmentation map

Harvard_lung https://doi.org/10.103
8/s41597-019-0332-
y

CycIF of lung cancer
(only nuclear
channel)

Nuclear boundaries Nuclear
segmentation map

OHSU_BrCa https://doi.org/10.100
7/978-1-4939-9773-2
_24

CycIF of breast
cancer (nuclei + 3
channels)

Nuclear and plasma
membrane
boundaries

Nuclear
segmentation map &
whole-cell
segmentation map

UNC_PCNA https://doi.org/10.152
52/msb.20188604

Time-lapse imaging
of nuclear-localized
protein

Nuclear foci Nuclear
segmentation map &
whole-image
intranuclear spot
map

Table 4: An overview of datasets contributed to the segmentation challenge.

At the onset of the hackathon, three teams were formed by self-association among the
attendees, resulting in two teams of five members and one team of three members.  To assess
the quality of each team’s segmentation results a small Java program was written to calculate
F1-scores on segmentation results as compared to previously generated ground-truth labeled
images (SegmentationAnalyzer, code available at https://github.com/IAWG-CSBC-PSON).

3.2.1 Segmentation Team 1
Team 1 used a KNIME-based workflow and ImageJ processing (Dietz et al., 2020) for
segmentation of the MxIF and CycIF data; however, this pipeline could not be deployed on the
provided compute server and was instead run on the team’s own computers. The live-cell data
was segmented using the Scientific Python (SciPy) Multidimensional image processing
(ndimage) package for segmentation.  Overall Team 1 processed examples from nearly all
datasets (4 out of 5) of the total dataset and on the directly comparable dataset (Vanderbilt
live-cell images), obtaining a pixel-wise F1-score of 0.33.

3.2.2. Segmentation Team 2
Team 2 leveraged several pre-existing tools, including CellDissect (Kesler et al., 2019) and
DeepCell (Valen et al., 2016) for nuclear segmentation and made use of algorithms for intensity
gradient detection and K-means clustering to detect the colonic epithelial cell boundaries. Team

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.22.451363doi: bioRxiv preprint 

https://github.com/IAWG-CSBC-PSON
https://www.zotero.org/google-docs/?t2nVhe
https://www.zotero.org/google-docs/?gWVzef
https://www.zotero.org/google-docs/?7LOf7j
https://doi.org/10.1101/2021.07.22.451363
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 processed examples from all the datasets and for the directly comparable dataset achieved a
pixel-wise F1-score of 0.32, which, in combination with completing examples from all datasets (5
out of 5), gave them an advantage over Team 1.

3.2.3 Segmentation Team 3
Team 3 used Python-based processing, including the Allen Cell and Structure Segmenter code
(Chen et al., 2020) and focused on the Vanderbilt live-cell image dataset. They chose not to
submit their results for the competition, preferring to use the time simply as a learning
experience.

3.2.4 Segmentation Challenge Outcome Summary
The volume of data and the multiple data types to be segmented posed significant barriers to
rapidly developing high-performing algorithms. Based on the relatively low F1 scores (<0.35), it
is clear that, even with contributions from experienced individuals who have published image
segmentation pipelines, finding optimum solutions to specific image segmentation objectives
remains a significant challenge, requiring much more time than was available during the
hackathon to develop efficient solutions.

3.3 Quantitation of immune checkpoint markers (PD1) asymmetry
in activated immune cells
PD-1 and PD-L1 represent perhaps the most well-known receptor-ligand pair that is targeted by
immune checkpoint therapies, with a number of FDA approved drugs (mostly monoclonal
antibodies) designed against both proteins. Transmembrane PD-L1 is most commonly
expressed on tissue and stromal cells, while PD-1 can be seen in the T and B cells exposed to
the antigen. If a PD-1 positive T cell is triggered by a cell expressing PD-L1, the PD-1
expression tends to spatially co-cluster with the activated T-cell receptor (TCR) and bring the
phosphatase to the intracellular part of the TCR complex. This inhibits signal transduction from
the activated TCR complex and corresponding downstream events associated with normal T
cell response. Microscopically, these molecular processes are manifested in co-polarization
(co-clustering) of PD-1 and TCR distribution in the immune cells engaged in interaction with
their microenvironment. Being able to quantify the incidence of asymmetric distribution of PD-1
and TCR and of related molecules will therefore enable deeper understanding of factors
involved in the normal immune response to cancer and provide insight into why this response
may fail in specific scenarios.

Participants were asked to quantitate PD-1 clustering in highly–multiplexed CODEX images
(Goltsev et al., 2018) acquired from lymph nodes of mice challenged with metastatic melanoma
cell lines. The multiplexed images (~72 channels, 7 z-planes, ~25 frames, ~3Gb per image)
were segmented, with the center and the outline of the best focal plane for each cell saved in
the text format, alongside measurements for roughly 50 different markers. Using the
segmentation output, participants constructed image patches centered around individual cells
and trained a Variational Autoencoder (VAE) (Kingma and Welling, 2014) to study the underlying
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latent space representation of the data. The spatial distribution of PD-1 in a population of cells is
expected to follow a smooth and continuous distribution. Consistent with that, we found that the
UMAP embedding of the latent VAE space is also continuous without any obvious cluster
structure (Figure 3a). Mapping the mean PD-1 signal per cell onto the embedding, we observed
two groups of cells with significantly elevated PD-1 intensities, indicating that the autoencoder is
picking up on and encoding not just the spatial distribution, but also signal intensity in its latent
space. We further subdivided the latent space into evenly spaced regions and plotted the
average PD-1 distribution per region, revealing that the regions indeed display distinct spatial
arrangements of PD-1 (Figure 3b). For example, regions 12 and 14 contain cells with a roughly
even distribution of PD-1 across the entire cell membrane. In contrast, regions 4 and 5
correspond to highly polarized PD-1 distributions at the top-left or bottom-right of the cells,
respectively. In the future, this method could be simplified by taking advantage of the rotational
symmetry in the data, e.g., by rotating all cells such that the brightest pixel is always placed at
the center-top part of the image. Alternatively, one can take advantage of the recently proposed
Multi-Encoder VAE (Ternes et al., 2021) to extract transform-invariant features.

Figure 3: Spatial distribution of PD-1 classified using a variational autoencoder
a) UMAP embedding of the latent space produced by the autoencoder. Cropped images of cells
stained for PD-1 were used to train a convolutional autoencoder with a bottleneck size of eight.
The latent representation of all cells was further reduced using UMAP. Each point in the plot
represents a single cell colored by the mean intensity of the PD-1 signal. The UMAP space was
evenly divided into 16 regions. b) Mean spatial signal of PD-1 across all cells contained within
each region.
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3.4 Rare cell type identification in “noisy” multiplexed in situ
cytometry data

Differentiation cascades in mouse immune organs are sufficiently well dissected by flow
cytometric methods, yet the spatial architecture of immune cell development is not well
understood. At the same time, the “curse of dimensionality” as well as noise in single-cell
segmentation and quantitation preclude efficient cell type identification by clustering of in situ
cytometric data.  We often know that a particular rare cell type exists in an organ, and may be
visible in the image, yet it is hard to unambiguously identify these cells by empirically-chosen
machine learning techniques. It is therefore important to be able to select the best
normalization, pre-processing, and clustering methods that result in proper identification of rare
cell types when applied to the given data.

Participants attempted to identify specific rare cell types in multiplexed (~50 markers) mouse
thymus imaging data. These data were presented to participants in the derived form of a
cell-by-feature dataframe, where each cell was represented by a row vector of mean marker
instensities. To normalize the raw data, vertical (feature-based) and horizontal (cell-based)
strategies were considered, both independently and in combination. In addition to boilerplate
standardization, the participants also attempted to leverage known mutually-exclusive
expression patterns of some marker pairs to derive normalization factors for markers where the
mutually-exclusive expression assumption was met (Chang et al., 2020). Using data normalized
by each approach, the participants then used a battery of automated single-cell phenotyping
approaches in an attempt to identify the rare immune cells populations. The results of cell type
identification were scored against manually-gated ground truth labels to characterize the
performance trade-offs of taking each combination of pre-processing and analysis approach. In
the mouse thymus dataset, composed primarily of hierarchically-structured immune cell
phenotypes, the participants found that the approach combining first vertical then horizontal
standardization was necessary to identify the rare cell types by any subsequent phenotyping
method, e.g. k-means clustering and X-shift (Samusik et al., 2016).
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3.5 Inferring Cell Type from Morphological Features and Spatial
Distribution Data

Figure 4: A summary of the morphotype challenge. a) A representative image of a lung
cancer specimen, stained for Keratin (white), CD45 (green), IBA1 (cyan) and alpha-SMA
(red). b) ROC curves associated with predictors trained to recognize stromal cells from
morphological features only (yellow), morphological features and the intensity of the DAPI
stain (cyan), and all of the above computed for the index cell and its closest five neighbors
(brown). c) Top features identified through feature importance scores computed by gradient
boosted random forests. d) Density scatter plots showing how solidity varies with markers of
stromal (alpha-SMA), immune (CD45) and tumor (Keratin) cells.

By visual inspection, one can readily appreciate the difference in shape and size between
various cell types, as well as mesoscale structures defined by the arrangement of cells within
tissues (Figure 4a). Using publicly available CyCIF data from three lung cancer specimens
(Rashid et al., 2019), we formulated a challenge focused on inferring the type of a cell directly
from its morphological features and the spatial distribution of its neighbors. The participants
were asked to design and train a cell type predictor that accepts as input 1) a vector of
morphological features such as area, perimeter, eccentricity, etc., and 2) cell-cell proximity
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information encoded as an undirected graph. The prediction task was formulated as a
three-class classification problem with ground truth labels derived from marker expression,
based on the following known marker to cell type associations: CD45 - immune cells; Keratin -
tumor cells; and alpha-SMA - stroma. The morphological features were computed using the
Python-based package scikit-image (van der Walt et al., 2014), and each cell was annotated
with its five closest neighbors, based on Euclidean distance in the image coordinate space.

Challenge participants decomposed the problem into a collection of three “one cell type vs. the
other two” classification tasks and trained gradient-boosted random forest models (Friedman,
2001) for each binary task. Metaparameter tuning was performed using grid search and five-fold
cross-validation over the training set, and the final models were evaluated via
leave-one-image-out cross-validation. The participants found that morphological features carried
modest signal predictive of cell type, with area under the ROC curve (AUC) being in the 0.7-0.8
range for all models (Figure 4b). Very minor improvements in performance were achieved by
incorporating morphological features of direct neighbors and intensity of the DAPI channel (a
proxy for the size of the nuclei). Further inspection of the feature importance scores revealed
that solidity (the ratio of an area to its convex hull), eccentricity (the ratio of the focal distance to
the major axis length) and extent (ratio of pixels in the region to pixels in the total bounding box)
were most informative for distinguishing between tumor, immune and stromal cells (Figure 4c).
Direct inspection of correlation between solidity and the three cell type markers (CD45, Keratin
and alpha-SMA) revealed that high values of solidity were observed in stromal cells and, to a
lesser extent, immune cells (Figure 4d). Based on the challenge outcome, the participants
concluded that a cell type caller based solely on morphological features is unlikely to be
sufficiently accurate, and future improvements are expected from combining morphological
information with marker expression patterns.

3.6 Image processing workflow
Our hackathon challenges have a direct correspondence to individual steps in a canonical
image processing pipeline. Because these steps are executed sequentially, an important
property of the workflow is that upstream processing, such as image registration, has a direct
impact on the quality of inputs for segmentation, which in turn affects the quality of inputs for
downstream analyses like cell type calling. It is therefore imperative to establish best practices
to ensure that upstream errors do not get amplified in downstream processing. Our final result is
an outline of what we envision these best practices to be, based on lessons learned during the
hackathon challenges.

The original goal of the registration challenge was to mitigate physical tissue deformations (e.g.,
tearing or folding) through use of non-rigid registration approaches that “correct” them. However,
in applying them to align images based on background fluorescence, we observed that these
non-rigid approaches can greatly distort the moving image (e.g., shrinking it dramatically) when
it differs greatly from the target image. As such, these methods should be applied with
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considerable care, possibly constrained or assisted by deep learning (Fu et al., 2020; Haskins et
al., 2020).

The segmentation challenge highlighted that the difficulty of a segmentation task is driven
primarily by the imaging modality and the tissue being imaged: cells in culture were substantially
easier to segment than tissue images, particularly those with densely-packed cells (e.g.,
Vanderbilt_colon; Table 4). We hypothesize that training tissue-specific models will play a bigger
role in accurate segmentation than the underlying machine learning methodology. Emerging
studies also show that data augmentation and the inclusion of a nuclear envelope stain, such as
Lamin, can substantially improve segmentation accuracy in a method-agnostic way (Yapp et al.,
2021).

Downstream cell type calling still heavily relies on prior knowledge about the association of cell
types with certain markers. The prior knowledge can help mitigate errors from upstream
processing by ensuring that marker expression aligns with known biology, but extra care must
be taken to ensure that segmentation artifacts are not misinterpreted as novel or rare cell
subpopulations. Our future hackathon efforts will focus on evaluating the interplay between
segmentation and cell type calling, as well as systematically assessing how degradation in
upstream performance impacts the quality of downstream analyses. We also expect that future
cell type calling will work directly at the pixel level, allowing methods to take full advantage of
the spatial distribution in signal intensities (as demonstrated by our PD-1 polarity challenge) and
the power of existing deep learning architectures (He et al., 2021). We will formalize this
expectation into a pixel-level cell type prediction challenge in a subsequent hackathon.

4 Discussion
While most hackathons involve pre-hackathon planning activities, our hosting of a two-day
workshop to formalize the challenges was a novel aspect that, to the best of our knowledge, has
not been attempted before. The workshop allowed democratization of the challenge questions
by soliciting input from the image community as a whole and narrowing those down based on
the participant interest. As a result, the participants were able to address a diverse range of
specific questions that required substantially different approaches, while exchanging ideas on
issues common to all challenges, such as the need to wrangle large, complex image datasets,
train machine learning models, and visualize the results. This was a particularly timely
experience, as increasingly-sophisticated imaging methods become more widespread in cancer
research, and many groups grapple with the best way to analyze data that is rapidly growing in
both size and complexity.

Our original intent was to have more established investigators frame challenges in the field
during the workshop. However, attendees at both the workshop and hackathon were mostly
early-stage investigators and trainees and most attended both events. This had important
advantages: hackathon attendees were invested in the challenges that they themselves had
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previously defined during the workshop and they had already developed a rapport with their
team members. Having two face-to-face meetings with a small and highly overlapping group of
participants also improved the likelihood of forming post-event collaborations. Indeed, the PD1
asymmetry team continued their efforts after the hackathon. Hence, we feel the preliminary
workshop was critical in realizing the hackathon outcomes (including scientific results and
collaborations) and that replicating either experience virtually would have been difficult.
Consistently, all eight post-hackathon survey respondents who also attended the workshop
reported that their participation in the first event was useful in preparing for the second.

To assess the impact of the workshop and the hackathon, we conducted a survey with
questions about what the participants found most valuable and what could be improved.
Feedback from the participants confirmed many positive aspects of hands-on working meetings
described in the literature (Groen and Calderhead, 2015; Huppenkothen et al., 2018).
Specifically, the meetings provided a good networking opportunity for scientists from different
labs and with different areas of expertise, allowing researchers to establish new collaborations
and brainstorm ideas for future projects. As described previously, such opportunities are
particularly important for early-career scientists, including postdocs and junior investigators
(Groen and Calderhead, 2015).

The hackathon also provided a hands-on educational experience by bridging the gap between
traditional courses, which take months to develop, and the rapidly shifting landscape of image
analysis tools. By exposing the participants to real datasets with all their complexities, the
hackathon was an immersive experience that fostered collaborative software development and
an exchange of ideas that can be taken back to each lab’s day-to-day activities. All of the survey
respondents expressed interest in participating in future image analysis hackathons.

Our community-based approach had several limitations. Previous hackathons highlighted the
importance of having teams composed of participants with diverse backgrounds (Ferreira et al.,
2019; Groen and Calderhead, 2015). Unfortunately, the vast majority of our participants were
computational scientists; having more representation of experimental scientists among the
teams would have likely increased the biological and clinical insight produced by individual
challenges. Several groups had a range of experience levels that provided learning
opportunities for more junior members, as well as the requisite background to ensure
productivity in the short time window of the hackathon. The registration team reported
benefitting from several expert practitioners, suggesting that future imaging-based hackathons
should strive to ensure experts are embedded in each team. Counterintuitively, background
diversity among the computational scientists was also a limitation; Python is widely considered
to be the primary language for image analysis tasks, and participants with background in other
programming languages (e.g., Java or R) felt at a disadvantage. We conjecture that the use of
container technologies, such as Docker (Merkel, 2014) and Singularity (Kurtzer et al., 2017) in
future hackathons can help with code execution across various compute environments and
programming language preferences.
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The hackathon exposed three primary technical hurdles likely to be pervasive in large-scale
image analysis projects: (1) access to GPUs for more efficient computation; (2) scalable access
to large datasets for generalizing trained models; and (3) access to ground truth for objective
evaluation of those models. The likely performance advantage of GPUs would have been
especially beneficial to the segmentation challenge, in which one team had inadequate time to
analyze all datasets. Across all of the challenges, lack of “ground truth” labels made it difficult to
effectively evaluate the solutions produced by the hackathon participants—an oft-occurring
difficulty in biomedical image analysis, as producing a reference standard traditionally requires
laborious, manual curation by pathologists (Willemink et al., 2020). To mitigate this, data
contributors sometimes had to rely on orthogonal measurements to generate label
approximations (e.g., using expression of protein markers to define cell types for the cell
morphology challenge). Nevertheless, for the prototyping purposes of our hackathon, most
teams found that CPUs were sufficient to assess their approaches against a few exemplar
images and that those few images could be directly accessed from the portable hard drives we
provided. This may serve as a model for future image analysis hackathons: limit the scope of
proposed challenges to be practically addressable using local hardware with a scale of data that
can be transferred across a network or distributed via external hard drives. Given the limited
scale of such data, it would also be feasible to provide attendees early access to them prior to
the hackathon to facilitate data exploration without time constraints of the event—an opportunity
our participants regretted not having.

However, rather than limiting the scale of a future hackathon, we propose a more ambitious
goal: address the above issues by conducting the hackathon in a cloud environment. A
community-wide, shared, repository co-localized with compute infrastructure in the cloud would
also facilitate the collaborative efforts that our hackathon showed to be both educationally and
scientifically productive. Efficiently integrating image analysis with cloud resources remains a
challenge, owing to the latency of data transfer and of remote interactive viewing. Integrated
solutions for image storage, viewing, and analysis have been implemented on high-performance
computing (HPC) clusters for pathological (H&E) images (Schüffler et al., 2021). Such
approaches would need to be further extended to account for the order of magnitude greater
storage requirements of multiplexed data and migration from an HPC environment to the cloud
to further ease cross-institutional collaborations. Members of our community have already taken
strides towards addressing these issues by developing Minerva Story (Hoffer et al., 2020) and
the Cancer Digital Slide Archive (CDSA) (Gutman et al., 2013) for scalable visualization of
highly multiplexed and H&E image data, respectively, and through MCMICRO, a
workflow-based, configurable image analysis pipeline (Schapiro et al., 2021) that facilitates
cloud-based computation by adopting containerization technologies, such as Docker and
Singularity, and seamless access to heterogeneous resources, such as GPUs. Finally, recent
advances in cell segmentation have demonstrated how ground truth datasets can be efficiently
generated through cloud-based, crowd-sourced annotations that are verified, rather than
generated in toto, by expert annotators (Greenwald et al., 2021). The difficult work remains in
bridging scalable visualization platforms with analytical frameworks and assessing them on
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ground truth datasets scalably in the cloud. Nevertheless, even partially demonstrating this
feasibility in a subsequent hackathon would advance future cross-institutional projects.

Acknowledgments
We gratefully acknowledge funding support from the NCI grants U24CA209923 and U54
CA217450-02S1, which allowed for reimbursement of accommodation and travel expenses for
approximately 40 participants to each event. We would like to thank Daniel Gallahan and
Shannon Hughes for their insightful comments and suggestions, as well as Mark III Systems
and Core Scientific for providing access to their cloud environment and for facilitating on-site
administrative support.

Conflict of interest statement
The authors declare the following financial interests/personal relationships which may be
considered as potential competing interests: E.A.B. is an employee of Indica Labs, Y.G. is a
co-founder and scientific advisory board member of Akoya Biosciences. The other authors
declare no competing interests.

References
Afgan, E., Baker, D., Batut, B., van den Beek, M., Bouvier, D., Cech, M., Chilton, J., Clements,

D., Coraor, N., Grüning, B.A., Guerler, A., Hillman-Jackson, J., Hiltemann, S., Jalili, V.,
Rasche, H., Soranzo, N., Goecks, J., Taylor, J., Nekrutenko, A., Blankenberg, D., 2018.
The Galaxy platform for accessible, reproducible and collaborative biomedical analyses:
2018 update. Nucleic Acids Res. 46, W537–W544. https://doi.org/10.1093/nar/gky379

Ahmed, A.E., Mpangase, P.T., Panji, S., Baichoo, S., Souilmi, Y., Fadlelmola, F.M., Alghali, M.,
Aron, S., Bendou, H., De Beste, E., Mbiyavanga, M., Souiai, O., Yi, L., Zermeno, J.,
Armstrong, D., O’Connor, B.D., Mainzer, L.S., Crusoe, M.R., Meintjes, A., Van Heusden,
P., Botha, G., Joubert, F., Jongeneel, C.V., Hazelhurst, S., Mulder, N., 2018. Organizing
and running bioinformatics hackathons within Africa: The H3ABioNet cloud computing
experience. AAS Open Res. 1, 9. https://doi.org/10.12688/aasopenres.12847.2

Alcantarilla, P., Nuevo, J., Bartoli, A., 2013. Fast Explicit Diffusion for Accelerated Features in
Nonlinear Scale Spaces, in: Procedings of the British Machine Vision Conference 2013.
Presented at the British Machine Vision Conference 2013, British Machine Vision
Association, Bristol, p. 13.1-13.11. https://doi.org/10.5244/C.27.13

Angelo, M., Bendall, S.C., Finck, R., Hale, M.B., Hitzman, C., Borowsky, A.D., Levenson, R.M.,
Lowe, J.B., Liu, S.D., Zhao, S., Natkunam, Y., Nolan, G.P., 2014. Multiplexed ion beam
imaging of human breast tumors. Nat. Med. 20, 436–442.
https://doi.org/10.1038/nm.3488

Auwera, G.A.V. der, O’Connor, B.D., 2020. Genomics in the Cloud: Using Docker, GATK, and
WDL in Terra, 1st edition. ed. O’Reilly Media.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.22.451363doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://doi.org/10.1101/2021.07.22.451363
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bradski, G., 2000. The OpenCV library. Dr Dobbs J Softw. Tools 25, 120–125.
Caicedo, J.C., Goodman, A., Karhohs, K.W., Cimini, B.A., Ackerman, J., Haghighi, M., Heng, C.,

Becker, T., Doan, M., McQuin, C., Rohban, M., Singh, S., Carpenter, A.E., 2019. Nucleus
segmentation across imaging experiments: the 2018 Data Science Bowl. Nat. Methods
16, 1247–1253. https://doi.org/10.1038/s41592-019-0612-7

Chang, Y.H., Chin, K., Thibault, G., Eng, J., Burlingame, E., Gray, J.W., 2020. RESTORE:
Robust intEnSiTy nORmalization mEthod for multiplexed imaging. Commun. Biol. 3, 111.
https://doi.org/10.1038/s42003-020-0828-1

Chen, J., Ding, L., Viana, M.P., Lee, H., Sluezwski, M.F., Morris, B., Hendershott, M.C., Yang,
R., Mueller, I.A., Rafelski, S.M., 2020. The Allen Cell and Structure Segmenter: a new
open source toolkit for segmenting 3D intracellular structures in fluorescence microscopy
images. bioRxiv 491035. https://doi.org/10.1101/491035

Connor, R., Brister, R., Buchmann, J.P., Deboutte, W., Edwards, R., Martí-Carreras, J., Tisza,
M., Zalunin, V., Andrade-Martínez, J., Cantu, A., D’Amour, M., Efremov, A., Fleischmann,
L., Forero-Junco, L., Garmaeva, S., Giluso, M., Glickman, C., Henderson, M., Kellman,
B., Kristensen, D., Leubsdorf, C., Levi, K., Levi, S., Pakala, S., Peddu, V., Ponsero, A.,
Ribeiro, E., Roy, F., Rutter, L., Saha, S., Shakya, M., Shean, R., Miller, M., Tully, B.,
Turkington, C., Youens-Clark, K., Vanmechelen, B., Busby, B., 2019. NCBI’s Virus
Discovery Hackathon: Engaging Research Communities to Identify Cloud Infrastructure
Requirements. Genes 10. https://doi.org/10.3390/genes10090714

Dietz, C., Rueden, C.T., Helfrich, S., Dobson, E.T.A., Horn, M., Eglinger, J., Evans, E.L.,
McLean, D.T., Novitskaya, T., Ricke, W.A., Sherer, N.M., Zijlstra, A., Berthold, M.R.,
Eliceiri, K.W., 2020. Integration of the ImageJ Ecosystem in the KNIME Analytics
Platform. Front. Comput. Sci. 2, 8. https://doi.org/10.3389/fcomp.2020.00008

Fecho, K., Ahalt, S.C., Arunachalam, S., Champion, J., Chute, C.G., Davis, S., Gersing, K.,
Glusman, G., Hadlock, J., Lee, J., Pfaff, E., Robinson, M., Sid, E., Ta, C., Xu, H., Zhu,
R., Zhu, Q., Peden, D.B., Biomedical Data Translator Consortium, 2019. Sex, obesity,
diabetes, and exposure to particulate matter among patients with severe asthma:
Scientific insights from a comparative analysis of open clinical data sources during a
five-day hackathon. J. Biomed. Inform. 100, 103325.
https://doi.org/10.1016/j.jbi.2019.103325

Ferreira, G.C., Oberstaller, J., Fonseca, R., Keller, T.E., Adapa, S.R., Gibbons, J., Wang, C., Liu,
X., Li, C., Pham, M., Dayhoff Ii, G.W., Duong, L.M., Reyes, L.T., Laratelli, L.E., Franz, D.,
Fatumo, S., Bari, A.G., Freischel, A., Fiedler, L., Dokur, O., Sharma, K., Cragun, D.,
Busby, B., Jiang, R.H.Y., 2019. Iron Hack - A symposium/hackathon focused on
porphyrias, Friedreich’s ataxia, and other rare iron-related diseases. F1000Research 8,
1135. https://doi.org/10.12688/f1000research.19140.1

Friedman, J.H., 2001. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat.
29, 1189–1232.

Fu, Y., Lei, Y., Wang, T., Curran, W.J., Liu, T., Yang, X., 2020. Deep learning in medical image
registration: a review. Phys. Med. Biol. 65, 20TR01.
https://doi.org/10.1088/1361-6560/ab843e

Giesen, C., Wang, H.A.O., Schapiro, D., Zivanovic, N., Jacobs, A., Hattendorf, B., Schüffler,
P.J., Grolimund, D., Buhmann, J.M., Brandt, S., Varga, Z., Wild, P.J., Günther, D.,
Bodenmiller, B., 2014. Highly multiplexed imaging of tumor tissues with subcellular
resolution by mass cytometry. Nat. Methods 11, 417–422.
https://doi.org/10.1038/nmeth.2869

Goltsev, Y., Samusik, N., Kennedy-Darling, J., Bhate, S., Hale, M., Vazquez, G., Black, S.,

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.22.451363doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://doi.org/10.1101/2021.07.22.451363
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nolan, G.P., 2018. Deep Profiling of Mouse Splenic Architecture with CODEX
Multiplexed Imaging. Cell 174, 968-981.e15. https://doi.org/10.1016/j.cell.2018.07.010

Greenwald, N.F., Miller, G., Moen, E., Kong, A., Kagel, A., Fullaway, C.C., McIntosh, B.J., Leow,
K., Schwartz, M.S., Dougherty, T., Pavelchek, C., Cui, S., Camplisson, I., Bar-Tal, O.,
Singh, J., Fong, M., Chaudhry, G., Abraham, Z., Moseley, J., Warshawsky, S., Soon, E.,
Greenbaum, S., Risom, T., Hollmann, T., Keren, L., Graf, W., Angelo, M., Valen, D.V.,
2021. Whole-cell segmentation of tissue images with human-level performance using
large-scale data annotation and deep learning. bioRxiv 2021.03.01.431313.
https://doi.org/10.1101/2021.03.01.431313

Groen, D., Calderhead, B., 2015. Science hackathons for developing interdisciplinary research
and collaborations. eLife 4, e09944. https://doi.org/10.7554/eLife.09944

Gutman, D.A., Cobb, J., Somanna, D., Park, Y., Wang, F., Kurc, T., Saltz, J.H., Brat, D.J.,
Cooper, L.A.D., 2013. Cancer Digital Slide Archive: an informatics resource to support
integrated in silico analysis of TCGA pathology data. J. Am. Med. Inform. Assoc. JAMIA
20, 1091–1098. https://doi.org/10.1136/amiajnl-2012-001469

hackseq Organizing Committee 2016, 2017. hackseq: Catalyzing collaboration between
biological and computational scientists via hackathon. F1000Research 6, 197.
https://doi.org/10.12688/f1000research.10964.2

Haskins, G., Kruger, U., Yan, P., 2020. Deep learning in medical image registration: a survey.
Mach. Vis. Appl. 31, 8. https://doi.org/10.1007/s00138-020-01060-x

He, Y., Zhao, H., Wong, S.T.C., 2021. Deep learning powers cancer diagnosis in digital
pathology. Comput. Med. Imaging Graph. 88, 101820.
https://doi.org/10.1016/j.compmedimag.2020.101820

Hoffer, J., Rashid, R., Muhlich, J.L., Chen, Y.-A., Russell, D.P.W., Ruokonen, J., Krueger, R.,
Pfister, H., Santagata, S., Sorger, P.K., 2020. Minerva: a light-weight, narrative image
browser for multiplexed tissue images. J. Open Source Softw. 5.
https://doi.org/10.21105/joss.02579

Huppenkothen, D., Arendt, A., Hogg, D.W., Ram, K., VanderPlas, J.T., Rokem, A., 2018. Hack
weeks as a model for data science education and collaboration. Proc. Natl. Acad. Sci. U.
S. A. 115, 8872–8877. https://doi.org/10.1073/pnas.1717196115

Kapur, T., Pieper, S., Fedorov, A., Fillion-Robin, J.-C., Halle, M., O’Donnell, L., Lasso, A., Ungi,
T., Pinter, C., Finet, J., Pujol, S., Jagadeesan, J., Tokuda, J., Norton, I., Estepar, R.S.J.,
Gering, D., Aerts, H.J.W.L., Jakab, M., Hata, N., Ibanez, L., Blezek, D., Miller, J.,
Aylward, S., Grimson, W.E.L., Fichtinger, G., Wells, W.M., Lorensen, W.E., Schroeder,
W., Kikinis, R., 2016. Increasing the impact of medical image computing using
community-based open-access hackathons: The NA-MIC and 3D Slicer experience.
Med. Image Anal. 33, 176–180. https://doi.org/10.1016/j.media.2016.06.035

Kesler, B., Li, G., Thiemicke, A., Venkat, R., Neuert, G., 2019. Automated cell boundary and 3D
nuclear segmentation of cells in suspension. Sci. Rep. 9, 10237.
https://doi.org/10.1038/s41598-019-46689-5

Kingma, D.P., Welling, M., 2014. Auto-Encoding Variational Bayes.
Kurtzer, G.M., Sochat, V., Bauer, M.W., 2017. Singularity: Scientific containers for mobility of

compute. PLOS ONE 12, e0177459. https://doi.org/10.1371/journal.pone.0177459
Lin, J.-R., Izar, B., Wang, S., Yapp, C., Mei, S., Shah, P.M., Santagata, S., Sorger, P.K., 2018.

Highly multiplexed immunofluorescence imaging of human tissues and tumors using
t-CyCIF and conventional optical microscopes. eLife 7.
https://doi.org/10.7554/eLife.31657

Marstal, K., Berendsen, F., Staring, M., Klein, S., 2016. SimpleElastix: A User-Friendly,

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.22.451363doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://doi.org/10.1101/2021.07.22.451363
http://creativecommons.org/licenses/by-nc-nd/4.0/


Multi-lingual Library for Medical Image Registration, in: 2016 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW). Presented at the 2016
IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pp. 574–582. https://doi.org/10.1109/CVPRW.2016.78

Maurer, C.R., Fitzpatrick, J.M., Wang, M.Y., Galloway, R.L., Maciunas, R.J., Allen, G.S., 1997.
Registration of head volume images using implantable fiducial markers. IEEE Trans.
Med. Imaging 16, 447–462. https://doi.org/10.1109/42.611354

Merkel, D., 2014. Docker: lightweight Linux containers for consistent development and
deployment. Linux J. 2014, 2:2.

Neumann, B., Walter, T., Hériché, J.-K., Bulkescher, J., Erfle, H., Conrad, C., Rogers, P., Poser,
I., Held, M., Liebel, U., Cetin, C., Sieckmann, F., Pau, G., Kabbe, R., Wünsche, A.,
Satagopam, V., Schmitz, M.H.A., Chapuis, C., Gerlich, D.W., Schneider, R., Eils, R.,
Huber, W., Peters, J.-M., Hyman, A.A., Durbin, R., Pepperkok, R., Ellenberg, J., 2010.
Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division
genes. Nature 464, 721–727. https://doi.org/10.1038/nature08869

Quaranta, V., Tyson, D.R., Garbett, S.P., Weidow, B., Harris, M.P., Georgescu, W., 2009. Trait
variability of cancer cells quantified by high-content automated microscopy of single
cells. Methods Enzymol. 467, 23–57. https://doi.org/10.1016/S0076-6879(09)67002-6

Rashid, R., Gaglia, G., Chen, Y.-A., Lin, J.-R., Du, Z., Maliga, Z., Schapiro, D., Yapp, C.,
Muhlich, J., Sokolov, A., Sorger, P., Santagata, S., 2019. Highly multiplexed
immunofluorescence images and single-cell data of immune markers in tonsil and lung
cancer. Sci. Data 6, 323. https://doi.org/10.1038/s41597-019-0332-y

Samusik, N., Good, Z., Spitzer, M.H., Davis, K.L., Nolan, G.P., 2016. Automated mapping of
phenotype space with single-cell data. Nat. Methods 13, 493–496.
https://doi.org/10.1038/nmeth.3863

Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., Regev, A., 2015. Spatial reconstruction of
single-cell gene expression data. Nat. Biotechnol. 33, 495–502.
https://doi.org/10.1038/nbt.3192

Schapiro, D., Sokolov, A., Yapp, C., Muhlich, J.L., Hess, J., Lin, J.-R., Chen, Y.-A., Nariya, M.K.,
Baker, G.J., Ruokonen, J., Maliga, Z., Jacobson, C.A., Farhi, S.L., Abbondanza, D.,
McKinley, E.T., Betts, C., Regev, A., Coffey, R.J., Coussens, L.M., Santagata, S., Sorger,
P.K., 2021. MCMICRO: A scalable, modular image-processing pipeline for multiplexed
tissue imaging. bioRxiv 2021.03.15.435473. https://doi.org/10.1101/2021.03.15.435473

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,
Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri,
K., Tomancak, P., Cardona, A., 2012. Fiji: an open-source platform for biological-image
analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019

Schüffler, P.J., Geneslaw, L., Yarlagadda, D.V.K., Hanna, M.G., Samboy, J., Stamelos, E.,
Vanderbilt, C., Philip, J., Jean, M.-H., Corsale, L., Manzo, A., Paramasivam, N.H.G.,
Ziegler, J.S., Gao, J., Perin, J.C., Kim, Y.S., Bhanot, U.K., Roehrl, M.H.A., Ardon, O.,
Chiang, S., Giri, D.D., Sigel, C.S., Tan, L.K., Murray, M., Virgo, C., England, C., Yagi, Y.,
Sirintrapun, S.J., Klimstra, D., Hameed, M., Reuter, V.E., Fuchs, T.J., 2021. Integrated
digital pathology at scale: A solution for clinical diagnostics and cancer research at a
large academic medical center. J. Am. Med. Inform. Assoc. JAMIA ocab085.
https://doi.org/10.1093/jamia/ocab085

Ternes, L., Dane, M., Gross, S., Labrie, M., Mills, G., Gray, J., Heiser, L., Chang, Y.H., 2021.
ME-VAE: Multi-Encoder Variational AutoEncoder for Controlling Multiple
Transformational Features in Single Cell Image Analysis. bioRxiv 2021.04.22.441005.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.22.451363doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://doi.org/10.1101/2021.07.22.451363
http://creativecommons.org/licenses/by-nc-nd/4.0/


https://doi.org/10.1101/2021.04.22.441005
Tyson, D.R., Garbett, S.P., Frick, P.L., Quaranta, V., 2012. Fractional proliferation: a method to

deconvolve cell population dynamics from single-cell data. Nat. Methods 9, 923–928.
https://doi.org/10.1038/nmeth.2138

Ulman, V., Maška, M., Magnusson, K.E.G., Ronneberger, O., Haubold, C., Harder, N., Matula,
Pavel, Matula, Petr, Svoboda, D., Radojevic, M., Smal, I., Rohr, K., Jaldén, J., Blau,
H.M., Dzyubachyk, O., Lelieveldt, B., Xiao, P., Li, Y., Cho, S.-Y., Dufour, A.C.,
Olivo-Marin, J.-C., Reyes-Aldasoro, C.C., Solis-Lemus, J.A., Bensch, R., Brox, T.,
Stegmaier, J., Mikut, R., Wolf, S., Hamprecht, F.A., Esteves, T., Quelhas, P., Demirel, Ö.,
Malmström, L., Jug, F., Tomancak, P., Meijering, E., Muñoz-Barrutia, A., Kozubek, M.,
Ortiz-de-Solorzano, C., 2017. An objective comparison of cell-tracking algorithms. Nat.
Methods 14, 1141–1152. https://doi.org/10.1038/nmeth.4473

Valen, D.A.V., Kudo, T., Lane, K.M., Macklin, D.N., Quach, N.T., DeFelice, M.M., Maayan, I.,
Tanouchi, Y., Ashley, E.A., Covert, M.W., 2016. Deep Learning Automates the
Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments. PLOS
Comput. Biol. 12, e1005177. https://doi.org/10.1371/journal.pcbi.1005177

van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N.,
Gouillart, E., Yu, T., scikit-image contributors, 2014. scikit-image: image processing in
Python. PeerJ 2, e453. https://doi.org/10.7717/peerj.453

Willemink, M.J., Koszek, W.A., Hardell, C., Wu, J., Fleischmann, D., Harvey, H., Folio, L.R.,
Summers, R.M., Rubin, D.L., Lungren, M.P., 2020. Preparing Medical Imaging Data for
Machine Learning. Radiology 295, 4–15. https://doi.org/10.1148/radiol.2020192224

Yapp, C., Novikov, E., Jang, W.-D., Chen, Y.-A., Cicconet, M., Maliga, Z., Jacobson, C.A., Wei,
D., Santagata, S., Pfister, H., Sorger, P.K., 2021. UnMICST: Deep learning with real
augmentation for robust segmentation of highly multiplexed images of human tissues.
bioRxiv 2021.04.02.438285. https://doi.org/10.1101/2021.04.02.438285

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.22.451363doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://www.zotero.org/google-docs/?iTWn8c
https://doi.org/10.1101/2021.07.22.451363
http://creativecommons.org/licenses/by-nc-nd/4.0/

