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Abstract 

Data-independent acquisition (DIA) has become an important approach in global, mass 

spectrometric proteomic studies because it provides in-depth insights into the molecular 

variety of biological systems. However, DIA data analysis remains challenging due to the 

high complexity and large data and sample size, which require specialized software and 

large computing infrastructures. Most available open-source DIA software necessitate basic 

programming skills and cover only a fraction of the analysis steps, often yielding a complex 

of multiple software tools, severely limiting usability and reproducibility. To overcome this 

hurdle, we have integrated a suite of DIA tools in the Galaxy framework for reproducible and 

version-controlled data processing. The DIA suite includes OpenSwath, PyProphet, diapysef 

and swath2stats. We have compiled functional Galaxy pipelines for DIA processing, which 

provide a web-based graphical user interface to these pre-installed and pre-configured tools 

for their usage on freely accessible, powerful computational resources of the Galaxy 

framework. This approach also enables seamless sharing workflows with full configuration in 

addition to sharing raw data and results. We demonstrate usability of the all-in-one DIA 

pipeline in Galaxy by the analysis of a spike-in case study dataset. Additionally, extensive 

training material is provided, to further increase access for the proteomics community. 

 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.21.453197doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.21.453197
http://creativecommons.org/licenses/by/4.0/


Background 

Data-independent acquisition (DIA) is a recently developed method addressing the need for 

reproducible and robust explorative proteomic measurements in larger sample cohorts 1. 

Compared to classical data-dependent acquisition (DDA) measurements, in DIA all MS1 

precursor peptide ions within a predefined m/z range (“window”) are fragmented and 

subjected to MS2 scans. Especially for high-throughput studies with dozens of samples, DIA 

has been shown to yield higher numbers of identifications and quantifications 2–4. 

Furthermore, when compared to isobaric labelling approaches, DIA is less susceptible to 

batch effects stemming from chemical tagging and allows for quantitative proteome 

comparison in large cohorts 5,6. Multiple DIA strategies have been developed over the last 

decade as reviewed in Ludwig et al. 3. Applying overlapping isolation windows and 

subsequent demultiplexing has been shown to improve the precursor selectivity 7,8. However, 

for overlapping isolation window DIA data, specific data processing may be required to 

ensure compatibility with subsequent data processing steps. 

Different data processing strategies have been developed for DIA data, where the most 

common strategies apply a spectral library to enable confident identification of peptides in 

DIA data 4. Due to the complex MS2 spectra as well as the requirement for a priori 

knowledge a complete DIA data analysis can be divided into three steps: (i) the generation of 

a spectral library (ii) the actual identification by matching measured fragment masses and 

their respective retention times to the precursor and fragment information within the spectral 

library (iii) a statistical follow-up analysis yielding the identification of significantly altered 

protein expression profiles. A prototypical DIA analysis often includes a multitude of software 

and system environments for steps such as spectral library generation, peptide and protein 

identification in DIA measurements, and differential statistics (Figure 2A, upper panel). 

Spectral libraries are often based on DDA data analyses e.g. using MaxQuant 9 via a 

graphical user interface, followed by library generation e.g. using diapysef 10,11 in a python 

shell, and OpenSwath 10 tools on the command line for library refinement. For the analysis of 

DIA data containing overlapping isolation windows, a demultiplexing step may be required, 
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e.g. during the conversion from vendor-specific file formats to the open mzML 12 format with 

tools such as msconvert 13. The identification of peptides in DIA data can be performed using 

a variety of software suites e.g. OpenSwathWorkflow 14 followed by FDR scoring using 

PyProphet 15. The peptide identification and quantification, target decoy scoring as well as 

the results export can be performed in the standard Windows terminal or an enhanced 

terminal for Windows such as MobaXterm. The final differential expression analysis can be 

performed using specialized software such as MSstats in R programming language. This 

portrayal serves to illustrate the inherent complexity of modular data analysis in modern DIA 

proteomics.  

The multi-step characteristic of a complete DIA data analysis has encouraged the 

development of a variety of software options, some of which are particularly powerful in one 

or more of the three steps 4,16. However, the usage of multiple software packages impedes 

streamlined high-throughput analysis and poses hurdles for software compatibility and 

reproducibility. Hence, DIA data analysis, especially in the context of powerfully adaptable 

modular software tools, requires an advanced level of computational skills for software 

installation, connecting them into analysis workflows and usage in the case of command-line-

based software. Recent endeavors have used so-called Docker-based structures to 

distribute pre-assembled and readily usable DIA software bundles, however, they still require 

a high degree of computational, especially programming skills 17–19. Thus, a hidden 

requirement for DIA data analysis has been sophisticated bioinformatic skills, due to the 

involvement of multiple software tools in a complete analysis and individual analysis steps, 

that are performed using open-source programming languages such as R or Python. To 

enable straightforward and user-friendly analysis, monolithic software such as Spectronaut 

and Skyline has been developed 2,7. However, it remains challenging to embed monolithic 

software in workflow environments and to enable compatibility and interoperability with other 

software. Moreover, their design often lacks the ultimate flexibility and tunability of modular 

software suites such as OpenSwath 10.   

OpenSwathWorkflow (OSW) is one of the earliest open-source DIA analysis software suites, 

that supports a large number of functionalities and parameters allowing for a fully customized 
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DIA analysis 20. Yet, the sophisticated flexibility and numerous parameter options make it 

difficult to report all crucial settings e.g. in scientific communications; potentially limiting 

reproducibility and transparency of DIA analysis. Moreover, OSW by default does not have a 

graphical user interface, limiting its accessibility and usability to researchers that are familiar 

with executing software from the command line. The urgent need for a user-friendly and fully 

customizable DIA analysis pipeline is highlighted by recent endeavors in streamlined DIA 

analysis options applying OSW 18,19,21. 

Here we present a user-friendly repertoire of DIA analysis tools, which can be accessed by a 

broad user community via the web-based analysis and workflow framework Galaxy 22. The 

Galaxy framework makes thousands of bioinformatics tools available to the scientific 

community without requiring advanced bioinformatic or programming skills. Galaxy analyses 

are stored in so-called histories, in which all tool names, tool versions, tool parameters and 

intermediate data are saved, hence representing an important step for reproducibility. More 

than a hundred public Galaxy servers are available worldwide and offer access to powerful 

public cloud infrastructure for academic or non-commercial purposes. Into this powerful 

framework, we have integrated a suite of eleven modular DIA tools based on OpenSWATH 

10, diapysef 11, PyProphet 15, and swath2stats 23 (Table 1). Together with existing Galaxy 

tools all necessary DIA analysis steps can be executed within Galaxy with high flexibility and 

in an easily accessible manner. We apply the DIA analysis tools on an E.coli:HEK spike-in 

dataset to demonstrate the use of a Galaxy-based DIA Analysis pipeline that facilitates 

standardization and reproducibility and is compatible with the principles of FAIR (findable, 

accessible, interoperable, and re-usable) data and MIAPE (minimum information about a 

proteomics experiment) 24,25.  
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Methods 

Escherichia coli K12 (E.coli) and human embryonic kidney 293T (HEK) 
whole proteome samples 

E.coli and HEK proteome samples were prepared as previously described 26. Briefly, cells 

were lysed using 5% SDS in 50 mM triethylammonium bicarbonate (TEAB) at pH 7.55 by 

applying sonication (20 cycles with 30/30 sec on/off high energy) with a Bioruptor device 

(Diagenode, Liège, Belgium). Following centrifugation for 8 min at 13,000 g, proteins in the 

supernatant were reduced by incubating with 5 mM TCEP (Sigma) at 95°C for 10 min and 

subsequently alkylated by incubating with 5 mM IAA at room temperature in the dark. Protein 

digestion and purification was performed on S-TrapTM micro spin columns (Protifi, 

Huntington, NY) according to the manufacturer's protocol. After elution the peptide 

concentrations were measured using a bicinchoninic acid assay (Thermo Scientific) 

according to the manufacturer's protocol. Different amounts of E.coli peptides (0, 0.05, 0.15, 

0.4 and 0.8 µg) were added to stable amounts of HEK peptides (2.5 µg) resulting in the 

following ratios: HEK only; 1:50; 1:17; 1:7 and 1:3. Two replicates of each E.coli:HEK ratio 

were prepared. Samples were vacuum-concentrated until dryness and stored at -80°C until 

LC-MS/MS analysis.  

LC-MS/MS analysis 

One ug of peptides were analyzed on a Q-Exactive Plus mass spectrometer (Thermo 

Scientific, San Jose, CA) coupled to an EASY-nLCTM 1000 UHPLC system (Thermo 

Scientific). The analytical column was self-packed with silica beads coated with C18 

(Reprosil Pur C18-AQ, d = 3 Â) (Dr. Maisch HPLC GmbH, Ammerbusch, Germany). For 

peptide separation, a two-step linear gradient with increasing amount of buffer B (0.1% 

formic acid in 80% acetonitrile, Fluka) was applied, ranging from 8 to 43% buffer B over 90 

min and from 43 to 65% buffer B in the subsequent 20 min (110 min separating gradient 

length). Additionally, buffer A and buffer B contained 3% ethylene glycol (final concentration), 

which has been shown to improve electrospray ionization 27. For the spectral library one 
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representative sample of each E.coli:HEK ratio (in total n = 5 samples) was measured using 

data-dependent acquisition. Briefly, survey scans covering an m/z range from 385 to 1015 

m/z were performed at 70,000 resolution, an AGC target of 3e6 and a maximum injection 

time of 50 ms followed by targeting the top 10 precursor ions for fragmentation scans at 

17,500 resolution with 1.6 m/z isolation windows, a stepped NCE of 25 and 30, and an 

dynamic exclusion time of 35 s. For all MS2 scans the intensity threshold was set to 6.3e4, 

the AGC to 1e5 and the maximum injection time to 160 ms. The twenty E.coli:HEK ratios 

samples were measured using data-independent acquisition. For DIA two cycles of 24 m/z 

broad windows ranging from 400 to 1000 m/z with a 50% shift between the cycles (staggered 

window schema was used) 28. MS2 scans were performed at 17,500 resolution, an AGC 

target of 1e5 and a maximum injection time of 80 ms using stepped NCE of 25 and 30. After 

25 consecutive MS2 scans a MS1 survey scan was triggered covering the same range and 

with the same settings as in the DDA measurements. 

Data analysis using Galaxy 

The complete data analysis was performed on the European Galaxy server 22. The analysis 

history for the spectral library generation and the DIA analysis (including the statistical 

analysis) have been published via Galaxy 29,30 and can be found in the additional data. 

Briefly, spectral library generation was performed by analyzing five DDA measurements 

representing different E.coli:HEK ratios using MaxQuant in Galaxy. A reviewed human 

protein database containing 20,426 sequences (08/06/2019) and an E.coli protein database 

containing 4,352 sequences (03/28/2019) were retrieved from UniProt. The five DDA 

measurements were specified as fractions to yield a combined peptide and protein 

identification. For peptide identification, fully tryptic digestion (Trypsin/P) was assumed 

allowing for up to one missed cleavage and at least one unique peptide per protein was 

requested. Carbamidomethylation(C) of cysteine was set as a fixed modification, whereas 

oxidation(M) on methionine was applied as variable modification. Search results were filtered 

for 1 % FDR on both, peptide spectrum match (PSM) as well as protein level. Unique 

identified peptides, as well as a list of reference peptides (iRT peptides), were used to 
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generate a spectral library with diapysef. The retention time alignment method was set to 

linear. The spectral library was refined using OpenSwathAssayGenerator with the default 

settings except for a more stringent m/z threshold of 0.015 Thompson for both, the precursor 

ion selection as well as the fragment ion annotation. Furthermore, a mass range between 

400 and 1000 Thompson for precursor ions was considered. To allow for subsequent FDR 

scoring, shuffled decoy transitions were added using the OpenSwathDecoyGenerator and 

setting the m/z threshold to 0.015 Thompson for the fragment ion annotation. In a final step, 

the spectral library was converted from a tab-separated values (tsv) file format to the peptide 

query parameter (pqp) format using the TargetedFileConverter. Peptide Identification of the 

DIA measurements was performed using the freshly built spectral library in combination with 

the same list of reference peptides (iRT peptides) that was already used during the library 

generation. For the DIA analysis, OpenSwathWorkflow with default settings and a few 

adjustments was used. The m/z extraction window was set to 20 ppm on MS/MS and 10 ppm 

on MS1 level. Within the “Parameters for the RTNormalization for iRT peptides” section the 

“outlier detection method” was set to none and “choose the best peptides based on their 

peak shape for normalization” was enabled. A minimal number of 7 iRT peptides was 

requested and 20 ppm mass tolerance for the iRT transitions was applied. In the “Scoring 

parameters” section the minimal peak width was set to 5.0 and the computation of a quality 

value was enabled. The usage of mutual information (MI) scores was deactivated. The “Use 

the retention time normalization peptide MS2 masses to perform a mass correction” was set 

to regression_delta_ppm. OpenSwathWorkflow results of each DIA measurement were 

combined into a single file using the PyProphet merge tool. Target-decoy scoring of the 

merged OpenSwathWorkflow results was performed using XGBoost as a classifier in the 

PyProphet score tool. Computed target-decoy scores were applied on peptide and protein 

level in an experiment-wide and a global context to estimate protein-level FDR control using 

the PyProphet peptide and PyProphet protein tool, respectively. DIA analysis results were 

exported as a tsv file using the PyProphet export tool. Since peptide and protein inference in 

the global context was conducted, the exported results were filtered to 1% FDR by default. 

Additionally, the swath2stats functionality was used to provide a summary file, a protein and 
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peptide signal table as well as a MSstats input tsv file. Statistical analysis was performed 

using the MSstats tool as well as a comparison annotation file in two different ways: (i) using 

the MSstats input tsv file generated using the swath2stats functionality and (ii) using the 

PyProphet export tsv file and an MSstats sample annotation file. For the two approaches, the 

“input source” parameter needs to be adjusted and set to “MSstats 10 column format” when 

using the swath2stats prepared tsv file or “OpenSWATH” when using the PyProphet tsv file. 

Findings 

Galaxy enables easily accessible, straightforward and reproducible DIA data analysis.  

Here we present an all-in-one DIA analysis pipeline within the Galaxy framework, enabling 

easy access to a suite of advanced software tools and providing sufficient computational 

resources for large-scale DIA data analyses. We developed and implemented all necessary 

tools, required for a complete DIA data analysis into the Galaxy framework (Figure 1A and 

Table 1). The newly developed tools were integrated with state of the art proteomic Galaxy 

tools such as MaxQuant, MSstats and basic text manipulation tools to build a functional DIA 

analysis pipeline. All newly integrated DIA tools are based on open-source software such as 

diapysef, OpenSwath, PyProphet, swath2stats 10,11,23. The tools were built in a modular way, 

allowing a fully customized analysis. Each analysis step can be executed individually or 

assembled as a workflow in the Galaxy platform facilitating a streamlined and straightforward 

analysis (Figure 1A) 14,20,31. All parameter options of the original software can be modified via 

the Galaxy GUI, providing a maximum of user-adjustable configurations for fine-tuning of 

analysis. We consider archiving of such details to be relevant for reproducibility; deposition 

and sharing of entire Galaxy workflows is a very straightforward and integrated way of doing 

so. In fact, published Galaxy histories include complete provenance data, allowing to 

reproduce the same analysis that has been published. Thus, version-control and version-

archiving constitute a major feature of this approach. 

We present a Galaxy-based, complete DIA analysis pipeline that consists of three major 

parts: (i) spectral library generation using DDA data (Figure 1B) 32; (ii) peptide (and protein) 
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identification and quantification in DIA data using the aforementioned spectral library (Figure 

1C) 33; and (iii) statistical analysis (Supplementary Figure 1) 34,35. The workflows for each 

step have been published via Galaxy and can be downloaded and adjusted or directly run in 

Galaxy 32–35. 

Table 1. Overview of developed tools for the DIA data analysis in Galaxy 

Developed Tool Reference Function Galaxy toolshed 

diapysef 10,11  Spectral library generation 
https://toolshed.g2.bx.psu.edu/repository?repositor

y_id=9cd9efb42d2fe1bc 

OpenSwathAssayGenerator 36  Spectral library refinement 
https://toolshed.g2.bx.psu.edu/view/galaxyp/openm

s_openswathassaygenerator/2a9ff56cb279 

OpenSwathDecoyGenerator 36  Spectral library refinement 
https://toolshed.g2.bx.psu.edu/view/galaxyp/openm

s_openswathdecoygenerator/f861ec9fbe59 

TargetedFileConverter 36  Spectral library conversion 
https://toolshed.g2.bx.psu.edu/view/galaxyp/openm

s_targetedfileconverter/dd71e020e2aa 

OpenSwathWorkflow 10  Peptide identification and quantification in DIA data 
https://toolshed.g2.bx.psu.edu/view/galaxyp/openm

s_openswathworkflow/2aebe58de46e 

PyProphet merge 15  Combining individual analysis results to allow for global scoring 
https://toolshed.g2.bx.psu.edu/view/galaxyp/pyprop

het_merge/a67b508b1dc5 

PyProphet subsample 15  Subsampling of combined analysis results for faster scoring 
https://toolshed.g2.bx.psu.edu/view/galaxyp/pyprop

het_subsample/ca7b78db6af2 

PyProphet score 15  Target-Decoy scoring 
https://toolshed.g2.bx.psu.edu/view/galaxyp/pyprop

het_score/77f068ba47dd 

PyProphet peptide 15  Applying computed scores on peptide level 
https://toolshed.g2.bx.psu.edu/view/galaxyp/pyprop

het_peptide/4504b3bc1eed 

PyProphet protein 15  Applying computed scores on protein level 
https://toolshed.g2.bx.psu.edu/view/galaxyp/pyprop

het_protein/2320f48209fc 

PyProphet export 

(includes swath2stats) 15,23  

Export results 

Optional:Apply swath2stats functionality 

https://toolshed.g2.bx.psu.edu/view/galaxyp/pyprop

het_export/3cf580bf28e2 

We developed eleven tools to enable a complete DIA analysis in Galaxy. Tool names (including the 
respective references), their function within the analysis pipeline as well as a link to the Galaxy 
toolshed are provided. 

 

We wish to emphasize that embedding these tools in Galaxy not only enables the user-

friendly usage but also fosters a new level of reporting and reproducibility in DIA proteomics: 

the tools as such may be combined in different ways and many tools provide an array of 

user-adjustable fine-tuning parameters. For illustration, the basic DIA analysis workflow 

(provided as a training and discussed in further detail below) includes, among others, the 

three tools OpenSwathWorkflow, PyProphet score and PyProphet peptide each of which with 

more than 10 fine-tuning settings. This results in numerous possible parameter-combinations 

which, to our knowledge, are rarely reported in detail. The Galaxy framework addresses this 

issue by the possibility of depositing and sharing entire workflows (including complete 
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provenance data), also in the context of scientific publications. We consider this feature to be 

a major benefit of our approach of integrating a DIA processing suite in Galaxy.  

Democratizing data-independent acquisition analysis 

The web-based access and graphical user interface in Galaxy empowers a broad community 

of researchers to perform DIA data analysis. All DIA Galaxy tools are pre-installed and ready 

to be used on several public Galaxy servers, for example, the European Galaxy server 22. 

Running on public clouds, these Galaxy servers provide an immense computational power 

that enables running many DIA analyses in parallel without needing to invest or block private 

computing resources. Most of the software that we integrated into Galaxy is normally only 

usable with basic programming skills in R or python and thus excludes many proteomics 

researchers from using them. With the integration into Galaxy, these software tools are now 

usable by a much broader community via Galaxy’s graphical user interface that allows to 

specify all input files and parameters and to build analysis workflows based on modular tools. 

In the following sections, we present more detailed insight into the various steps of Galaxy-

supported DIA analysis using the aforementioned tool suite.  

Spectral library generation based on data-dependent acquisition measurements 

A spectral library is generated with the newly developed diapysef tool using either the 

proteotypic peptides or the unfiltered MaxQuant results in combination with a list of reference 

peptides, to which the RTs of all identified peptides will be aligned using either a linear or a 

non-linear regression 37,38. The diapysef tool in Galaxy automatically generates a pdf file 

containing the RT calibration curves, highlighting the identified reference peptides and the 

respective linear or non-linear regression fit (Figure 2B). The calibration curves provide a 

valuable overview of the suitability of the reference peptide with regards to their linear elution 

as well as the reproducibility of the identification and elution in the analyzed 

samples/fractions. To improve the sensitivity and selectivity for the detection of typical 

peptides the spectral library can be refined using the OpenSwathAssayGenerator tool 36. 

Briefly, the number of transitions per precursor ion is reduced and precursors can be filtered 

to fit the covered mass-to-charge range of the DIA measurements (typically between 400 -

1000 m/z). To enable false discovery rate (FDR) based scoring, an equal number of decoy 
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transitions can be added to the spectral library using the OpenSwathDecoyGenerator tool. In 

an optional step, the spectral library can be converted to the required format (traml, tsv or 

pqp) using the TargetedFileConverter tool. In particular, for the generation of result files in 

the osw format using OpenSwathWorkflow, the spectral library is required as a pqp file. 

OpenSwath in Galaxy allows for the versatile, reproducible, and robust DIA analysis of large 

proteomic cohorts 10.  

The peptide identification and quantification of the individual DIA measurements is performed 

in the OpenSwathWorkflow (OSW) tool in Galaxy using the freshly built spectral library, a list 

of reference peptides (RT peptides) as well as the demultiplexed DIA files in the open mzML 

format. In most studies, multiple DIA measurements are performed and the different samples 

should be compared qualitatively and/or quantitatively. Therefore, the individual OSW result 

files can be merged using the spectral library as a template in the PyProphet merge tool. The 

target-decoy scoring is performed by applying semi-supervised learning and an error-rate 

estimation using the PyProphet score tool on the merged OSW results. Noteworthy, the 

semi-supervised learning and error rate estimation of a merged file containing several 100s 

of individual DIA measurements can require considerable computational resources. To 

decrease the analysis time of the semi-supervised learning, the merged OSW results can be 

first subsampled using the PyProphet subsample tool and subsequently scored using the 

PyProphet score tool. The computed scores can be applied to the complete merged OSW 

results. The PyProphet score tool in Galaxy generates an overview of the sensitivity and 

specificity of the target-decoy scoring as well as a visualization of the distributions of target 

and decoy transitions (Figure 3). To conduct peptide and protein inference in run-specific, 

experiment-wide or global context the tools PyProphet peptide and PyProphet protein can be 

used, respectively 39. Each step will generate an overview of the scores and the resulting 

target-decoy distributions (Supplementary Figures 2-5). Afterwards, peptide identification 

and quantification results can be exported as a tsv file using the PyProphet export tool in 

Galaxy. Furthermore, we integrated the swath2stats functionality into the PyProphet export 

tool, allowing the user to visualize the analysis results and to further process the results, e.g. 

providing an MSstats compatible input tsv 23. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.21.453197doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.21.453197
http://creativecommons.org/licenses/by/4.0/


MSstats enables statistical relative quantification of proteins and peptides in DIA proteomics. 

In most quantitative proteomic studies a statistical analysis is performed to identify 

significantly altered peptide and protein profiles between different samples. MSstats is a 

specialized R programming language package for the statistical analysis of proteomic data 

that has recently been implemented as a Galaxy tool. Differential expression analysis of DIA 

data can be performed using the swath2stats processed tsv file or by using the non-

processed output of the PyProphet export tool in combination with a sample annotation and a 

contrast matrix file with the MSstats tool.  

Accessibility and training 

Our Galaxy DIA tools are accompanied by hands-on training material, which we have 

developed and made available via the central Galaxy Training Network 40,41. The DIA 

analysis training material is split into the three major steps: (i) generation of a spectral library 

42 , (ii) DIA data analysis 43, and (iii) statistical analysis 44. The web addresses of the online 

trainings are provided as references 42–44. Each training consists of a brief introduction to the 

theory and principles of the respective analysis step. A concise set of training data is 

provided via a publicly available deposit 26,45. Users can directly load the training data into a 

Galaxy history via the Galaxy URL upload functionality. Using either the training data or their 

own input data, users can follow the step-by-step introduction provided in the training 

material. To increase the learning experience through active participation each training 

includes questions regarding intermediate results based on the provided training data. Of 

note, intermediate results of rather time-consuming analysis steps are provided, limiting the 

time consumption of each training. With the extensive set of Galaxy training material for a 

complete DIA analysis, we wish to enable efficient online self-education of researchers 

around the world; a topic which has gained increasing interest due to an avalanche of recent, 

pandemic-related travel restrictions 46.  
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Case Study 

To illustrate the functionality and utility of our DIA analysis pipeline, we analyzed a DIA 

dataset, representing a human cell line proteome (human embryonic kidney (HEK) cells) with 

known spike-in amounts of a distinguishable bacterial Escherichia coli (E.coli) proteome 

(Figure 2A). Additionally, all samples contain a set of 11 synthetic reference peptides for the 

retention time (RT) alignment 37. The dataset includes E.coli:HEK ratios ranging from 1:50 to 

1:3, reflecting a dynamic range of the altered protein abundances. For each E.coli:HEK ratio 

n = 4 replicates were measured resulting in a total of 20 DIA measurements. For spectral 

library generation, one representative sample of each E.coli:HEK ratio was measured using 

DDA and analyzed with the MaxQuant tool in Galaxy. The Galaxy framework allows 

combining all compatible tools. We applied a basic Galaxy text manipulation tool to filter the 

peptide and protein identifications tsv file for proteotypic peptides, to avoid ambiguous 

peptides that potentially originate from various proteins. The spiked-in reference peptides 

elute linearly as highlighted by the RT calibration curves (Figure 2B, exemplarily shown for 

one of the DDA measurements). The staggered window schema of the DIA measurements 

required demultiplexing before the analysis with OpenSwathWorkflow, which was performed 

using the msconvert tool in Galaxy. The analysis of the 20 DIA measurements with the 

OpenSwathWorkflow tool in Galaxy results in the sensitive and selective identification of 

target transitions (Figure 3A). Furthermore, target and decoy transitions show distinct 

distributions based on the computed d-scores with the PyProphet score tool (Figure 3B-D). 

We identified and quantified between 25.000 to 27.000 peptides derived from 4800 to 5000 

proteins in each of the individual E.coli:HEK samples (Table 2). Moreover, the coefficients of 

variation (CV) of the signal for the different transitions per condition across the replicates (n = 

4) are similar for the different E.coli:HEK ratios (Figure 4A). Differential expression analysis 

using the MSstats tool revealed significantly dysregulated proteins between the different 

E.coli:HEK ratios. As expected when comparing the 1:17 against the 1:7 E.coli:HEK ratio, 

multiple E.coli proteins are significantly downregulated in the 1:17 E.coli:HEK samples 

(Figure 4B). Furthermore, some human proteins appear to be upregulated in this 

comparison, which might be due to displacement effects by the added amount of E.coli 
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proteome. Even when comparing the two lowest E.coli:HEK ratios (1:50 vs 1:17) significantly 

dysregulated E.coli proteins can be detected, highlighting the overall functionality as well as 

a suitable sensitivity of the DIA analysis pipeline in Galaxy (Supplementary Figure 6). The 

complete analysis was performed on the European Galaxy instance 22. All analysis histories, 

as well as workflows, are available in the supporting information of this publication, to ensure 

full reproducibility of the presented results. Accurate, transparent and complete sharing of 

parameters and whole analysis is greatly simplified by Galaxy’s intrinsic features for sharing 

and publishing. Shared histories and workflows as well as the Galaxy software fulfill the FAIR 

principles 24.  
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Table 2. Overview of identified and quantified precursors, peptides and proteins. 

E.coli:HEK ratio Replicate Precursors Peptides Proteins 

1:17 1 28792 27117 4979 

1:17 2 28697 27040 4972 

1:17 3 28673 27024 4970 

1:17 4 28641 27003 4989 

1:3 1 28711 27060 5011 

1:3 2 28690 27043 5000 

1:3 3 28672 27028 5006 

1:3 4 28669 27035 4996 

1:50 1 28191 26576 4906 

1:50 2 28255 26636 4914 

1:50 3 28231 26595 4919 

1:50 4 28192 26577 4916 

1:7 1 28833 27160 4994 

1:7 2 28791 27123 5006 

1:7 3 28804 27136 5004 

1:7 4 28837 27166 5011 

HEK only 1 27166 25669 4843 

HEK only 2 27182 25683 4862 

HEK only 3 27176 25663 4869 

HEK only 4 27099 25600 4858 

DIA analysis results were filtered at 1% FDR on peptide and protein level during export using the 
PyProphet export tool. In combination with a sample annotation file the swath2stats functionality was 
applied yielding an overview of identified and quantified precursors, peptides and proteins in each 
sample.  
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Conclusions 

To conclude, our DIA Galaxy tools and workflows represent a powerful and user friendly 

software solution for the analysis of large-scale DIA experiments. We developed DIA 

analysis tools based on open-source software such as OpenSwath, PyProphet, diapysef and 

swath2stats, that can be integrated with existing tools providing a flexible and modular 

analysis pipeline. Moreover, the tools can be assembled into complete DIA analysis 

workflows promoting straightforward and reproducible analysis of large sample cohorts. All 

tools are accessible via the Galaxy system of graphical user interfaces and have access to 

public clouds. The web-based access in Galaxy and the extensive training material empower 

a broad community of researchers to perform their DIA analysis, without the need for 

enhanced computational skills and resources. Complete analysis histories and workflows can 

be shared and published via Galaxy promoting transparent and reproducible DIA analysis. 

By integrating a suite of modular DIA tools in Galaxy and presenting fit-for-purpose, readily 

usable DIA workflows, we make the abilities and reproducibility of the Galaxy infrastructure 

accessible to the DIA proteomics community.  
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Figures 

Figure 1. Introducing an All-in-one DIA analysis solution by implementing all 
necessary tools for a DIA analysis into the Galaxy framework. 
(A) Schematic overview of an classical data-independent acquisition (DIA) analysis workflow 
as compared to the here introduced All-in-one workflow in the Galaxy framework. The classic 
DIA workflow includes different software environments and operating system requirements 
as indicated by different color (light green: local MaxQuant analysis; yellow: diapysef python 
shell; dark green: MobaXterm enhanced terminal for Windows; blue: local msconvert; grey: 
MSstats in Rstudio), whereas all necessary tools are now implemented into the Galaxy 
framework. A complete DIA analysis can be divided into three steps: (i) Spectral library 
generation (ii) Peptide and protein identification and quantification in DIA data (iii) Statistical 
analysis to identify differentially expressed proteins.  (B) Generation of a spectral library 
based on the analysis of data-dependent acquisition (DDA) analysis shown as Galaxy 
workflow. (C) DIA data analysis shown as Galaxy workflow. 

Figure 2. Analysis of a DIA spike-in dataset in Galaxy. 
(A) Experimental design of a spike-in dataset based on equal amounts of HEK proteome and 
known spike-in amounts of E.coli proteome. For spectral library generation one 
representative sample of each mixture was measured using data-dependent acquisition 
(DDA). Each E.coli:HEK ratio was measured in four replicates using data-independent 
acquisition (DIA). DIA analysis was performed based on the spectral library and the 
individual DIA measurements followed by statistical analysis to identify differentially 
expressed proteins. (B) Retention time (rt) alignment plot of the measured rt and respective 
indexed retention time (irt) of reference peptides (iRT peptides) during the generation of the 
spectral library (exemplarily shown for one of the DDA measurements). All measured rt are 
converted to irts based on the linear regression of the reference peptides (R² and R² adjusted 
for the linear regression are shown above the plot). 

Figure 3. Overview of Target-Decoy scoring using PyProphet score during the DIA 
analysis in Galaxy. 
(A) Receiver operating characteristic (ROC) curve highlighting the sensitivity and specificity 
of the Target-decoy scoring. (B) Blot showing the discriminatory score (d-score) performance 
between target (green) and decoy (red) transitions. (C) and (D) Barblot and density plot 
showing d-score distribution among target (green) and decoy (red) transitions. (E) Histogram 
showing the distribution of p-values computed based on the target-decoy scoring.  

Figure 4. Results obtained using the DIA analysis tools in Galaxy. 
(A) Violin plot illustrating the distribution of coefficients of variation (CV) of the signal for the 
different transitions per condition (here E.coli:HEK ratios) across replicates (each n = 4). (B) 
Volcano plot showing -log10 adjusted p-values against log2 fold changes, highlighting 
differentially expressed proteins comparing the two E.coli:HEK  ratios 1:17 versus 1:7.  
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Availability of Supporting Source Code and 
Requirements 

Project name: Data-independent acquisition analysis workbench in Galaxy 

RRID number: SCR_017410 (https://scicrunch.org/resolver/RRID:SCR_017410) 

Project homepage: https://github.com/galaxyproteomics/tools-galaxyp 

Galaxy Toolshed: https://toolshed.g2.bx.psu.edu/ 

Operating system(s): Unix 

Training repository: https://galaxyproject.github.io/training-material/proteomics 

License: MIT 

Availability of Supporting Data and Materials 
Galaxy workflow to generate a spectral library (https://usegalaxy.eu/u/matthiasfahrner/w/dia-
lib-hek-ecoli-3eg-data); 

Galaxy workflow to perform DIA analysis (https://usegalaxy.eu/u/matthiasfahrner/w/dia-
analysis-using-hek-ecoli-3-eg-data); 

Galaxy workflow to perform the statistical analysis: 
a) using swath2stats converted MSstats input (https://usegalaxy.eu/u/matthiasfahrner/w/hek-
ecoli-dia-statistics-swath2stats-3eg-data), 

b) using pyprophet export tsv (https://usegalaxy.eu/u/matthiasfahrner/w/hek-ecoli-dia-
statistics-3eg-data-1); 

Galaxy history of the spectral library generation 
(https://usegalaxy.eu/u/matthiasfahrner/h/dia-lib-hek-ecoli-3eg-data); 

Galaxy history of the DIA analysis including statistical analysis 
(https://usegalaxy.eu/u/matthiasfahrner/h/dia-analysis-statistics-hek-ecoli-3eg-data). 

Mass spectrometry data has been deposited and is available via MassIVE 
(Username:MSV000087859_reviewer ; Password: DIA_in_Galaxy). 

  

Additional Files 
Supplementary Figure 1. Galaxy workflows for statistical analysis of DIA data. 
Galaxy workflow for statistical analysis of DIA data with MSstats using a group comparison 
matrix file and (A) the swath2stats processed PyProphet export results or (B) the direct 
PyProphet export results and a sample annotation file. 

Supplementary Figure 2. Overview of Target-Decoy scoring results using PyProphet 
peptide with experiment-wide peptide-level error-rate control. 
(A) Receiver operating characteristic (ROC) curve highlighting the sensitivity and specificity 
of the Target-decoy scoring. (B) Blot showing the discriminatory score (d-score) performance 
between target (green) and decoy (red) transitions. (C) and (D) Barblot and density plot 
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showing d-score distribution among target (green) and decoy (red) transitions. (E) Histogram 
showing the distribution of p-values computed based on the target-decoy scoring.  

Supplementary Figure 3. Overview of Target-Decoy scoring results using PyProphet 
peptide with global peptide-level error-rate control 
(A) Receiver operating characteristic (ROC) curve highlighting the sensitivity and specificity 
of the Target-decoy scoring. (B) Blot showing the discriminatory score (d-score) performance 
between target (green) and decoy (red) transitions. (C) and (D) Barblot and density plot 
showing d-score distribution among target (green) and decoy (red) transitions. (E) Histogram 
showing the distribution of p-values computed based on the target-decoy scoring.  

Supplementary Figure 4. Overview of Target-Decoy scoring results using PyProphet 
protein with experiment-wide protein-level error-rate control. 
(A) Receiver operating characteristic (ROC) curve highlighting the sensitivity and specificity 
of the Target-decoy scoring. (B) Blot showing the discriminatory score (d-score) performance 
between target (green) and decoy (red) transitions. (C) and (D) Barblot and density plot 
showing d-score distribution among target (green) and decoy (red) transitions. (E) Histogram 
showing the distribution of p-values computed based on the target-decoy scoring.  

Supplementary Figure 5. Overview of Target-Decoy scoring results using PyProphet 
protein with global protein-level error-rate control. 
(A) Receiver operating characteristic (ROC) curve highlighting the sensitivity and specificity 
of the Target-decoy scoring. (B) Blot showing the discriminatory score (d-score) performance 
between target (green) and decoy (red) transitions. (C) and (D) Barblot and density plot 
showing d-score distribution among target (green) and decoy (red) transitions. (E) Histogram 
showing the distribution of p-values computed based on the target-decoy scoring.  

Supplementary Figure 6. Results obtained using the DIA analysis tools in Galaxy. 
Volcano plot showing -log10 adjusted p-values against log2 fold changes, highlighting 
differentially expressed proteins comparing the two E.coli:HEK  ratios 1:50 versus 1:17.  
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