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Highlights 
 
 
 
1. Approaches for inference of association networks from metataxonomic data were 

reviewed 

2. A metastudy on association networks in cheese was carried out using 34 recent studies 

3. Inference method and taxonomic resolution should be chosen carefully 

4. SPIEC-EASI may be used as a conservative method for microbial association inference 

5. Edge and node properties support the formulation of testable hypotheses for microbial 

interactions 
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Abstract 

Interactions among starter and non-starter microorganisms (starter bacteria, naturally 
occurring or intentionally added non-starter bacteria, yeasts and filamentous fungi, spoilage 
and pathogenic microorganisms and, finally bacteriophages and even arthropods) deeply 
affect the dynamics of cheese microbial communities and, as a consequence, multiple 
aspects of cheese quality, from metabolites affecting the taste, aroma and flavour, to body, 
texture and colour. Understanding and exploiting microbial interactions is therefore key to 
managing cheese quality. This is true for the simplest systems (fresh cheeses produced from 
pasteurized milk using defined starters composed solely of Lactic Acid Bacteria) and the 
more so for complex, dynamic systems, like surface ripened cheese produced from raw milk, 
in which a dynamic succession of diverse microorganisms is essential for obtained the 
desired combination of sensory properties while guaranteeing safety. Positive 
(commensalism, protocooperation) and negative (competition, amensalism, predation and 
parasitism) among members of the cheese biota have been reviewed multiple times. 
Although the complex, multidimensional datasets generated by multi-omic approaches to 
cheese microbiology and biochemistry are ideally suited for the representation of biotic and 
metabolic interactions as networks, network science concepts and approaches are rarely 
applied to cheese microbiology. 
In this review we first illustrate concepts relevant to the description of microbial interaction 
networks using network science concepts. Then, we briefly review methods used for the 
inference and analysis of microbial association networks and their potential use in the 
interpretation of the cheese interactome. Since these methods can only be used for mining 
microbial associations, a review of the experimental methods used to confirm the nature of 
microbial interactions among cheese microbes. Finally, we demonstrate the potential of 
microbial association network inference by mining metataxonomic data stored in the public 
database DairyFMBN, a specialized version of FoodMicrobionet which collates data on 74 
metataxonomic studies on dairy products. Microbial association networks were inferred 
from 34 studies on cheese with up to 4 different methods and the results discussed to 
evaluate several aspects (choice of method, level of taxonomic resolution for the analysis, 
network, node and edge properties) which provide insight on the usefulness of this 
approach as explorative tool in the detection of microbial interactions in cheese. 
 
 

Keywords: cheese; microbial interactions; microbial association networks; microbiota; data 
mining. 
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1. Foreword 

Cheeses, like all fermented foods, are man-made dynamic ecosystems, in which the 
environment is organic and the biota (with a few exceptions in which arthropods play a 
more or less beneficial role (Carvalho et al., 2020; Marcellino and Benson, 2014) is made 
solely by microbes (bacteria, fungi and viruses) (Gobbetti et al., 2018; Jonnala et al., 2018; 
Wolfe and Dutton, 2015). Microbial metabolism is among the main drivers of cheese 
sensory properties, and the dynamics of the microbiota strongly impacts cheese quality and 
safety (Gobbetti et al., 2018; Jonnala et al., 2018). Even when the complex microbiota of 
raw milk is drastically simplified by heat treatments , by the addition of defined starter 
cultures, and when ripening and storage are relatively short (like in fresh cheeses), microbial 
interactions (from parasitism, when lytic bacteriophages infect starter strains, to proto-
cooperation among key starter species, like Streptococcus thermophilus and Lactobacillus 
delbrueckii subsp. bulgaricus) (Blaya et al., 2017; Irlinger and Mounier, 2009) are still 
important in determining the success of the fermentation. On the other side of the 
spectrum, in raw milk cheeses produced with no starter or by using traditional undefined 
starters, and with longer ripening, a complex pattern of microbial interactions and a 
succession of species and strains invariably develops and its control is key to cheese quality 
(Blaya et al., 2017; Gobbetti et al., 2018; Irlinger and Mounier, 2009; Jonnala et al., 2018; 
Mayo et al., 2021). Microbial successions and interactions are especially complex in surface 
ripened cheeses (Irlinger and Mounier, 2009), and this has been demonstrated in an elegant 
and comprehensive way in  a series of recent studies (Bonham et al., 2017; Cosetta et al., 
2020; Kastman et al., 2016; Niccum et al., 2020; Wolfe et al., 2014; Zhang et al., 2018). 
In all ecosystems, several types of positive (commensalism, proto-cooperation) and negative 
(competition, amensalism, parasitism) interactions are possible between couple of partners 
or among more complex modules and cliques (see Canon et al., 2020; D’Souza et al., 2018 
for recent reviews). Even if, ultimately, co-culturing in the laboratory and/or in appropriate 
model systems is the only way to obtain in-depth knowledge on the nature of interactions 
(Cosetta and Wolfe, 2019; D’Souza et al., 2018; Wolfe et al., 2014), the wealth of data 
provided by metataxonomic, metagenomic and metabolomics approaches provides ample 
opportunity to mine for microbial association networks and metabolic networks 
(Layeghifard et al., 2017; Liu et al., 2020; Röttjers and Faust, 2018).  
Microbial interactions in cheese and in other fermented foods have been the subject of 
recent comprehensive reviews (Blaya et al., 2017; Canon et al., 2020; Gobbetti et al., 2018; 
Mayo et al., 2021). A schematic, and possibly oversimplified representation of interactions 
(parasitism, commensalism, amensalism, competition, protocooperation) occurring in an 
idealized surface ripened cheese is shown in Figure 1, with some of the interactions 
described in detail in section 1.3 and Table 1. 
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Figure 1. A simplified representation of a potential interaction network in a surface ripened 
cheese. Red arrows indicate interactions which have a negative effect (often referred to as 
mutual exclusion interactions) on one or both partners. Green arrows indicate interactions 
which have a positive effect on one or both partners (often referred to as mutual exclusion 
interactions). 0 indicates no effect, + a positive effect, - a negative effect. Numbers refer to 
examples in Table 1. The direction of the arrows may be used to indicate the direction of the 
interaction. Parasitism (1) due to bacteriophage (∅) infections of starter bacteria, like 
Streptococcus thermophilus (ST) is one of the most frequent, and technologically relevant 
interactions in cheesemaking, together with the protocooperation between starter species 
(2), like S. thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (LDB). Starter lactic 
acid bacteria (SLAB) frequently inhibit pathogenic or spoilage bacteria, like Escherichia coli 
(EC) by competition, amensalism or ecosystem conditioning (decrease of pH, which in turn, 
due to syneresis and loss of water during ripening, results in reduced aW). The latter 
(decrease in pH due to production of lactic acid, increase in pH due to consumption of lactic 
acid or proteolysis) is a frequent, indirect type of interaction. Some commensalistic (7) 
relationships (products of the metabolism of one microorganism may become substrate for 
another) like the use of galactonate produced by the yeast Debaryomyces hansenii (DH, 
which is also responsible of increasing the pH) by Brevibacterium aurantiacum (BA) and 
Hafnia alvei (HA). In turn, H. alvei may develop commensalistic or proto-cooperative 
interactions, since siderophores produced by HA stimulate BA, which in turn releases energy 
compounds for HA from proteins and lipids. Complex cheese consortia are also implicated in 
the inhibition of Listeria monocytogenes (LM) by amensalism or competition (11). 
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Microbial interactions in cheese are best described using network concepts. Surprisingly, 
while network science approaches are frequent in the study of host and environmental 
microbiomes, they are much less so in food and dairy microbiology (Parente et al., 2018). 
This is rather unfortunate, given the potential of the study of microbial interactions in food 
for the development of new processes and products and for the optimization of microbiome 
intervention strategies even in complex communities (Canon et al., 2020). 
In this review, we will briefly illustrate network approaches to the study of microbial 
communities, related terminology and methods. We will then review recent literature using 
high-throughput sequencing or meta-omic approaches for the study of microbial 
interactions in cheese microbial communities. Finally, we will exploit the metataxonomic 
data stored in the DairyFMBN database (Parente et al., 2020) to provide examples of the 
mining of microbial associations in cheese. 
 

2. Network analysis concepts and approaches to the study of microbiota 

2.1 Network science concepts. 

A network is, simply put, a collection of objects (nodes, vertices) connected by interactions 
(edges, arcs, links) (Newman, 2010). Because of the flexibility and power of this concept, 
network science is used in representing and understanding interactions in very diverse fields 
(physics, social sciences, biology, etc.). In the study of microbial associations, nodes can be 
of the same type (unipartite networks, as in microbial association networks, in which the 
nodes are microbial taxa, Operational Taxonomic Units, OTU, or Amplicon Sequence 
Variants, ASV) and the edges represent some sort of true or inferred (positive or negative) 
interaction. However, bipartite networks (i.e. networks with nodes belonging to two 
different types) are also of interest: networks of this type include Phage-Bacteria Interaction 
Networks (PBINs; Flores et al., 2011) and Food-Microbe interaction networks (which have 
been frequently used as a descriptive tool for the structure of microbial communities in 
foods (Parente et al., 2018). In this case, edges represent simply the occurrence of a 
relationship (a bacteriophage infecting a bacterial strain, the presence of a given taxon in a 
given sample), which can be sometimes weighted (see below). More complex networks 
(sample-OTU-metabolite) can be built using multi-omic data (Liu et al., 2020). 
In most cases, networks used for representing microbial associations are undirected (i.e. the 
edge does not point from one of the nodes to another, because the relationship is 
considered to be reciprocal). On the other hand, parasite-host networks are usually 
represented as directed networks, with edges going from phages to bacteria. Directed 
networks can be used to represent in a more meaningful way ecological relationships like 
commensalism, amensalism or parasitism (while mutualistic relationships and competition 
are typically undirected) (Canon et al., 2020; D’Souza et al., 2018).  
Networks can be weighted if the edges have some sort of integer or real number associated 
to them, representing the “strength” of the association (i.e. a correlation or distance value 
for association networks, abundance of a taxon in a given sample, some measure of the 
virulence of a phage towards a host, etc.).  
Networks can be characterized by many network- and node- or edge- level indices. A 
detailed review of these indices is beyond the scope of this work, and interested readers are 
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referred to comprehensive reviews on microbial interaction networks (Layeghifard et al., 
2017; Liu et al., 2020). Besides the number of nodes and edges, the average degree (the 
average number of edges per node), the connectance (i.e. the ratio between the actual 
number of interactions with the potential number of interactions (Delmas et al., 2019; 
Dunne et al., 2002), the average path length (the average distance between pair of nodes), 
the node degree distribution (the distribution of the probability that a node has a given 
degree) and the global clustering coefficient (a measure of the organization of the network 
in modules or cliques with a higher average degree among them than with other nodes; this 
can also be measured by modularity) are all important measures of network structure. The 
latter properties, taken together, allow to typify network topologies (Layeghifard et al., 
2017). Microbial association networks in host and environmental biomes have been found 
to differ significantly from random networks (i.e. networks in which each node has an equal 
probability of having an edge with another node, and in which the node degree distribution 
follows a Poisson distribution) and to have a scale-free structure (with a power law node 
degree distribution, in which most nodes have a small degree while some, the hubs, have a 
large number of edges) with small-world properties (low average path length, highly 
modular structure). The occurrence of highly interconnected hubs and of densely connected 
modules of nodes should result in resistance to disturbance (i.e. removal of random nodes 
or edges should not significantly change the structure of the network). On the other hand, 
removal of hub species or of edges connecting different modules can result in significant 
disruptions. On the other hand, food MAN have been found to be simpler, to lack the small-
world, scale free structure of environmental MAN, and to have at most a truncated power-
law distribution of node degrees (Layeghifard et al., 2017; Parente et al., 2018; Röttjers and 
Faust, 2018). Since MAN can include both positive and negative associations, another 
important network property is the proportion of positive edges (PEP) (Faust et al., 2015). 
Changes in the ratio of positive to negative interactions may be considered markers for shift 
from a “healthy” to a “diseased” microbiome (Ma, 2018).  
In general, comparison of sets of global network properties may help in understanding the 
global impact of changes in a food microbiome due to intervention, spoilage or 
fermentation (Parente et al., 2018; Peschel et al., 2020). 
Finally, several individual node properties (degree, weighted degree, other centrality 

measures, clustering coefficient) contribute to the identification of keystone species in 
microbial association networks (Layeghifard et al., 2017; Liu et al., 2020; Röttjers and Faust, 
2018). Hubs are characterized by high values of centrality measures (degree, closeness and 
eigenvector centrality) while bottlenecks are characterized by high values of betweenness 
centrality (the number of shortest paths passing through a node) and both may have key 
roles in ecosystem functioning and stability. Finally, the detection of modules of highly 
interconnected nodes may help in the identification of groups of taxa which share the same 
niche or may have strong metabolic interactions. It is worth noting that betweenness can be 
also calculated for edges: edges which have high edge betweenness are important for the 
structure of the network, because their removal disrupts the network. 
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2.2 Methods for the inference and visualisation of microbial association 

networks. 

Because of the importance of network approaches in the description and understanding of 
microbial communities, a large variety of methods have been developed for the 
representation and inference of microbial association networks.  
Visual representation and analysis of bipartite sample-OTU networks (in which edges simply 
represent the occurrence of a OTU in a sample, possibly weighted by the relative 
abundance) has and is been used as a descriptive tool for the identification of clusters of 
samples or taxa and for the identification of the core and accessory microbiota (Parente et 
al., 2016). Node and edge tables derived from metataxonomic data are frequently imported 
in graph visualisation software (like Gephi, https://gephi.org/, or Cytoscape 
https://cytoscape.org/ ; Shannon et al., 2003). These tools allow to filter the nodes, 
calculate network and node statistics, use them or node or edge metadata to apply styles 
(shapes, sizes, colors, etc.) to subsets of nodes and edges, and to rearrange the graph using 
layout algorithms with the purpose of identifying modules or hubs.  
The inference of microbial associations (or of more complex associations in meta-omic data) 
requires specialized tools (Liu et al., 2020; Peschel et al., 2020; Röttjers and Faust, 2018). 
Unfortunately, interactions between taxa, or between taxa and metabolites, are still being 
inferred from correlation (either Pearsons’s r or rank order correlations) matrices using 
some sort of arbitrary threshold for sparsification (i.e. removal of edges which fall below a 
given correlation threshold), or worse still, some sort of testing of the “significance” of the 
correlations (Liu et al., 2020; Peschel et al., 2020; Röttjers and Faust, 2018). The most 
frequently used data are 16S rRNA marker gene data, which are affected by sparsity (a large 
number of zeros, for which it is usually difficult to establish if they are simply missing data 
due to insufficient sequence depth or if they are structural zeroes, reflecting the absence of 
a given feature) and compositionality (the true abundance of the target gene is rarely 
measured and therefore relative frequencies are generally used; even when absolute 
abundances are used, they suffer from a compositional bias, since, when the increase in 
abundance of a given taxon must be accompanied by the decrease in abundance of less 
abundant taxa). In addition, in several cases, indirect correlations may be detected (i.e. an 
association between taxa A and B is inferred if both are associated with taxon C or with a 
common environmental condition). Further difficulties ensue from the limitations of 
amplicon targeted approaches, whose resolution is often limited to the genus level. Finally, 
time-series data with enough time points to use model based approaches for the inference 
of microbial interactions are relatively rare (Röttjers and Faust, 2018), and methods 
developed for cross-sectional data are more frequent.  
A complete review of the methods and algorithms used to infer microbial association 
networks for cross-sectional data, of their strengths and weaknesses is beyond the scope of 
this paper: this is an active area of research and scores of papers have been published in 
recent years. The interested readers are encouraged to peruse one of the many recent 
reviews on the subject (Jiang et al., 2019; Liu et al., 2020; Röttjers and Faust, 2018). A few 
approaches have been used more frequently or tested in comparative studies and are 
available in NetCoMi, a R package specialized in microbial association network inference and 
network comparisons (Peschel et al., 2020). SparCC (Sparse Correlations for Compositional 

data; Friedman and Alm, 2012) infers networks based on Pearson correlations on log-ratio 
transformed data, thus addressing, at least in part, the issue of compositionality, and has 
been frequently used. CCREPE (Compositionality Corrected by REnormalization and 
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Permutation; Faust et al., 2012), also known as ReBoot, uses permutations and 
renormalization to remove correlations due to compositionality alone and is implemented 
in the CoNet app (Faust and Raes, 2016) with a variety of correlation, similarity and 
dissimilarity based measures, which can be used in an ensemble approach. SPIEC-EASI 

(SParse InversE Covariance Estimation for Ecological Association Inference; Kurtz et al., 
2015) is based on estimation of conditional covariances, is robust to both compositionality 
and indirect correlations, and has performed well in benchmarking, especially when using 
the neighborhood selection method (also known as the MB method (Meinshausen and 
Bühlmann, 2006). Another recent method based on estimation of semi-parametric 
correlation and inference of conditional dependence is SPRING (SemiParametric Rank-based 
approach for INference in Graphical model; Yoon et al., 2019).  
More recently, high throughput methods for large scale network inference which are also 
able to remove indirect correlations by including information on sample properties have 
been made available (Tackmann et al., 2019).  
Network inference is method specific, and specific interactions, like amensalism, may be 
undetectable for cross-sectional studies (Weiss et al., 2016),  but we have recently shown 
that combining several methods may help in detecting stable and scientifically reasonable 
associations in food microbiomes (Parente et al., 2018). 
The scarcity of studies on the inference of microbial association networks in cheese (and in 
food in general) may have been, at least in part, due to the lack of user-friendly software for 
network inference, characterization and comparison, and, possibly, to the lack of large 
publicly available databases. This has changed recently, as comprehensive and relatively 
user-friendly R packages have become available (Peschel et al., 2020). Web based platforms, 
like MetagenoNets (Nagpal et al., 2020) have also become available, thus empowering even 
users lacking  coding abilities. While a naïve use of these tools should be discouraged, their 
availability, in conjunction with complex metataxonomic databases as FoodMicrobionet and 
DairyFMBN (Parente et al., 2019, 2020) should significantly facilitate the mining of existing 
and new data for microbial associations. 

2.3 Confirming interactions in microbial association networks. 

Computational tools for the inference of microbial association networks are essentially 
explorative tools. They can be used to provide hints for the existence of novel patterns of 
interactions, but processes and mechanisms underlying the interaction must be confirmed 
by in-vitro or in-vivo experiments (Cosetta and Wolfe, 2019). Interactions in cheese are 
frequently mediated by diffusible or volatile metabolites (including volatile organic 
compounds) and/or by physical contact.  
With the exception of experiments performed in-vivo (i.e. in real cheese systems), simplified 
communities (2-4 members) are most frequently used, even if much larger assemblages 
have been tested in some cases (Callon et al., 2011, 2014; Imran et al., 2010). Simplified 
communities grown in liquid media are clearly the easiest way to clarify the mechanisms of 
microbial interactions, but they may be insufficient to resolve the complex and dynamic 
interplay in cheese, especially in cheeses produced with undefined starters, raw milk 
varieties or surface ripened cheeses.  
In fact, several commensalistic interactions (SLAB-NSLAB in most cheeses ripened internally 
by bacteria; LAB-propionibacteria in Swiss-type cheeses; LAB - fungi - surface flora in surface 
ripened cheeses; Blaya et al., 2017; Gobbetti et al., 2018; Mayo et al., 2021; Sieuwerts et al., 
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2008; Smid and Lacroix, 2013) are, in fact, indirect, and due to niche conditioning (change of 
pH, production/consumption of substrates, release of nutrients) and most of the growth of 
the partners occurs in different life stages of the cheese (curd manufacturing, ripening) or at 
different locations (core, surface). The interested reader is referred to the many excellent 
reviews which have been published on this subject. Here, we will concentrate on more 
direct interactions. 
Table 1 summarizes some representative interactions, together with the experimental 
approaches used for their study, ranging from simple growth experiments, occasionally with 
modelling of growth kinetics, to meta-transcriptomic and metabolomic approaches in 
cheese or model systems. Most studies analyze commensalistic relationships, either due to 
ecosystem conditioning or to exchange of metabolites, and the majority is focused on 
surface ripened cheeses and bloomy rind cheeses, in which the development of desired 
sensory properties relies on complex interactions between lactic acid bacteria, 
Proteobacteria, Actinobacteria, Staphylococcaceae, yeasts and molds.  
Negative interactions due to bacteriophages (parasitism) are relatively simple to study and 
have a profound impact on the structure and dynamics of microbial communities in cheese 
(Erkus et al., 2013; Pujato et al., 2018; Zotta et al., 2021). Because of their importance, 
bacteriophage - host interaction networks are reviewed in a separate paragraph. 
Amensalism due to production of bacteriocins is also important (both because it might 
affect the stability of mixed strain starters or because of potential uses in bio-preservation 
and control of pathogenic and spoilage organisms; Silva et al., 2018), and relatively easy to 
study in vitro (see Favaro et al., 2015; Lozo et al., 2021 for recent reviews). In addition, 
mining metagenomes for bacteriocin genes (Escobar-Zepeda et al., 2016; Lozo et al., 2021; 
Walsh et al., 2020), and using targeted methods for studying their expression in cheese is 
relatively easy (Trmčić et al., 2011) but, to our knowledge, there is no meta-transcriptomic 
data on the expression of bacteriocin genes in cheese during ripening.  
Complex interactions are responsible of anti-listerial activity of microbial consortia which 
develop on surface-ripened cheeses. The anti-listerial activity may be due to factors other 
than bacteriocin production, including competition, and studies in model systems (cheese 
agar) have shown that complex consortia are needed, and that activity varies significantly 
with their composition and complexity (Callon et al., 2014; Imran et al., 2010).  
Amensalism can be strongly affected by the solid nature of the cheese matrix: cheese 
moisture and even the internal environment of colonies may affect the diffusion of 
relatively large molecules (Floury et al., 2015; Guitián et al., 2019) like bacteriocins but also, 
in the short term, of smaller molecules.  
In fact, spatial distribution of colonies and diffusion of molecules within and between 
colonies in or on the cheese matrix may significantly affect cheese quality for several 
reasons. First of all, except when cells or microcolonies are in close proximity, interactions 
are probably not relevant. Gradients within a single colony may be important in affecting 
the growth in different locations of a colony (Malakar et al., 2000, 2003), although the 
buffered environment of cheese may prevent the existence of pH microgradients, at least in 
microcolonies (Jeanson et al., 2013). Inoculum level may affect size and distribution of 
microcolonies and this, in turn, has been shown to affect cheese composition (Boucher et 
al., 2015a, 2015b; Jeanson et al., 2010), although, in the long term, it might not affect the 
distribution of small soluble metabolites implicated in some cross-feeding relationships 
SLAB and LAB, (Czárán et al., 2018) at least in internally ripened cheeses.  
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Table 1. Some examples of microbial interactions between cheese microorganisms and of methods used for their study in model systems or in 

cheese  

 

 Type of interaction Cheese Partner(s) 

(effect/cost)1 

Mechanism Time and space 

dependence 

Methods References 

1 Parasitism All varieties Lytic bacteriophages 

(+/0) 

Several LAB (-/€) 

Infection followed by lytic 

cycle 

Same time. 

Contact 

required. 

Traditional culture based 

methods, molecular 

methods, lineage specific 

qPCR, metagenomic 

approaches, matching 

CRISPR arrays and targets 

dairy bacteriophages 

reviewed in (Pujato 

et al., 2018); (Erkus et 

al., 2013; Somerville 

et al., 2019; Walsh et 

al., 2020) 

2 Proto - cooperation Fresh cheese, 

some semi-

hard and 

cooked 

varieties 

S. thermophilus 

(+/0) 

L. delbrueckii subsp. 

bulgaricus (+/0) 

Cross-feeding (CO2, formic 

acid, amino acids, vitamins, 

amines, fatty acids), 

modification of the 

environment (O2 

consumption) 

Same time. No 

contact 

required 

(diffusible 

products) 

Growth kinetics, 

metabolome and 

transcriptome analysis in 

monocultures and mixed 

cultures 

reviewed in 

(Sieuwerts et al., 

2008); (Herve-

Jimenez et al., 2009; 

Sieuwerts et al., 

2010) 

3 Commensalism Surface 

ripened 

cheeses 

Brevibacterium 
linens (producing 

hydroxamate 

siderophores) 

(=/€) 

Brevibacterium 
linens (siderophore 

negative strains) 

(+/0) 

Siderophore negative strains 

are limited in the cheese 

environment by competition 

for Fe3+; siderophores 

produced by other strains 

allow growth 

Same time. No 

contact 

required 

(diffusible 

products) 

Coculture experiments, 

Comparative genomics, 

metabolomic analysis 

(Noordman et al., 

2006; Pham et al., 

2017) 

 

 

4 Competition Surface 

ripened 

cheese 

Penicillium spp. 

(?/?) 

Glutamicibacter 
arilaitensis 
(-/€) 

The presence of the mold 

generates competition for 

microelements, which 

induced production of a Zn2+ 

chelating agent 

Same time. No 

contact 

required 

(diffusible 

products) 

Co-culture experiments, 

metabolome analysis, 

imaging mass 

spectrometry, RNA-seq 

(Cleary et al., 2018) 
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(coproporphyrin III), which 

is also a pink pigment. At 

high concentration 

coproporphyrin III may 

inhibit Penicillium 

 

5 Commensalism Swiss-type 

cheeses 

Starter Lactic Acid 

Bacteria (=/0) 

Propionibacterium 

(+/0) 

SLAB produce lactic acid and 

release peptides and amino 

acids from caseins, which 

subsequently are used by 

Propionibacterium 

Succession 

(SLAB grow 

first); no 

contact 

required 

(diffusible 

products) 

Traditional co-culturing 

approaches 

(Baer, 1995; Fröhlich-

Wyder et al., 2002) 

6 Commensalism Undefined 

strain 

starters, 

many cheeses 

Prt+ strains/species 

(=/€), Prt- 

strain/species (+/0) 

Co-existence of proteinase 

negative and positive 

strains/species, due to the 

release of peptides by the 

proteinase: several 

examples in mixed cultures 

as an example of an 

interaction with some cost 

for one of the partners 

Same space 

and time 

(SLAB/SLAB) 

same space, 

different time 

(SLAB/NSLAB) 

Traditional co-culturing 

approaches, qPCR, 

metagenomic analysis in 

starter cultures, cheese 

and model cheeses  

(Desfossés-Foucault 

et al., 2014; Erkus et 

al., 2013; Juillard et 

al., 1996; Moser et 

al., 2018) 

7 Commensalism Surface - 

ripened 

cheeses 

Debaryomyces 
hansenii (=/0), 

Brevibacterium 
aurantiacum (+/€), 

and Hafnia alvei 
(+/0) 

D. hansenii provides 

ecosystem conditioning by 

removing lactic acid and 

increasing pH. Galactonate 

produced by D. hansenii is 

consumed by the two 

bacteria. A strong positive 

interaction exists between 

B. aurantiacum (which is 

stimulated by siderophores) 

and H. alvei (stimulated by 

glycerol and FAA) 

Succession 

(yeast/others) 

or same time. 

Cheese 

surface. No 

contact 

required. 

Co-culture experiments in 

mini-cheese model, RNA-

seq analysis and soluble 

metabolome analysis by 

UHPLC-MS and HPLC-UV in 

mini-cheese models,  

(Pham et al., 2019) 
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8 Other + 

competition 

Bloomy rind 

cheese (Saint 

Nectaire) 

Serratia 
proteomaculans (-
/?) 

Mucor lanceolatus (-

/?) 

Mucor specifically facilitates 

the dispersal of motile 

Serratia 

Same time. 

Contact 

required. 

Co-culture experiments. 

Imaging, meta-

transcriptomics, 

transposon mutagenesis, 

comparative genomics 

(Zhang et al., 2018) 

9 Other Model 

surface 

ripened 

cheese 

Galactomyces 
geotrichum (?/?), 

Vibrio casei (+/-) 

Volatiles (including acetic 

acid) produced by G. 
geotrichum strongly 

stimulate the growth of V. 
casei 

Same time. No 

contact 

required 

Co-culture experiments on 

cheese agar, RNA-seq, 

meta-taxonomic analyses 

(Cosetta et al., 2020) 

10 Commensalism Natural rind 

cheeses 

Staphylococcus 
equorum (+/0) 

Scopulariopsis or 

Penicillium (=/€) 

Selected molds stimulate 

the growth of S. equorum by 

modulating iron 

(siderophore production) 

and possibly amino acid 

availability. 

Same time. No 

contact 

required. 

Co-culture experiments. 

Comparative genomics, 

RNA-seq 

(Kastman et al., 2016) 

11 Amensalism, 

competition 

Surface 

ripened 

cheese 

Smear cheese 

consortia (0/€), 

Listeria 
monocytogenes (-/-) 

Microbial consortia of 

surface ripened cheese 

inhibit L. monocytogenes by 

competition or amensalism 

(bacteriocin production) 

Same time. No 

contact 

required 

Co-culture experiments in 

vitro, simulated cheese 

environments, cheeses 

(Callon et al., 2014; 

Eppert et al., 1997; 

Imran et al., 2010) 

 

1 effect: + stimulation of growth, = no effect, - inhibition/death; cost: 0 no cost, € metabolic cost, ? unclear
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The situation is quite different in mold ripened cheeses and surface ripened cheeses. In fact, 
the composition of the microbiota on the surface and core of several cheeses (including 
cheese internally ripened with bacteria) is significantly different (see Jonnala et al., 2018 for 
a review) and differences in ecological conditions may strongly affect interactions between 
microorganisms and vice-versa. In Stilton cheese, the occurrence of mixed micro-colonies 
close to the internal veins formed by the mold was shown by Fluorescence In Situ 
Hybridization (Ercolini et al., 2003) and this was hypothesized to be due to commensalism. 
However, in the same cheese, lactococci and leuconostoc formed in other parts of the curd 
pure culture microcolonies, and microcolonies identified as Lactiplantibacillus plantarum or 
tentatively identified as Latilactibacillus curvatus appeared in different location (underneath 
the crust or close to the veins).  
In conclusion, imaging techniques are certainly most useful in studying the spatial 
organization of interacting microorganisms in cheese (Hickey et al., 2015), but mass-
spectrometry techniques may also be of great importance in evaluating the importance of 
compounds like siderophores (Cleary et al., 2018) or possibly bacteriocins (Hindré et al., 
2003). 
Microbial interactions on cheese rinds may affect in a complex way the survival and growth 
of Listeria monocytogenes and Escherichia coli, two pathogens which have been associated 
with foodborne outbreaks due to the consumption of surface-ripened cheeses (Fusco et al., 
2020). 
Co-cultivation with bacteria found on the surface of cheese (Brevibacterium, Psychrobacter) 
has been found to affect the expression of genes whose transcription is regulated by the 
global stress regulator σB (Anast and Schmitz-Esser, 2020) and the expression of a small non 
coding RNA, thus suggesting that stress due to competition is involved in this interaction. 
Random Barcode Transposon Sequencing and RNA-Seq have recently been used to identify 
genes which are related to the survival and growth in a cheese model of Escherichia coli, 
when grown alone or in binary and multiple associations with cheese-rind microorganisms 
like Geotrichum candidum, Hafnia alvei and Penicillium camemberti (Morin et al., 2018). 
Important genes were related to amino acid synthesis or metabolism, iron acquisition of 
response to toxic compounds and oxidative stress, thus confirming one more the 
importance of these factors in fitness and interactions in cheese. In addition, growth in co-
culture demonstrated that the cheese species might exert both positive effects (by 
providing free amino acids) and negative effects (by amensalism through the production of 
toxic compounds or oxidative stress). Incidentally, this experiment also demonstrated that 
pairwise interactions may be not representative of the growth in more complex (4 
members) communities. Although this highlights the limitations of experiments in model 
systems, teasing out interactions in real systems may prove exceedingly difficult, due to 
variability in time and space and to the complex and dynamic nature of the microbial 
communities, especially in surface ripened cheeses. 
The collection and interpretation of multi-omic data is probably the most promising 
approach for the study of microbial interactions in cheese during curd production and 
ripening, although cost and computational power issues may still limit the collection of large 
longitudinal data sets needed to use model based approaches for inferring interactions. The 
most extensive demonstration of the value of complex, integrated approaches, for finely 
dissecting the complex interactions in cheese microbial communities is probably the on-
going work on surface ripened cheeses (Bonham et al., 2017; Cleary et al., 2018; Cosetta 
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and Wolfe, 2020; Cosetta et al., 2020; Kastman et al., 2016; Niccum et al., 2020; Wolfe et al., 
2014; Zhang et al., 2018). Starting from an extensive metataxonomic and metagenomic 
characterization of the rind microbial communities of bloomy surface, washed rind and 
natural dry rind (Wolfe et al., 2014)  from all over the world, and from the development of a 
detailed set of protocols for dissecting interactions in model cheeses (Cosetta and Wolfe, 
2020), this group was able to provide detailed evidence for the drivers which determine the 
diversity and functionality of microbial communities on the surface of cheeses.  
In fact, surface ripened cheeses provide an excellent model for the study of microbial 
interactions in an environment which, at least in part, can be mimicked in the laboratory 
under the controlled conditions which are needed to dissect the nature of the interactions 
and establish cause-effect relationships. 
First of all, cheeses which are surface ripened by fungi (thus resulting in a bloomy rind, like 
Camembert, Brie, Saint Nectaire; Spinnler, 2017) or by complex consortia of yeasts, molds 
and bacteria (washed rind cheeses, like Limburger, Tilsit, Port du Salut, Taleggio, etc.; 
Mounier et al., 2017) are economically important worldwide and include both traditional 
varieties (which are still produced by using raw milk and rely on natural contamination from 
the environment, with very limited use of starter cultures) and industrial varieties, which are 
produced using pasteurized milk inoculated with defined or undefined starters and in which 
the development of the surface microbiota is promoted by the addition of specific 
combinations of fungi and bacteria. The composition of the rind microbiota of these cheeses 
is significantly more complex that those of cheeses with hard, dry rind (Wolfe et al., 2014), 
and the mature microbiota is the result of a complex succession: growth of halophilic, acid 
sensitive bacteria is only made possible by the consumption of lactic acid by yeasts and by 
the increase in pH due to proteolysis caused by molds. Recent research using high-
throughput sequencing approaches has shown that, beyond the complex assemblages of 
Actinobacteria (Brevibacterium, Microbacterium, Arthrobacter, Corynebacterium) and 
Firmicutes (Staphylococcus) which have been traditionally been associated with the 
pigmentation and aroma of these varieties, several Proteobacteria, including 
Pseudoalteromonas, Hafnia, Vibrio, Halomonas, and Psychrobacter may contribute with 
their metabolic activities (Afshari et al., 2018; Jonnala et al., 2018; Wolfe et al., 2014). In 
addition, the increase in pH of the rind during ripening makes the growth and survival of 
pathogenic microorganisms easier, including Listeria monocytogenes and Shiga-toxin 
producing Escherichia coli. Understanding how these species are controlled by amensalism 
and competition is a key factor for the safety of these cheeses. Finally, since several 
subdominant species which are prevalent on the surface of these cheeses are not members 
of the starter cultures, the role of cheesemaking environments, including different areas in 
the cheese plant and ripening shelves in the dispersal of these species and in the 
maintenance of a continuous inoculation source is also important in both providing 
beneficial and spoilage microbes (Bokulich and Mills, 2013; Guzzon et al., 2017). 
Fungi (both yeasts and molds) and bacteria coexist on the surface of several cheeses and, 
although environmental and technological conditions may determine some of the co-
occurrence and co-exclusion patterns, microbial interactions (both trophic and non trophic) 
do explain why some of these relationships systematically occur across cheeses from 
different geographical areas (Wolfe et al., 2014). Apart from indirect interactions (de-
acidification of the cheese surface due to growth of yeasts or molds), several direct 
interactions are known to exist between bacteria and fungi (Mayo et al., 2021; Mounier et 
al., 2008). Competition for microelements, with interactions mediated by exchange of 
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siderophores or other metal chelators is frequent in surface ripened cheeses as is 
competition for folic acid, which can be alleviated by the exchange of corrinoids, a frequent 
mechanism for microbial interactions (see Table 1; Abreu and Taga, 2016). Below, two 
examples from recent studies are described in more detail. 
Competitive relationships may hide more subtle relationships between partners: on the 
surface of bloomy rind cheeses motile proteobacteria like Serratia proteomaculans can 
exploit the network of hyphae formed by fungi like Mucor lanceolatus for dispersal: motile 
cells move along the water film on the lax hyphal growth formed by the fungus to disperse 
on the surface of the cheese, thus colonizing a larger area (Pujato et al., 2018). The 
relationship is somewhat specific and no dispersal or significantly lower dispersal is 
observed with other cheese fungi forming denser hyphal networks. On the other hand, as in 
many other cases, some competition is observed between the two partners, because both 
show less growth when grown together than when grown alone. Dispersal ability also varies 
among strains of Serratia. RNA-seq analysis of Serratia grown in co-culture with Mucor 
showed that co-growth alters the supply of nutrients and metabolites and the metabolism 
of Serratia, but no significant difference in the expression of genes related to motility and 
quorum-sensing was found. Both transposon mutagenesis and comparative genomics 
supported the fact that genes related to flagellin production (and hence to motility) are 
essential for dispersal, but also provided proof that other genes are implicated in the 
relationship between these two species: a few mutants were able to kill Mucor, while others 
showed similar dispersal but altered colony morphology. In the same paper the authors 
elegantly demonstrated that fungal networks dramatically affect the structure of the 
microbial community and that dispersal, as well as other interactions (competition, 
amensalism) are implicated. In fact, several motile Proteobacteria could disperse on fungal 
networks, while motile and non motile species of Firmicutes and Actinobacteria showed 
limited dispersal or no dispersal. Fungal growth may be therefore responsible for better 
growth of Proteobacteria on the surface of bloomy rind cheeses. Growing hyphae can be, at 
least in part, replaced by physical, inert and non-growing networks of glass fibers. 
While many interactions may require a more or less close contact between partners, some 
are mediated by volatile compounds. Recently (Cosetta et al., 2020) it has been shown that 
volatile compounds produced by molds isolated from bloomy or washed rind cheeses 
(Galactomyces geotrichum, Debaryomyces hansenii, Penicillium sp., Scopulariopsis sp., 
Fusarium domesticum) strongly stimulate or inhibit the growth of selected Proteobacteria 

(with Vibrio being strongly stimulated, and Pseudomonas often inhibited), and contribute to 
explaining the abundance of these species on cheese rinds. In the case of Vibrio casei, 
stimulation was related to significant changes in the transcriptome, and free fatty acids and 
esters of free fatty acids produced by the fungal partners were implicated in the 
relationship. 

3. Bacterial association networks in cheese. A meta-study. 
The inference of microbial association networks is surprisingly rare  in studies dealing with 
the structure and dynamics of cheese microbiota (Murugesan et al., 2018; Parente et al., 
2018), although simple bipartite network representations (De Filippis et al., 2014; Guidone 
et al., 2016) have sometimes been used with the main objective of visually representing the 
core microbiota. In a previous paper (Murugesan et al., 2018; Parente et al., 2018) we have 
inferred microbial association networks for 8 cheese metataxonomic datasets extracted 
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from FoodMicrobionet using three inference methods (CoNet, SPIEC-EASI and SparCC) and 
compared them with those from other food, host or environmental biomes. In the 
meantime, the size of FoodMicrobionet has grown substantially (Parente et al., 2019) and a 
specialized version for dairy foods (DairyFMBN; Parente et al., 2020) has been made 
available. Version 2.1.6 of DairyFMBN (https://data.mendeley.com/datasets/3cwf729p34/5) 
includes 74 studies and 4,738 samples. This offers the opportunity to mine a large set of 
data, which albeit heterogeneous (DairyFMBN includes metataxonomic studies with 
different designs and gene targets) is highly structured, and to obtain insights on the 
approaches which can be best used to infer association networks and, possibly, on 
conserved interactions and keystone species which may warrant further study.  
We therefore extracted 34 studies which had at least 20 samples (Supplementary Table 1) 
and processed them using a pipeline based on NetCoMi (Peschel et al., 2020). An example 
workflow is available from GitHub (https://github.com/ep142/MAN_in_cheese) and the 
details of the approach are described in Supplementary material. The workflow allowed 
rapid and reproducible analysis of small to medium sized datasets and was used to answer 
different methodological questions.   

3.1 Which is the most appropriate taxonomic level for the inference of association 
networks? 
This is probably the first and most important challenge in a study aimed at inferring 
microbial interactions. The lowest possible taxonomic level would, of course, be desirable, 
because it has been proven that microbial interactions in cheese can be strain specific 
(Mayo et al., 2021; Niccum et al., 2020). On the other hand, even if Amplicon Sequence 
Variants may be preferable to OTUs and their inference may offer some insight in diversity 
below the species level (Callahan et al., 2016, 2017; Porcellato et al., 2021), and even if, with 
proper care and with the use of dedicated databases, identification at the species level can 
be significantly improved (Meola et al., 2019; Pollock et al., 2018) heterogeneity in wet- and 
dry laboratory protocols may make comparison between different studies possible only at 
higher taxonomic levels (genus; De Filippis et al., 2018; Pollock et al., 2018). In our dataset, 
62% of the studies were processed using a pipeline based on DADA2 (Callahan et al., 2016, 
2017; Parente et al., 2019; Porcellato et al., 2021) (from study 34 to 165, Supplementary 
Table 1) but the target and the sequence lengths were variable (Supplementary Table 1). In 
fact, the median value of the proportion of sequences (within study) identified at the 
species level was 0.176 (range 2x10-5-0.99), while the median value of the proportion of 
sequences identified at the genus level or below was 0.996 (range 0.25-1). Agglomeration at 
the genus level might be a necessity if one wants to compare networks from different 
studies and it has even been claimed that, when species belonging to the same phylogenetic 
group share similar functions, agglomeration can reduce noise (Röttjers and Faust, 2018). 
This might not be true for many microbes in dairy products, because, for example, genera 
like Streptococcus, Staphylococcus and Corynebacterium include both beneficial and 
pathogenic species. To illustrate this point we carried out inference of microbial association 
with four methods (see the description of the workflow in Supplementary material), two 
based on correlations (SparCC and CCREPE) and two on conditional dependence (SPRING 
and SPIEC-EASI), on datasets in which sequences were not aggregated (Amplicon Sequence 
Variants, ASVs, prior to import in DairyFMBN), or with no taxonomic aggregation (ASVs were 
pooled at the lowest possible level of taxonomic assignment) or with aggregation at the 
genus level. The inferred networks with CCREPE and SPIEC-EASI for DairyFMBN data with no 
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taxonomic aggregation  for two V3-V4 targeted studies (ST49, a large study on the 
microbiota of a diverse set of artisanal cheeses from Brazil, (Kamimura et al., 2019)  and 
ST136, a study on the impact of starter addition on microbiota of fromadzo cheese, (Dolci et 
al., 2020); because of sequence quality taxonomic identification for ST49 was at the genus 
level or above) producing relatively simple networks are shown as an example in Figure 2. 
The level of identification of taxa varied from species (27% and 17% of the sequences 
identified at the species level for ST49 and ST136, respectively), to family (poorly identified 
taxa were removed by filtering), while networks inferred using ASVs or taxa aggregated at 
the genus level are shown in Supplementary Figure 2 and 3, respectively.  
 
 

 
Figure 2. Microbial association networks inferred from studies ST49 (Kamimura et al., 2019) 
and ST136 (Dolci et al., 2020) extracted from DairyFMBN 2.1.6, with no taxonomic 
aggregation (https://data.mendeley.com/datasets/3cwf729p34/5) using methods CCREPE 
(Faust et al., 2012) or SPIEC-EASI (Kurtz et al., 2015). For each pane, the color of nodes is 
determined by phylum, and the size by degree; the color of the edges is red for mutual 
exclusion relationships and green for copresence relationships; the thickness of the edges is 
determined by the strength of the association measure, as determined in NetCoMi (Peschel 
et al., 2020). A force-based layout (Fruchterman–Reingold) was used for positioning nodes 
and edges. The name of the nodes has been abbreviated to 15 characters. 
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Networks based on ASVs (Supplementary Figure 1) and those obtained from DairyFMBN 
data without taxonomic agglomeration have, as expected, the largest number of nodes and 
include nodes identified at the species level. The interpretation of the networks is beyond 
the scope of this meta-study but several negative interactions between starter bacteria and 
spoilage species or positive interaction between potentially beneficial species or between 
spoilage species can be identified. It is also evident that, at this level of aggregation, parent-
child relationships (i.e. a positive association between nodes belonging to the same genus, 
one of which is identified at the species or genus level, while the other is identified at a 
higher taxonomic level; i.e. Streptococcus -- Streptococcus salivarius or Enterobacter -- 
Enterobacteriaceae) are evident. In fact, the median value for the proportion of parent-child 
relationships ranged from 0.03 for networks inferred by CCREPE to 0.067 for networks 
inferred using SPIEC-EASI, but was as high as 1 for some very sparse networks. This is even 
more true for the networks based on ASVs, in which clusters of nodes belonging to the same 
genus and connected by copresence relationships are clearly evident. Although ASVs offer a 
higher resolution than nodes obtained from taxonomic agglomeration, their biological 
meaning is not clear and microbial association networks tend to have so many nodes and 
edges that they are hardly interpretable (although node filtering on the basis of some 
centrality measure can be performed). On one hand it is very well known that most 
bacterial species have multiple copies of the 16S rRNA genes which differ in their sequence 
(Větrovský and Baldrian, 2013) and, although it might be questionable that partial 
sequencing may be sufficient to distinguish variants within and between strains (Johnson et 
al., 2019) it is not uncommon that more than one ASV is detected for each strain in mock 
communities (we detected on average 2 ASVs per microbial species in ZymoBIOMICS™ 
Microbial Community DNA Standard, data not shown), but it is unclear if this is due to 
sequencing errors or to the detection of different copies of the 16S rRNA gene.  
Likewise, ASVs belonging to a cluster of nodes with the same genus or species identification 
may, in fact, belong to different co-occurring strains or simply be the result of sequencing 
errors which may lead to identification at different taxonomic levels. The effect of parent-
child relationships or of copresence edges between nodes belonging to the same higher 
taxon (ASVs belonging to the same species, species belonging to the same genus) is clearly 
seen by comparing the plots for ASVs, species and genus, with cluster of taxonomically 
related nodes progressively collapse in a single node.  
The choice of the taxonomic resolution level is therefore related to the quality and 
resolution of the data and to the objective of the study. Using ASVs is probably not justified. 
Whenever the quality and length of the sequences allow it, the aggregation at the lowest 
possible taxonomic level should be used (this is not the same as using taxonomic 
agglomeration at the species level in phyloseq, because this would remove all ASVs 
identified above the species level). However, when comparing different studies aggregation, 
the genus level is probably desirable, although this may blur or hide some associations at 
lower taxonomic levels. 
 

3.2 Which is the best inference method? 
It is well known that inference methods for microbial associations differ in their ability to 
detect copresence and mutual exclusion associations, and that the inferred networks are 
method specific and may be affected by the inclusion of environmental variables in the 
inference (Tackmann et al., 2019). This has been reviewed multiple times (Liu et al., 2020; 
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Röttjers and Faust, 2018; Weiss et al., 2016) and further discussion is beyond the scope of 
this paper. However, the availability of tools which allow rapid inference of networks with 
multiple methods (such as NetCoMi; Peschel et al., 2020) makes this task relatively easy (an 
example workflow is available from GitHub: https://github.com/ep142/MAN_in_cheese). 
We therefore carried out network inference on 34 cheese datasets included in DairyFMBN 
(see Supplementary Table 1) using 2 correlation based methods (SparCC and CCREPE) and 
two conditional dependence methods (SPRING and SPIEC-EASI) (see section 1.2). All 
methods are able to handle compositionality well (although they use different methods), 
and their requirements in terms of number of samples and taxa or in terms of sparsity of 
the underlying network differ. SparCC and CCREPE are included mostly for historical reasons 
while SPIEC-EASI has repeatedly showed good performances in network inference 
compared to other methods (Kurtz et al., 2015; Tackmann et al., 2019; Weiss et al., 2016; 
Yoon et al., 2019). SPRING is a relatively novel method, which has been claimed to offer 
superior performances (Yoon et al., 2019) but which, to our knowledge, has not been tested 
on food microbiomes.  
A comparison of two methods for two studies was shown before see 3.1). Figure 3 shows a 
Venn diagrams of edges for two further studies: ST41, a V3-V4 targeted cross-sectional 
study on French surface ripened cheeses (Dugat-Bony et al., 2016) and ST131, a V4 targeted 
time-series study on Cheddar (Choi et al., 2020), while the corresponding networks are 
shown in Supplementary Figures 4 and 5.  
First of all, as expected, microbial association networks are method specific (Figure 2, 3, 
Supplementary Figures 2-5), and not all methods result in the inference of a network with at 
least one edge for a given study (Figure 3, Supplementary Figure 5). On the other hand, 
some associations are conserved across two or more methods. Conversely, some edges may 
even represent associations of opposite signs (copresence rather than mutual exclusions) in 
different methods (Supplementary Figure 5).  
SPIEC-EASI almost always resulted in the networks with the lowest number of edges 
(Supplementary Figure 6), with a significant difference from all other methods (p<0.05) as 
assessed using a pairwise Wilcoxon rank sum test.  
SPIEC-EASI is known to remove indirect associations (i.e. associations resulting from indirect 
correlations, see section 1.2) (Kurtz et al., 2015). SPRING is also designed to avoid indirect 
associations by the use of partial correlations, but it does detect a significantly higher 
number of edges.  
Density is a measure of how connected a network is. A comparison of density of the 
networks for different methods is shown in Supplementary Figure 7. SPIEC-EASI resulted in 
networks which had a significantly higher density (p<0.001) as assessed using a pairwise 
Wilcoxon rank sum test: this may be related to the fact that this method resulted often in 
networks with only a few connected nodes.  
The distribution of positive edge proportion by method is shown in Supplementary Figure 8. 
Although SPRING had a narrower distribution, no significant difference was found   
No systematic effect of study type (cross sectional, mixed or longitudinal) or size (as 
measured by the number of taxa detected), or target type (16S rRNA vs 16S RNA gene, 
target region) was evident.  
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Figure 3. Venn diagrams for microbial association edges for networks inferred for two 
studies (ST41, a V3-V4 targeted cross-sectional study on French surface ripened cheeses 
(Dugat-Bony et al., 2016) and ST131, a V4 targeted time-series study on Cheddar (Choi et al., 
2020) extracted from DairyFMBN 2.1.6 
 (https://data.mendeley.com/datasets/3cwf729p34/5). Network inference was carried out 
using four methods (SparCC, Sparse Correlations for Compositional data, Friedman and Alm, 
2012; CCREPE Compositionality Corrected by REnormalization and PErmutation, Faust et al., 
2012; SPIEC-EASI, SParse InversE Covariance Estimation for Ecological Association Inference, 
Kurtz et al., 2015; SPRING, SemiParametric Rank-based approach for INference in Graphical 
model, Yoon et al., 2019) after taxonomic agglomeration at the genus level, as described in 
Supplementary material.  
 
 
 
 
 
The distribution of two other important network properties, global clustering coefficient 
and modularity, both of which are related to the organization of the microbial association 
network in smaller clusters of tightly interconnected nodes (which, in turn, may represent 
group of taxa which share similar functions or the same microhabitat) are shown in 
Supplementary Figures 9 and 10. The global clustering coefficient could not be calculated for 
many of the sparsest networks, and this measure is available only for some of the datasets. 
Modularity was significantly different for networks inferred by CCREPE and SPRING 
compared to SparCC and SPIEC-EASI, while the clustering coefficient was significantly higher 
for the two correlation based methods (SparCC and CCREPE). This may reflect the existence 
of indirect correlations. 
This is the first time some global properties of microbial association networks have been 
compared for networks inferred for cheese microbiota using 4 methods and such a large 
number of studies and the results are hard to compare with other studies. The debate on 
the best method for inferring microbial associations from metataxonomic data is still open. 
On one hand, using ensembles of methods can help in detecting “stable”, robust 
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associations, which are method independent (Yoon et al., 2019), and performing inference 
with multiple methods is relatively easy with the workflow we have proposed. On the other 
hand, only properly designed studies with a sufficient number of samples and perhaps long 
time series (and the use of model based approaches), and absolute, rather than relative 
measures of abundances of taxa and the inclusion of ecological parameters in the analysis 
can help in the detection of the true structure of microbial association networks (Röttjers 
and Faust, 2018; Tackmann et al., 2019). However, SPIEC-EASI has definitely performed well 
in a number of benchmarking studies and may be selected as a conservative method for 
microbial association inference.  
Therefore, in the following sections we will use SPIEC-EASI for network comparisons and 
then evaluate which associations are more conserved across methods and studies. 
 

3.3 Comparing global network properties. 
In order to evaluate and compare global network properties network, inference was 
performed on the 35 datasets of Supplementary Table 1 (ST10 had both data based on 16S 
RNA and 16S RNA gene as a target region, which were analysed separately) using method 
SPIEC-EASI and the pipeline described in Supplementary material. A detailed description of 
the procedure used to calculate global network properties and to merge them with 
metadata is presented in Supplementary material.  
The results can only be partially compared with those of (Parente et al., 2018) because of 
differences in inference methods. However, we confirmed that microbial association 
networks for cheese, as those for many other foods, do not have a small world, scale-free 
nature (the fit of the degree distribution with the power law was low), but had a relatively 
high density (density was calculated using only connected nodes; see Supplementary Figure 
7; median 0.17, Inter Quartile Range, IQR 0.96) and positive edge proportion (see 
Supplementary Figure 8; median 77%, IQR 55%), and a short average path length for the 
largest connected component (median value 0.76., maximum 3.2). Average path length non 
linearly increased with network size (Supplementary Figure 1). Method SPIEC-EASI resulted 
in relatively sparse networks, for most of which it was impossible to calculate the global 
clustering coefficient. On the other hand, for many of the largest studies modularity was 
relatively high (see Supplementary Figure 10).  
To compare the studies an approach similar to that used in a previous study was used 
(Parente et al., 2018). The correlation between selected variables, including network 
properties (average path length, avPath; density, calculated on all connected nodes, 
density_2; modularity; natural connectivity, i.e. the average eigenvalue of the adjacency 
matrix, a measure of the robustness of a graph, natConnect; number of connected nodes, 
nnodes; positive edge proportion, pep) and properties of the datasets (average dissimilarity 
avDiss: average of the Bay-Curtis distance matrix; average Chao1 index; Pielou J evenness) 
was calculated using the Pearson product moment coefficient. A principal component 
analysis was then carried out. A biplot for the first two components, which explained 64% of 
the variance, is shown in Figure 4.   
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Figure 4. Score and loading plot for the first two components a Principal Component   
  
 

Due to the heterogeneity of the studies, evaluating the results is difficult. No relationship 
between the study type or the target (16S RNA vs 16S RNA gene, region) is evident. The 
studies which stand apart are ST74, a large farm-to-fork study (Falardeau et al., 2019) which 
includes both environmental and milk and cheese samples, and has clearly delimited 
modules corresponding to different environments (feces, cheese, etc.) and a time series 
study on Cheddar (Choi et al., 2020) with an unusually high number of samples for each 
cheese/treatment and, unfortunately, a relatively low diversity due to the use of V4 region 
as a target and the use of pasteurized milk and defined strains starters, and ST157 (Afshari 
et al., 2020) which also is related to Cheddar cheese of different ages. Studies on very 
similar cheeses ST148, Parmigiano Reggiano (Bottari et al., 2020); ST23 Grana Padano (Bassi 
et al., 2015); Trentingrana (Cremonesi et al., 2020); Grana-like cheese (Alessandria et al., 
2016) resulted in networks with very different properties: however, differences in study 
design may have obscured any similarities between the microbial communities of these 
cheeses. 
Some aspects of alpha or beta diversity appear to be related to network properties. Average 
dissimilarity (as measured as average Bray-Curtis distance) was inversely correlated (-0.90) 
with natural connectivity, a measure of network resistance to changes, which is rather 
counterintuitive unless one considers than in highly modular networks the targeted removal 
of selected nodes connecting different clusters may result in disruption of the network. 
Finally, a very strong negative correlation (-0.98) was found between network density and 
modularity, which is expected, since high values of these properties reflect very different 
network structures. In conclusion, an explorative study of global network properties did not 
reveal any systematic pattern. Given the repeatable nature of our approach (it would be 
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relatively easy to repeat the analysis with more data from future iterations of DairyFMBN) 
we feel that it should not be discarded but revaluated when more data become available. 
 

3.4 Detecting keystone species. 
 
The ability of network inference approaches to detect taxa which play “special” roles in their 
ecosystems is one of the features which makes the analysis of microbial association 
networks interesting  (Layeghifard et al., 2017; Röttjers and Faust, 2018), and the role of 
hubs (nodes with high degree or eigenvalue centrality values) or bottlenecks (nodes which 
may have low degree centrality but high betweenness centrality) and the effect of their 
removal on the stability of the ecosystem may be experimentally testable. Plots showing 
one or more of these properties may be useful for detecting keystone species, as shown by 
(Parente et al., 2018). A node plot for study ST49  (Kamimura et al., 2019) is shown as an 
example in Supplementary Figure 12 and similar plots can be easily obtained using our 
analysis workflow (https://github.com/ep142/MAN_in_cheese). In this and in other plots 
obtained for studies related to raw milk cheeses (data not shown) starter and non-starter 
lactic acid bacteria often appear as hubs with a high percentage of negative edges, while the 
background raw milk microbiota (whose DNA may persist during ripening) is often 
distributed along the dotted line which marks the average ratio between total degree and 
positive degree.  
In principle, given a number of studies for which microbial association networks are inferred 
with one or more methods, one could analyse how frequently a given taxon is included in 
microbial association networks and evaluate how frequently it has high values for centrality 
values which would qualify it as a keystone. Even if we analysed a relatively large set of 
studies, their heterogeneity makes such an analysis difficult at this stage. However, given 
the repeatability of the pipeline we described, such an analysis will probably become 
possible in the future, as more studies are added to DairyFMBN. 
 

3.5 What can edges in microbial association networks tell us? 
 
Using an approach similar to that described above, interactions (edges) inferred for all 
studies using all inference methods were collected in a single data set, which can be 
evaluate: 

a. which associations are conserved across several methods 
b. given a method, which associations occur more frequently 
c. which associations are important in the network structure (using edge betweenness 

as a measure) 
d. if there is evidence of taxonomic assortativity (i.e. if the occurrence of positive 

associations occurs more frequently among members of the same higher taxon) 
We first used the networks inferred by all four methods after taxonomic aggregation at the 
genus level to select for associations which were inferred by more than one method for 
more than one study. The results are shown in Figure 5. 
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Figure 5. The 50 topmost (in terms of frequency of detection, the maximum absolute 
frequency of detection is 140, given the fact that there were 35 studies analyzed by 4 
inference methods) copresence and mutual exclusion association in cheese studies 
extracted from DairyFMBN (Supplementary Table 1). 
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The results are in good agreement with our previous study (Parente et al., 2018) with 
copresence associations usually observed when both members were either beneficial 
(starter or non-starter) or non-beneficial (spoilage or contaminants), while mutual exclusion 
associations were frequently observed in couples including one beneficial and one non-
beneficial microorganism. Several associations match well those reported in the literature 
(Blaya et al., 2017; Mayo et al., 2021). Some mutual exclusion associations observed at low 
frequency include host associated (Alloprevotella,  Anaerovorax, Bacteroides, 

Phascolarctobacterium, Prevotella) or prevalently environmental (Aquabacterium, 

Bradyrhizobium, Enhydrobacter, Gaiella, Jeotgalicoccus, Pelomonas) as found by exploring 
the Florilege database (http://migale.jouy.inra.fr/Florilege/), and may simply reflect 
different environmental niches within one or few studies. A similar situation is observed 
when only associations inferred by method SPIEC-EASI are considered (Supplementary 
Figures 13 and 14). Unfortunately, due to the sparsity of SPIEC-EASI networks only very few 
copresence associations are detected in three or more studies. On the other hand, several 
copresence associations have relatively high values of the edge betweenness quantile (i.e. 
they rank relatively high for this edge centrality measure, which identifies edges whose 
removal might destruct the network and possibly impair the functionality of the microbial 
community. 
 

 
Figure 6. The 50 topmost copresence and mutual exclusion associations inferred by four 
different methods at the species level in cheese studies extracted from DairyFMBN 
(Supplementary Table 1). The number of methods detecting a given association is shown on 
the x axis, while a small random jitter was added to show when an association was detected 
in more than one study. The size of the points is made proportional to the edge 
betweenness quantile.  
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Unfortunately, although inferring networks at the genus level is the only viable strategy 
when studies using target regions of different length have to be compared, it provides very 
little information on which species of the genera for which the associations are detected. In 
our combined dataset several studies targeted 16S RNA or RNA gene regions of sufficient 
length to allow identification at the species level for a significant number of sequences. 
Therefore, we inferred microbial association networks without taxonomic aggregation and 
selected only associations in which both members were identified at the species level. The 
50 topmost associations in terms of frequency of detection are shown in Figure 6, while 
details of the study in which the association was detected are provided in Supplementary 
Table 2.  
Given the relatively low number of associations inferred at the species level (compared to 
those inferred at the genus level), only three associations were detected in more than one 
study (Staphylococcus equorum -- Staph. sciuri; Lactobacillus delbrueckii -- Lactob. 

helveticus; Lacticaseibacillus casei -- Limosilactobacillus fermentum). However, the majority 
of the associations was detected by three inference methods or more in at least one study 
and might be therefore relatively robust. Most associations were detected in only a few 
studies (Bassi et al., 2015; Calasso et al., 2016; Cremonesi et al., 2020; De Filippis et al., 
2016; Dolci et al., 2014; Dugat-Bony et al., 2016; Kamimura et al., 2019; Marino et al., 2019; 
Stellato et al., 2015) (see Supplementary Table 2). Only two mutual exclusion associations 
are included, although more have been detected by at least 2 methods. In general, the 
pattern observed at the genus level (copresence relationships between two beneficial or 
two non beneficial bacteria) is replicated. The interactions at the species level are much 
easier to test experimentally, to see if they merely reflect co-occurrence on the same 
microhabitat, or spatial or temporal niche or if they reflect true proto-cooperative or 
commensalistic relationships. Again, given the repeatability of our approach, as more data 
are added to DairyFMBN, more conserved associations at the species level could be added 
to this catalog. Indeed, it would be relatively easy to extend the analysis to other dairy 
related studies, including those on fermented milks or raw milk, and, in principle, a 
consensus network representing the dairy bacteria interactome could be constructed. 
Finally, we decided to test the hypothesis of taxonomic assortativity (Kurtz et al., 2015) 
using a different approach compared to that used in a previous paper (Parente et al., 2018). 
The results for the data agglomerated at the genus level are shown in Supplementary figure 
15. Even if the odds ratio for the occurrence of a copresence association among members of 
the same family was very high for the majority of studies, only in a few cases we were able 
to discard the null hypothesis that there was no difference in the probability of occurrence 
of a copresence association when the two nodes belonged to the same family or to different 
families.   

4. A short note on phage-bacteria interaction networks. 
Bacteriophage infections are the main cause of failure of cheese fermentations whenever 
defined starter cultures are used (Erkus et al., 2013; Zotta et al., 2021) and have a dramatic 
impact on the structure and dynamics of bacterial populations and communities even when 
the more phage-tolerant undefined starter cultures are used (Erkus et al., 2013). In the 
latter case they have been found to be important in maintaining the equilibrium in complex 
association by a “kill the winner” mechanism (Erkus et al., 2013; Flores et al., 2011), which 
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prevents the elimination from cultures reproduced by back-slopping of the slow-growing 
strains, by bacteriophage killing of the most competitive strains.  
The statistical structure of Phage-Bacteria Interaction Networks (PBINs), which are typically 
represented as bipartite networks, has been elucidated (Flores et al., 2011; Weitz et al., 
2013), and differences between the structure of PBINs for Lactococcus (which tend to show 
nestedness) and S. thermophilus (which tend to be modular) have been attributed to the 
differences in phage resistance mechanisms in these species. 
Surprisingly enough, to the best of our knowledge, approaches based on bipartite network 
analysis have not been recently used to elucidate the structure of PBINs of dairy LAB. The 
development of new high-throughput approaches for the study of the metavirome in dairy 
products (see Zotta et al., 2021 for a recent review) combined with network science 
approaches is certainly promising in studying the evolution of bacteriophage-host 
relationships in natural starters and cheese in self-assembled communities (Canon et al., 
2020) in cheese manufacture, like the many cheeses produced by using undefined starters 
reproduced by back-slopping (Zotta et al., 2021), in which dispersal, diversification, 
evolution and drift (Nemergut et al., 2013) all play a role in shaping the structure, dynamics 
and function of the cheese microbial communities, at least in early stages of cheese-making. 
Finally, beyond their role in regulating the structure of bacterial populations, 
bacteriophages (and prophages) of LAB may have other beneficial effects in microbial 
communities (induction of lysis, with release on nutrients for other members of the 
community; providing mechanisms for recombination and gene exchange; Paillet and 
Dugat-Bon, 2021). 
Use of the concepts and computational approaches of bipartite network analysis (available, 
for example in the R bipartite package; Dormann et al., 2008) may be of assistance to both 
scientists interested in studying the structure and evolution of PBINs in cheese and to 
starter companies seeking to develop phage rotation schemes by facilitating the 
identification of potential hub strains and the identification of modules of virulent phages 
and susceptible strains. 
 
 

5. Future prospects. 

5.1 Does inference of microbial association networks provide useful information? 
Even with all limitations related to the inference of association networks from 
metataxonomic data (see section 2 and Röttjers and Faust, 2018 for a review), microbial 
association network inference offers invaluable information which may then be used to 
guide experiments to confirm the nature of the interactions confirmed in silico. The 
availability of simple to use workflows to calculate network properties and to formally 
compare networks (Peschel et al., 2020) can be used to formally test hypotheses on the 
effect of conditions (heat treatment, spoilage, use of starter cultures, etc.) on the structure 
of association networks. The networks structure of host microbiomes is known to be 
dramatically affected by disease (Layeghifard et al., 2017; Liu et al., 2020; Ma, 2018) and this 
has been proven to be true for mastitis (see Parente et al., 2020 for a review). Analysis of 
microbial association networks may help to mine for previously unknown interactions 
among bacteria relevant for cheese ripening and provide the basis for the design of 
microbiome based starter cultures (Canon et al., 2020; Mayo et al., 2021). 
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5.2 Down to the strain level. 
One limitation of HTS targeting 16S rRNA gene is that, at the very best, they can provide 
taxonomic resolution at the genus and, sometimes, at the species level. However, when 
Amplicon Sequence Variants are inferred or when improved taxonomic databases are used, 
taxonomic resolution can be improved (Pujato et al., 2018). On the other hand, biological 
interactions in cheese happen at the strain level, not at the species level (i.e. different 
strains of the same species can show a different interaction pattern). This is certainly true 
for bacteriophage-host interactions (Erkus et al., 2016, 2013) and has also been recently 
demonstrated for surface ripened cheeses (Niccum et al., 2020). As mentioned above (see 
1.3 and 3), bacteriophages strongly affect the structure and microdiversity of mixed strain 
starters, through a “kill the winner” mechanism that prevents fast growing strains to take 
the dominance, especially when back-lopping is used for propagation. Strain specific 
behaviours and response to positive (indirect effects due to change in pH; direct effects due 
to cross-feeding relationships possibly related to the availability of iron, vitamins, amino 
acids) and negative (amensalism, competition) relationships in simplified communities 
including different combinations of different strains of Staphylococcus equorum, 
Brachybacterium alimentarium, Brevibacterium aurantiacum and a Penicillium strain), in 
simulated cheese-rind experiments, result in different community assemblies, which are 
reflected by changes in quality relevant feature (volatiles, color). Strain specific relationships 
were also found in interactions mediated by volatile compounds (Cosetta et al., 2020). 
Although HTS methods targeting protein-coding genes have been used to study the 
structure of population of key bacterial species (see Bertuzzi et al., 2018; Moser et al., 2018; 
Walsh et al., 2020 for a recent review), they can only detect sequence variants of selected 
genes, not strains. Shotgun metagenomic approaches can provide full resolution for both 
bacterial strains and bacteriophages (Afshari et al., 2020, 2018; Walsh et al., 2020). 
However, the cost and the need for computing resources is still significantly higher 
compared to amplicon targeted approaches, and, as a result, shotgun metagenomic studies 
typically have a lower number of samples and the relatively low diversity of cheese 
microbial communities may prevent the detection of the less abundant members of the 
microbiota. This situation is likely to change in the future and integration between 
metagenomics, metatranscriptomics and metabolomics, and custom designed qPCR 
methods to quantitatively monitor single strains or lineages may offer great potential for 
the study of ecological and metabolic interaction in cheese (Erkus et al., 2013; Niccum et al., 
2020). 
 

5.3 Model based approaches and effect of environmental variables. 
 
Correlation or conditional dependence tools may be unable to detect some negative 
interactions (like amensalism; Weiss et al., 2016), especially in cross sectional studies based 
on compositional data, and may be unable to properly separate the effect of habitat 
filtering if environmental variables are not included. even if the number of time series 
studies using metataxonomic or meta-omic approaches for the study of the dynamics of 
cheese microbiota in increasing (see Supplementary Table 1 for some examples), the lack of 
quantitative measurements of the target genes and the lack of metadata related to 
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significant environmental variables (temperature, pH, aW, salt in moisture) prevents the use 
of model based approaches for the inference of microbial interactions. In principle, using 
absolute quantification of the total amount of target (16S RNA or RNA gene) is possible, 
generally using qPCR or internal standards, and has been attempted in a few studies 
(Cauchie et al., 2017; Fougy et al., 2016; Rouger et al., 2018; Zotta et al., 2019), but only 
rarely attempts have been made to use these data to study the dynamics of members of the 
bacterial community (Zotta et al., 2019). In addition, when DNA is used as a target the 
question of the viability of the detected taxa remains open, and qPCR of 16S RNA or RNA 
gene can only provide partial indications of the real abundance of a given taxon, given the 
differences in copy numbers of these targets (Větrovský and Baldrian, 2013). On the other 
hand, lineage specific qPCR methods have successfully been used to study the dynamics of 
individual strains or groups of strains in cheese (Erkus et al., 2013, 2016). Therefore, in 
principle, use of time series metataxonomic data coupled to model based inference 
methods (such as MetaMis; Shaw et al., 2016) may be feasible and may be used to test in 
cheese model complex interactions after their preliminary evaluation in simplified 
laboratory models. More study is definitely needed in this area.  
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