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Summary 19 

Pseudomonas aeruginosa is a leading opportunistic pathogen capable of causing fatal 20 

infections in immunocompromised individuals and patients with degenerative lung 21 

diseases.  Agricultural soil and plants are the vast reservoirs of this dreaded pathogen.  22 

However, there have been limited attempts to analyze the pathogenicity of P. 23 

aeruginosa strains associated with edible vegetable plants.  This study aims to elucidate 24 

the virulence attributes of P. aeruginosa strains isolated from the rhizosphere and 25 

endophytic niches of cucumber, tomato, eggplant, and chili collected from 26 

agricultural fields.  Virulence of the agricultural strains was compared to three previously 27 

characterized clinical isolates.  Our results showed that 50% of the plant-associated 28 

strains formed significant levels of biofilm and exhibited swarming motility.  Nearly 80% of 29 

these strains produced considerable levels of rhamnolipid and exhibited at least one 30 

type of lytic activity (hemolysis, proteolysis, and lipolysis).  Their virulence was also 31 

assessed based on their ability to suppress the growth of plant pathogens 32 

(Xanthomonas oryzae, Pythium aphanidermatum, Rhizoctonia solani, and Fusarium 33 

oxysporum) and kill a select nematode (Caenorhabditis elegans).  The plant-associated 34 

strains showed significantly higher virulence against the bacterial phytopathogen 35 

whereas the clinical strains had significantly higher antagonism against the fungal 36 

pathogens.  In C. elegans slow-killing assay, the clinical strains caused 50-100% death 37 

while a maximum of 40% mortality was induced by the agricultural strains.  This study 38 

demonstrates that some of the P. aeruginosa strains associated with edible plants 39 

harbor multiple virulence traits.  Upon infection of humans or animals, these strains may 40 

evolve to be more pathogenic and pose a significant health hazard. 41 

42 
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Introduction 43 

Pseudomonas aeruginosa is a leading opportunistic pathogen that causes hospital-44 

acquired, often fatal infections in immunocompromised individuals and patients with 45 

chronic pulmonary conditions (Reynolds et al., 1975; Von Graevenitz, 1977; Rosenthal et 46 

al., 2020). Additionally, this pathogen can manifest as a wide variety of infections, such 47 

as folliculitis, endocarditis, osteomyelitis, and sclerokeratitis, in healthy individuals 48 

(Radford et al., 2000; Tate et al., 2003; Doustdar et al., 2019).  P. aeruginosa-associated 49 

mortality is a global concern in healthcare settings, which is why this bacterium is listed 50 

among the ‘serious threat pathogens’ (CDC AR, 2019; WHO News, 2019; PHE, 2020).   51 

 52 

P. aeruginosa is a well-known soil bacterium predominantly found in agricultural 53 

ecosystems (Clara, 1930; Elrod and Braun, 1942; Ali Siddiqui and Ehteshamul-Haque, 54 

2001; Adesemoye and Ugoji, 2009; Mondal et al., 2012; Gao et al., 2014; Yasmin et al., 55 

2014; Radhapriya et al., 2015; Arif et al., 2016; Durairaj et al., 2017; Tiwari and Singh, 56 

2017; Gupta and Buch, 2019; Chandra et al., 2020).  Few studies have argued that soil 57 

and plants are the primary sources for transmission of P. aeruginosa to humans (Green 58 

et al., 1974; Cho et al., 1975).  Plant-associated P. aeruginosa first became a significant 59 

concern when its presence was detected in fresh vegetables in hospital kitchens, 60 

canteens, agricultural farms, retail markets, and supermarkets (Kominos et al., 1972; 61 

Wright et al., 1976; Correa et al., 1991; Viswanathan and Kaur, 2001; Curran et al., 2005; 62 

Allydice-Francis and Brown, 2012; Ambreetha et al., 2021). 63 

 64 

To date, very limited studies have demonstrated the inter-kingdom pathogenicity of P. 65 

aeruginosa strains. A clinical strain, P. aeruginosa PA14 isolated from a hospital burn 66 
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ward (Mathee, 2018), was reported to elicit extensive rotting in vegetable plants, such 67 

as cucumber, lettuce, potato, and tomato (Schroth et al., 1977; Schroth et al., 2018), 68 

and Arabidopsis (Rahme et al., 2000).  P. aeruginosa strain BP35, isolated from a black 69 

pepper plant, is cytotoxic to mammalian A549 cells (Kumar et al., 2013). Clinical strains 70 

of P. aeruginosa release a multitude of virulence factors, such as pyocyanin, 71 

rhamnolipid, elastases, proteases, lipases, hemolysin, pyochelin, and pyoverdine. These 72 

assist the bacterium in establishing lethal infections (Balasubramanian et al., 2012; 73 

Moradali et al., 2017). However, there is a clear gap in testing the ability of plant-74 

associated strains to produce the virulence factors required for human infection. 75 

 76 

In our previous study, we isolated the plant-associated P. aeruginosa strains (PPA01-77 

PPA18) from edible vegetable plants (cucumber, tomato, chili, and eggplant) directly 78 

from farms in Southern India (Ambreetha et al., 2021).  We reported that those PPA 79 

strains were evolutionarily related to the tested clinical isolates (ATCC10145, ATCC9027, 80 

and PAO1).  Both the agricultural and clinical strains had comparable plant-beneficial 81 

traits, such as mineral solubilization, ammonification, extracellular release of indole-3 82 

acetic acid, and siderophore.  These results triggered a quest to identify the virulence 83 

traits shared between agricultural and clinical P. aeruginosa strains.  In our current 84 

study, we have tested the ability of the plant-associated strains to (1) release the 85 

virulence factors critical for human infection and (2) cause mortality in microbial 86 

systems and the animal model Caenorhabditis elegans. 87 

88 
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Results  89 

Biofilm formation 90 

In clinical settings, biofilm-forming P. aeruginosa causes chronic pulmonary infections 91 

(Römling et al., 1994; Bjarnsholt et al., 2009).  We hypothesized that P. aeruginosa strains 92 

in agricultural ecosystems can form biofilms.  To test this hypothesis, biofilm formation by 93 

the P. aeruginosa PPA strains was estimated at three time points (24, 48, and 72 h) using 94 

crystal violet-microtiter assay (O'Toole, 2011) and presented as the biofilm to planktonic 95 

(B:P) ratio (Fig.1).  The significance of the difference among the observed values was 96 

assessed using the one-way Analysis of Variance (ANOVA) and Duncan’s Multiple 97 

Range Test (DMRT; strains that share the same letters do not differ significantly).  98 

ATCC9027, a slow biofilm former, showed low levels at 24h but gradually increased after 99 

48h and 72h of incubation.  The well-characterized biofilm-forming strains, ATCC10145 100 

and PAO1, had a high B:P ratio at all three time points.  Ten (cucumber: PPA01, PPA02, 101 

PPA04; tomato: PPA05, PPA07; eggplant: PPA11, PPA12; chili: PP15, PPA16, PPA18) out of 102 

the 18 PPA strains were weak biofilm producers, as evidenced by their B:P ratio of less 103 

than one.  The cucumber and tomato endophytes, PPA03 and PPA08, produced 104 

biofilms comparable to the clinical strains, ATCC9027 and ATCC10145, respectively 105 

(indicated by the shared alphabets ‘b’ and ‘c’).  Among the plant isolates, the top 106 

three strains (PPA03/cucumber, PPA08/tomato, and PPA10/tomato) with a high biofilm 107 

population were all endophytes.   108 

 109 

Swarming motility 110 

Swarming motility is associated with the upregulation of multiple virulence factors in 111 

many flagellated bacteria, including P. aeruginosa (Overhage et al., 2008; Coleman et 112 
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al., 2020b; Coleman et al., 2020a).  We hypothesized that the plant-associated P. 113 

aeruginosa strains could exhibit swarming motility.  The ability to swarm was assessed 114 

using an M9 medium with 0.5% agar (Tremblay and Déziel, 2008).  The swarming 115 

percentage was calculated based on triple recordings of the diameter of the bacterial 116 

tendrils extended on the plate surface.  A non-swarming P. chlororaphis strain, ZSB15, 117 

was used as the negative control (Fig. 2A).  The three positive controls, ATCC10145, 118 

ATCC9027, and PAO1, spread tendrils that covered more than 50% of the plate’s area 119 

(Fig. 2B).  All agricultural isolates exhibited swarming patterns at varying levels.  The 120 

swarming phenotype of the tomato endophyte, PPA08, was significantly higher 121 

(covering 80% of the plate) than the tested positive controls, indicated by the letter ‘a’ 122 

(Fig.2A and B).  Overall, four endophytes (PPA03/cucumber; PPA08, and PPA10/tomato; 123 

PPA16, and PPA18/chili), and two rhizospheric strains (PPA13, PPA14/eggplant) were the 124 

superior swarmers, swarming more than 50% of plate area.  The rest of the strains 125 

(PPA01, PPA02, PPA04, and PPA05/cucumber; PPA06, PPAO7, and PPA09/tomato; 126 

PPA11, and PPA12/eggplant; PPA15, and PPA17/chili) were weak swarmers. They 127 

covered less than 50% of the plate area.   128 

 129 

Extracellular release of rhamnolipid 130 

Rhamnolipids are a class of metabolites predominantly released by P. aeruginosa to 131 

infiltrate mammalian lung tissues (McClure and Schiller, 1992, 1996; Zulianello et al., 132 

2006). In plants, rhamnolipids provide protection against pests and pathogens (Kim et 133 

al., 2011; Yan et al., 2015; Sancheti and Ju, 2019).  In this study, the agricultural strains of 134 

P. aeruginosa were hypothesized to produce extracellular rhamnolipids.  The test strains 135 

were qualitatively screened for their ability to release rhamnolipids on 136 
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cetyltrimethylammonium bromide (CTAB) agar plates (Fig. 3A).  All P. aeruginosa strains 137 

formed blue halo zones around the wells, thus testing positive for rhamnolipid 138 

production (Fig. 3A).  139 

 140 

Quantitative assessment of extracellular rhamnolipids was performed using the 141 

gravimetric method (Zhang and Miller, 1992; Gunther et al., 2005).  Rhamnolipid levels 142 

were expressed as µg/ml and the statistical significance was expressed through DMRT 143 

(Fig. 3B). Two of the three clinical strains, PAO1 and ATCC10145, released a high 144 

quantity of rhamnolipids.  The clinical isolate ATCC9027 from otitis externa (Table 1) 145 

produced comparatively low rhamnolipid levels.  All eighteen plant-associated strains 146 

released extracellular rhamnolipids.  All strains except for the eggplant isolates (PPA11-147 

PPA14) produced more rhamnolipids than ATCC 9027 (Fig. 3B).   148 

 149 

Lytic activity 150 

P. aeruginosa lytic enzymes deteriorate pulmonic health by causing vascular 151 

permeability, and organ damage (Ostroff et al., 1989; Wargo et al., 2011).  We 152 

hypothesized that P. aeruginosa strains associated with agricultural plants harbor lytic 153 

activity.  To confirm this, the hemolytic, proteolytic, and lipolytic activities of the strains 154 

were qualitatively assessed. 155 

 156 

Hemolysis. We tested the ability of the P. aeruginosa strains to lyse blood on sheep 157 

blood agar medium (Williams and Harper, 1947).  Strains that partially lysed red blood 158 

cells and resulted in a green discoloration on the agar were scored positive for -159 

hemolytic activity (Table 2).  Strains that did not exhibit lytic behavior were marked as γ-160 
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hemolytic.  As expected, the three control strains, ATCC10145, ATCC9027, and PAO1, 161 

exhibited -hemolytic activity.  More than 50% of the agricultural isolates exhibited -162 

hemolysis, including four rhizospheric strains (PPA02 and PPA04/cucumber; PPA13, and 163 

PPA14/eggplant) and six endophytes (PPA03/cucumber; PPA07, PPA08, and 164 

PPA10/tomato; PPA11/eggplant; PPA16/chili).  The remaining isolates did not exhibit 165 

any hemolytic activity. 166 

 167 

Proteolysis.  P. aeruginosa associated lysis of the proteins casein and gelatin was tested 168 

by plate assay (Atlas, 1993; Georgescu et al., 2016) and presented as positive and 169 

negative scores (Table 2).  Two of the three tested controls (ATCC10145 and PAO1) 170 

harbored high proteolytic activity.  ATCC9027 caused mild lysis of gelatin but no lysis of 171 

casein.  16 out of 18 plant-associated strains showed caseinase activity whereas only 13 172 

strains had gelatinase activity.  The rhizospheric strains (PPA01/cucumber and 173 

PPA09/tomato) were unable to hydrolyze either protein.  Three other rhizospheric strains 174 

(PPA02/cucumber; PPA06/tomato; PPA12/eggplant) that displayed low caesinase 175 

activity did not exhibit gelatinase activity. 176 

 177 

Lipolysis. The lipid hydrolytic activity of the P. aeruginosa strains was tested in tributyrin 178 

agar medium (Atlas, 1993; Georgescu et al., 2016).  Two of three control strains, 179 

ATCC10145 and PAO1, showed lipolytic behavior while ATCC9027 did not lyse the 180 

tested lipid (Table 2).  Most plant-associated strains did not exhibit lipolysis except for 181 

three rhizospheric strains (PPA06/tomato, PPA13/eggplant, and PPA15/chili) and one 182 

endophyte (PPA07/tomato).   183 

 184 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2021.07.20.453120doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.20.453120


9 
 

Antagonism against phytopathogens 185 

Agricultural P. aeruginosa strains have been previously shown to inhibit other 186 

phytopathogens (Ali Siddiqui and Ehteshamul-Haque, 2001; Yasmin et al., 2014; Durairaj 187 

et al., 2017).  This study hypothesized that both agricultural and clinical P. aeruginosa 188 

exhibit virulence against plant pathogens.  To test this hypothesis, we challenged the P. 189 

aeruginosa strains with common fungal (Pythium aphanidermatum, Rhizoctonia solani, 190 

and Fusarium oxysporum) and bacterial (Xanthomonas oryzae) phytopathogens 191 

(Sakthivel and Gnanamanickam, 1986).  This is the first known attempt to test the 192 

antagonism of clinical strains against phytopathogens.  Inhibition of phytopathogens 193 

caused by the P. aeruginosa strains was normalized to PAO1 (Fig. 4).  194 

 195 

Pythium aphanidermatum inhibition.  All tested strains could inhibit Pythium 196 

aphanidermatum (Fig. 4A). Ten plant-associated strains (PPA03/cucumber; PPA07, 197 

PAA08, and PPA10/tomato; PPA13, and PPA14/eggplant; PPA15-PPA18/chili) and two 198 

clinical strains (ATCC10145 and ATCC9027) showed higher antagonism when 199 

compared to PAO1.  However, only four PPA strains (PPA03/cucumber; PPA07, and 200 

PPA08/tomato; PPA15/chili) were significantly more antagonistic than PAO1 (p<0.05, 201 

DMRT).  The remaining strains (7 of 18) from cucumber, tomato, and eggplant inhibited 202 

Pythium aphanidermatum significantly less as compared to PAO1.    203 

 204 

R. solani inhibition.  All tested strains could inhibit R. solani (Fig. 4B). Eight plant-205 

associated strains (PPA03/cucumber; PAA08, and PPA10/tomato; PPA14/eggplant; 206 

PPA15-PPA18/chili) and two clinical strains (ATCC10145 and ATCC9027) showed higher 207 

antagonism when compared to PAO1.  Among them, six PPA strains (PPA03/cucumber; 208 
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PPA08, and PPA10/tomato; PPA15, PPA16, and PPA18/chili) significantly inhibited R. 209 

solani more than PAO1 (p<0.05, DMRT).  The other P. aeruginosa strains (9 of 18) from 210 

cucumber, tomato, and eggplant caused significantly lower inhibition of R. solani than 211 

PAO1.  212 

 213 

F. oxysporum inhibition.  All tested strains inhibited F. oxysporum (Fig. 4C). Five plant-214 

associated strains (PPA03/cucumber; PAA08, and PPA10/tomato; PPA16, and 215 

PPA18/chili) and one clinical strain (ATCC10145) showed higher antagonism when 216 

compared to PAO1.  Among them, four PPA strains (PPA03/cucumber; PPA10/tomato; 217 

PPA16 and PPA18/chili) caused significantly higher inhibition than PAO1 (p<0.05, DMRT).  218 

The rest of the P. aeruginosa PPA strains (13 out of 18) from cucumber, tomato, 219 

eggplant, and chili were significantly less antagonistic against F. oxysporum when 220 

compared to PAO1.    221 

 222 

X. oryze inhibition.  All tested strains could inhibit X. oryzae (Fig. 4C). Most of the plant-223 

associated strains (16 out of 18) showed higher antagonism when compared to PAO1.  224 

Among them, 12 PPA strains (PPA01, PPA03, and PPA04/cucumber; PPA07, PPA08, and 225 

PPA10/tomato; PPA13 and PPA14/eggplant; PPA15-PPA18/chili) caused significantly 226 

higher inhibition than PAO1 (p<0.05, DMRT).  Two rhizospheric strains (PPA06, and 227 

PPA09/tomato) had comparatively lower antagonism of X. oryzae than PAO1. 228 

 229 

Clustering based on antagonistic potential. Euclidean distance-based principal 230 

coordinate analysis (PCoA) (NCSS, Kaysville, USA) clustered the P. aeruginosa strains 231 

based on their combined antagonism against the phytopathogens (Fig. 5).  The clinical 232 
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strains (PAO1, ATCC10145, and ATCC9027) did not cluster with the PPA strains.  The PPA 233 

strains formed three clusters except for a chili endophyte (PPA16) and tomato 234 

rhizospheric strain (PPA09).  Cluster A was occupied by three tomato isolates: one from 235 

the rhizosphere niche (PPA06) and two endophytes (PPA05 and PPA07).  Cluster B 236 

contained five endophytes and four rhizosphere strains from all four plants.  Cluster C 237 

contained four strains isolated from the eggplant and cucumber.  Two rhizospheric 238 

strains (PPA01 and PPA02) isolated from the cucumber superimposed on each other in 239 

cluster C, which reflects their identical antagonism.   240 

 241 

Virulence in the animal model, Caenorhabditis elegans 242 

The nematode C. elegans has been extensively used as a model system to understand 243 

the pathogenicity of P. aeruginosa (Mahajan-Miklos et al., 1999; Adonizio et al., 2008).  244 

In this study, we hypothesized that the agricultural P. aeruginosa strains were capable 245 

of killing the C. elegans worms.  This hypothesis was tested through the C. elegans slow 246 

killing assay (Tan et al., 1999).  The nematodes were scored alive or dead (Fig. 6A) 247 

based on their response to physical stimuli.  The percentage of living nematodes after 248 

feeding on the P. aeruginosa strains was noted every 24 h until 120 h of incubation (Fig. 249 

6B).  As expected, the negative control, E. coli OP50, did not induce mortality in the 250 

worms (Fig. 6A).  However, at 120 h nearly 8% of the worms died on OP50 plates due to 251 

natural death (Fig. 6B).  The three positive controls, ATCC10145, ATCC9027, and PAO1, 252 

caused higher mortality than the plant-associated strains.  All of the nematodes fed 253 

with ATCC10145 and PAO1 were dead within 72 and 120 h, respectively.  In contrast, 254 

only 50% of the worms died after feeding with ATCC9027.  Most of the plant-associated 255 

strains were less virulent against C. elegans.  Three endophytic strains from cucumber 256 
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(PPA03), tomato (PPA08), and chili (PPA18) plants caused maximum mortality of 40%.  257 

Only 15% of worms died after feeding on certain rhizospheric (PPA06/tomato; 258 

PPA14/eggplant) and endophytic strains (PPA05, and PPA07/tomato).  These four strains 259 

were the least virulent among the agricultural isolates.   260 

 261 
262 
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Discussion 263 

In the 1970s, agricultural soil and plants were recognized as reservoirs of the 264 

opportunistic pathogen P. aeruginosa (Green et al., 1974; Cho et al., 1975).  Since, P. 265 

aeruginosa has been detected in fresh agricultural produce at markets, hospital 266 

kitchens, and local vendors (Kominos et al., 1972; Wright et al., 1976; Correa et al., 1991; 267 

Viswanathan and Kaur, 2001; Allydice-Francis and Brown, 2012; Nithya and Babu, 2017).  268 

Despite these reports, there have been minimal attempts to characterize the 269 

pathogenicity of the plant-associated P. aeruginosa strains (Lebeda et al., 1984; Kumar 270 

et al., 2013).  Our previous study demonstrated that P. aeruginosa strains (PPA01 to 271 

PPA18) present in the endophytic and rhizospheric niches of cucumber, tomato, 272 

eggplant, and chili produce two virulence factors, pyocyanin, and siderophores 273 

(Ambreetha et al., 2021).  Our current work extends our previous findings by 274 

characterizing the pathogenic phenotypes of those strains. Specifically, we assessed 275 

their ability to swarm, form biofilms, produce virulence factors, and kill other microbes 276 

and a select nematode. 277 

 278 

Vegetable-associated P. aeruginosa strains harbor multiple virulence traits 279 

The P. aeruginosa strains tested in this study harbored an arsenal of virulence attributes. 280 

These include biofilm formation, swarming motility, rhamnolipid production, and lytic 281 

activity (hemolysis, proteolysis, and lipolysis). 282 

 Biofilm. Three endophytic (PPA03/cucumber, PPA08/tomato, PPA10/tomato), 283 

and two rhizospheric strains (PPA13/eggplant, and PPA14/eggplant) produced high 284 

levels of biofilm (Fig. 1).  In agricultural plants, such as soybean, mung bean, sorghum, 285 

and tomato, biofilm-forming P. aeruginosa alleviates abiotic stress and enhances plant 286 
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growth (Ali et al., 2009; Tank and Saraf, 2010; Sarma and Saikia, 2014; Kumawat et al., 287 

2019). In the clinical setting, biofilm-forming P. aeruginosa is a dreaded pathogen and 288 

accounts for significant mortality in patients with critical pulmonary conditions (Römling 289 

et al., 1994; Singh et al., 2000; Nixon et al., 2001; Bjarnsholt et al., 2009).    This is the first 290 

report to show that the endophytic P. aeruginosa strains present in cucumber (PPA03) 291 

and tomato (PPA08) can form biofilms comparable to clinical strains (Fig.1).  292 

 Swarming motility.  There are no previous reports on the ability of plant-293 

associated P. aeruginosa strains to swarm.  In this study, four endophytic P. aeruginosa 294 

strains (PPA08, PPA10/tomato; PPA16, PPA18/chili) showed extensive swarming (Fig. 2).  295 

The tendril tip of the swarming bacteria possesses mobile cells that can quickly spread 296 

over any surface (Tremblay and Déziel, 2010).  In the murine model system, it has been 297 

demonstrated that pathogenic P. aeruginosa swarms to disseminate in the host 298 

(Coleman et al., 2020a).  Previous reports on clinical strains suggested that swarming 299 

motility might be associated with the expression of virulence factors (Overhage et al., 300 

2008; Coleman et al., 2020b).  In our study, the four superior swarmers exhibited lytic 301 

activity (-hemolysis, proteolysis, and lipolysis) and comparatively higher antagonism 302 

against phytopathogens (Fig. 2, 4; Table 2). 303 

 Lytic activity. There were no previous reports on the hemolytic, proteolytic, or 304 

lipolytic capability of plant-associated P. aeruginosa.  In this study, 10 of the 18 plant-305 

associated strains exhibited -hemolytic activity (Table 2).  Hemolysin is an extracellular 306 

toxin produced by pathogenic bacteria to lyse host erythrocytes thereby facilitating 307 

tissue invasion (Goebel et al., 1988).  Previous studies have demonstrated that in human 308 

infection, P. aeruginosa releases hemolysins to alter host lung physiology. This in part 309 

accounts for the serious morbidity and mortality associated with this bacterium (Darby 310 
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et al., 1999; Wargo et al., 2011).  In addition, P. aeruginosa extracellular lipase and 311 

protease disrupt cell membrane integrity and inactivate immune components (Heck et 312 

al., 1986; Parmely et al., 1990; König et al., 1996; Barker et al., 2004; Pinna et al., 2008).  In 313 

our current study, 13 P. aeruginosa PPA strains exhibited protease activity; four of which 314 

also had lipase activity (Table 2).   315 

 Rhamnolipid.  Both the clinical and agricultural strains of P. aeruginosa studied 316 

released rhamnolipid (Fig. 3).  Previous clinical studies have suggested that P. 317 

aeruginosa rhamnolipids alter the respiratory epithelium facilitating lung infiltration 318 

(McClure and Schiller, 1996; Zulianello et al., 2006).  However, in the agricultural 319 

ecosystem, rhamnolipids produced from P. aeruginosa protect the host plant against 320 

fungal pathogens (Oomycetes, Ascomycota, and Zygomycetes) and green peach 321 

aphid (Kim et al., 2000; Kim et al., 2011; Yan et al., 2015; Sancheti and Ju, 2019).  In the 322 

current study, we have observed that the clinical strains PAO1 and ATCC10145 are the 323 

superior rhamnolipid producers (Fig, 3B).  ATCC9027 has been previously reported as a 324 

low rhamnolipid producer (Grosso-Becerra et al., 2016).  In this study, 50% of the PPA 325 

strains had higher levels when compared to ATCC9027. 326 

 327 

P. aeruginosa exhibits antagonism against phytopathogens 328 

Pythium aphanidermatum, R. solani, and F. oxysporum are globally distributed fungal 329 

pathogens that cause rotting, blight, and wilt, respectively, in many plant species 330 

(Parmeter, 1970; Martin and Loper, 1999; Michielse and Rep, 2009; Lodhi et al., 2013).   X. 331 

oryzae is a devastating rice pathogen that causes bacterial leaf blight (Swings et al., 332 

1990).  Previous reports have described that P. aeruginosa in agricultural ecosystems 333 

indirectly contributes to plant growth by inhibiting these harmful pathogens (Ali Siddiqui 334 
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and Ehteshamul-Haque, 2001; Yasmin et al., 2014; Durairaj et al., 2017).  The three 335 

control isolates of human origin, PAO1, ATCC10145, and ATCC9027, have never 336 

previously been tested for their ability to inhibit phytopathogens.  Our current work 337 

demonstrates that both clinical and agricultural P. aeruginosa strains antagonize the 338 

tested fungal and bacterial phytopathogens (Fig. 4 and 5).  This is unsurprising 339 

considering the number of virulence factors harbored by these strains (Fig. 1 to 3; Table 340 

2).  The secondary metabolites, pyocyanin and rhamnolipid, are implicated as the 341 

major determinants of P. aeruginosa antagonism (Kim et al., 2011; Sudhakar et al., 2015; 342 

Mahmoud et al., 2016; Chen et al., 2017; DeBritto et al., 2020).  The strains tested in this 343 

study produced both pyocyanin and rhamnolipids (Fig. 3; Ambreetha et al., 2021) 344 

which might have contributed to anti-microbial virulence (Fig.4 and 5).  Compared to 345 

PAO1, nearly 90% of the plant-associated strains had higher antagonism against the 346 

bacterial pathogen (Fig. 4D).  In fungal system, the clinical strains had significantly 347 

higher virulence than most of the plant-associated strains (Fig. 4A to C).  We suggest 348 

using the phytopathogenic fungi as a simple eukaryotic model system to test P. 349 

aeruginosa pathogenicity. 350 

 351 

Vegetable-associated P. aeruginosa induces mortality in C. elegans 352 

The pathogenicity of P. aeruginosa in mammals is often assessed based on its lethality 353 

against C. elegans (Mahajan-Miklos et al., 1999; Tan et al., 1999).  Virulent strains of P. 354 

aeruginosa accumulate in the nematode’s gut and slowly cause death (Tan et al., 355 

1999; Kirienko et al., 2014).  However, the non-pathogenic bacteria do not hinder the 356 

growth and development of C. elegans (Andrew and Nicholas, 1976).  In this 357 

investigation, nematode mortality caused by the agricultural strains was considerably 358 
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lower when compared to the clinical isolates.  The most virulent agricultural strains 359 

(PPA03/cucumber; PPA08, and PPA10/tomato; PPA13, and PPA14/eggplant; PPA16, 360 

and PPA18/chili) induced mortality in 30-40% of the nematode population (Fig. 6).  361 

Despite the multiple virulence factors observed in the plant-associated strains, the 362 

mortality of C. elegans was higher (50-100%) when fed with clinical strains.  The reduced 363 

virulence of the plant-associated P. aeruginosa strains suggests that the clinical isolates 364 

might have evolved to be more pathogenic to survive within the eukaryotic system.  365 

Pathoadaptive assays would reveal if these plant-associated strains can evolve into a 366 

more pathogenic form under the right conditions. 367 

 368 

Conclusion 369 

To date, many studies have characterized the destructive virulence factors of human-370 

associated, animal-associated, and environmental P. aeruginosa strains (Jaffar-Bandjee 371 

et al., 1995; Alonso et al., 1999; Vives-Flórez and Garnica, 2006; Zulianello et al., 2006; 372 

Balasubramanian et al., 2012; Hall et al., 2016; Moradali et al., 2017; Ruiz-Roldán et al., 373 

2020).  However, limited studies have demonstrated the ability of agricultural P. 374 

aeruginosa strains to infect animals and humans (Lebeda et al., 1984; Kumar et al., 375 

2013).  In this investigation, we have shown the presence of extremely virulent and lowly 376 

virulent P. aeruginosa strains in the rhizospheric and endophytic niches of four 377 

vegetables (cucumber, tomato, eggplant, and chili).  Virulence was not correlated 378 

with the respective niche.  The less virulent strains may be long-time soil dwellers and the 379 

extensively virulent strains might be human- or animal-adapted ones that got recently 380 

introduced into the agricultural ecosystem.  These virulent strains may have entered the 381 

agricultural ecosystem through animal excreta or irrigation water with run-offs from 382 
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nearby sewage systems (Wheater et al., 1980; Mavrodi et al., 2012; Slekovec et al., 2012; 383 

Orlofsky et al., 2016).  Comparative genomic analyses will reveal the molecular 384 

adaptations contributing to the variation(s) among the agricultural strains.  In the future, 385 

the pathoadaptive ability of the avirulent strains should be tested to find out if they 386 

could evolve into pathogens under selective conditions.  Overall, this study reveals that 387 

agricultural plants harvested directly from soil could be a potential source for 388 

transmission of P. aeruginosa to humans.  Farmworkers and consumers face risk of P. 389 

aeruginosa related infections, which are lethal in vulnerable individuals.  To the best of 390 

our knowledge, this study is the first comprehensive attempt to show that P. aeruginosa 391 

strains residing within the internal tissues and rhizosphere of edible vegetables harbor 392 

multiple virulence factors critical for human infection.  393 

394 
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Experimental Procedures  395 

Bacterial strains and culture conditions 396 

Plant-associated P. aeruginosa strains isolated and characterized in our previous study 397 

were used as test strains (Ambreetha et al., 2021).  Clinical strains of P. aeruginosa, 398 

PAO1, ATCC10145, and ATCC9027 were used as controls (Table 1).  All P. aeruginosa 399 

strains were periodically sub-cultured and grown in Pseudomonas agar (for pyocyanin) 400 

medium (PAP, Himedia) at 37°C.  A plant pathogenic bacterium, Xanthomonas oryzae, 401 

was cultured in a nutrient agar medium at 37°C.  Plant pathogenic fungi, Pythium 402 

aphanidermatum, Rhizoctonia solani, and Fusarium oxysporum were cultured in potato 403 

dextrose agar medium at 37°C. 404 

 405 

Nematode strain and culture conditions 406 

Caenorhabditis elegans N2 hermaphrodite strain was used in this study (Brenner, 1974).  407 

The worms were periodically cultured in nematode growth medium (NGM), overlaid 408 

with Escherichia coli strain OP50, and maintained at 20°C (Brenner, 1974).   409 

 410 

Biofilm production 411 

In vitro biofilm production by the P. aeruginosa strains was quantified using microtiter 412 

assay (O'Toole, 2011).  Overnight cultures of the P. aeruginosa strains (25 µl, OD660~0.5) 413 

were inoculated into microtitre wells containing 225 μl of LB broth. Three sets of 414 

microtitre plates were inoculated and incubated for three different time intervals (24, 415 

48, and 72 hours).  After the incubation period, planktonic cells were transferred to a 416 

new microtitre plate and A660 was measured (Spectramax® i3x, USA). Biofilms stuck to the 417 

plates were washed twice with sterile H2O and flushed with 0.1 % of crystal violet.  The 418 
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plates were incubated for 10-15 minutes at room temperature and gently washed 419 

twice with sterile H2O.  The stained plates were allowed to dry overnight at room 420 

temperature.  The next day, 30% acetic acid was added to the well to dissolve the 421 

biofilms, and absorbance was measured @ 550 nm.  The ratio between the biofilm and 422 

planktonic populations was determined at three time points (24, 48, and 72 h; O’Toole, 423 

2011).  The experiment was repeated thrice and the results were represented as the 424 

biofilm to planktonic ratio. 425 

 426 

Swarming motility 427 

Swarming motility of the P. aeruginosa strains was assessed by adding 10 µl of 24 h-old 428 

test strains (OD660 ~ 0.5) on modified M9 plates with 0.5% agar (Tremblay and Déziel, 429 

2008).  The diameter of the bacterial tendrils extended on the plates due to swarming 430 

was measured, and the percentage of plates swarmed within 48 h of incubation was 431 

estimated (Tremblay and Déziel, 2008). The experiment was repeated thrice and three 432 

different diameters were measured every time.  Results were represented as the 433 

percentage of the plate area swarmed in 48 h. 434 

 435 

Rhamnolipid  436 

Qualitative assay.  A CTAB agar test was done to qualitatively assess the P. aeruginosa 437 

strains for rhamnolipid production (Siegmund and Wagner, 1991).  In brief, the culture 438 

supernatants of the test strains were filtered using 0.45 µm filters.  Ten microliters of the 439 

cell-free extracts were added to 0.2 cm wells on CTAB-methylene blue agar plates and 440 

incubated at 37°C for 24 h.  If rhamnolipid (anionic surfactant) was present in the 441 

supernatant, it reacted with the CTAB (cationic surfactant), resulting in an insoluble 442 
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complex.  The strains were scored positive based on the formation of a dark blue 443 

precipitated zone around the culture wells. The experiment was repeated thrice to 444 

confirm result consistency. 445 

 446 

Quantitative assay. The strains were grown in phosphate limited protease peptone 447 

ammonium salts (PPGAS) broth supplemented with 2% (v/v) sunflower oil at 37°C to 448 

induce rhamnolipid production for seven days (Zhang and Miller, 1992).  We used the 449 

chloroform-methanol extraction method for rhamnolipid separation (Zhang and Miller, 450 

1992).  In brief, the cell-free culture supernatant was acidified to pH2 with 12 M 451 

hydrochloric acid.  The lipids were extracted using a chloroform-methanol (2:1) mixture 452 

and concentrated through evaporation. Concentrated rhamnolipids were 453 

gravimetrically quantified (Gunther et al., 2005).  The experiment was repeated thrice 454 

and results were presented as µg/ml of the culture supernatant. 455 

 456 

Lytic activity  457 

Hemolysis. The ability of the P. aeruginosa strains to lyse blood cells was assessed by 458 

streaking the overnight cultures (OD660 ~ 0.5) on nutrient agar plates containing 5% 459 

sheep blood (Williams and Harper, 1947).  The plates were incubated for 24 h at 37°C.  460 

Green discoloration of the blood with a mild halo zone was noted as -hemolysis, and 461 

the absence of lytic activity was noted as γ-hemolysis.  The experiment was repeated 462 

thrice for consistency. 463 

 464 

Lipolysis and proteolysis. The lipolytic activity of the P. aeruginosa strains was assayed 465 

using 1% tributyrin as a substrate (Atlas, 1993; Georgescu et al., 2016).  Strains were 466 
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considered positive for lipolytic activity if an opaque precipitate formed around the 467 

bacterial colonies.  The proteolytic behavior of the strains was assayed using 3% skim 468 

milk and 3% gelatin (1;1 ratio) as the substrates (caseinase, and gelatinase activity, 469 

respectively).  Formation of halo zones around the colonies were indicative of casein 470 

proteolysis and gelatin hydrolysis (Atlas, 1993; Georgescu et al., 2016).  The strains were 471 

scored based on the intensity of lysis (mild lysis, heavy lysis, or no lysis).  The experiment 472 

was repeated thrice for consistency. 473 

 474 

Antagonistic activity 475 

Antifungal antagonism. The antagonistic potential of the P. aeruginosa strains against 476 

three phytopathogenic fungi (Pythium aphanidermatum, R. solani, and F. oxysporum) 477 

was assessed by dual-culture assay (Sakthivel and Gnanamanickam, 1986).  In brief, 478 

fungal discs were placed on one corner of potato dextrose agar medium in 90 mm 479 

Petri plates.  P. aeruginosa strains were streaked 3 cm away from the fungal disc.  Plates 480 

were incubated @ 37°C for seven days.  Inhibition in mycelial growth, as influenced by 481 

the P. aeruginosa strains, was recorded.  The percentage inhibition was estimated 482 

based on the standard formula,  , where Dc is the diameter of the fungal 483 

mycelium in the control plate and Dt is the diameter of the fungal mycelium as 484 

influenced by the test strains (Riungu et al., 2008).  The experiment was repeated thrice 485 

for consistency. 486 

 487 

Antibacterial antagonism. Antibacterial effect of the test strains against Xanthomonas 488 

oryzae pv. oryzae was estimated by cross streak assay (Lertcanawanichakul and 489 

Sawangnop, 2011).  In brief, P. aeruginosa strains were streaked at the center of nutrient 490 
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agar plates and incubated for 24 hrs.  After 24 hours, X. oryzae was streaked 491 

perpendicular to the central streak and the plates were incubated for another 24 hrs 492 

@37°C.  Inability of the target pathogen to grow in the confluence area was recorded 493 

after incubation.  The percentage inhibition of X. oryzae, as influenced by the P. 494 

aeruginosa strains, was calculated based on the standard formula, , where Lc 495 

is the length of the X. oryzae grown in the control plate and Lt is the length of the X. 496 

oryzae as influenced by the test strains (Lo Giudice et al., 2007).  The experiment was 497 

repeated thrice for consistency. 498 

 499 

C. elegans killing assay 500 

The ability of the P. aeruginosa strains to induce death in C. elegans was demonstrated 501 

via a slow-killing assay (Tan et al., 1999).  C. elegans gravid adults were treated with 1N 502 

NaOH and 5% sodium hypochlorite (1:1) solution (Brenner, 1974).  The eggs were 503 

allowed to hatch in M9 buffer, and 24 h later the emerged L1-worms were released 504 

over a lawn of E. coli OP50 (Brenner, 1974; Adonizio et al., 2008).  These synchronized L1-505 

worms were grown up to the L4-stage.  We prepared slow-killing plates with NGM (Tan 506 

et al., 1999) seeded with overnight cultures (OD660 ~ 0.5) of OP5O, PPA strains, and 507 

clinical strains of P. aeruginosa.  The plates were incubated at 37°C for 24 h.  The L4-508 

worms (20 per plate) were introduced into these plates and incubated at 20°C 509 

(Brenner, 1974).  The viability of the nematodes, as influenced by the tested bacterial 510 

strains, was recorded every 24 h for five consecutive days.  Worms that did not respond 511 

to physical stimuli were scored as dead.  The death of worms on the OP50 plate was 512 

scored as natural mortality (negative control).  The experiment was repeated thrice for 513 

consistency. 514 
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Statistics and reproducibility 515 

All experiments were performed in triplicates.  All data were subjected to a one-way 516 

analysis of variance (ANOVA) with a P-value of 0.05, and Duncan’s multiple range test 517 

was performed between individual means to reveal any significant difference (XLSTAT, 518 

version 2010.5.05 add-in with Windows Excel).  Principal coordinate analysis (PCoA) 519 

based on Euclidean distance was carried out using NCSS 2020 statistical software 520 

(NCSS, Kaysville, USA) to cluster the P. aeruginosa strains based on their antagonism 521 

against phytopathogens.  Data analysis and scientific graphing were done in OriginPro 522 

version 8.5 (OriginLab®, USA).   523 
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Table 1. Microbial strains used in this study 

Microorganism Source Infection/Niche References 

Pseudomonas aeruginosa (reference strains)    

PAO1 Human  Wound infection Holloway, (1955) 

ATCC9027 Human  Otitis externa  Haynes, (1951) 

ATCC10145  Human Unknown Picard et al. (1994) 

Plant-associated P. aeruginosa strains 

PPA01 Cucumber  Rhizosphere Ambreetha et al. (2021) 

PPA02 Cucumber  Rhizosphere Ambreetha et al. (2021) 

PPA03 Cucumber  Endophyte Ambreetha et al. (2021) 

PPA04 Cucumber  Rhizosphere Ambreetha et al. (2021) 

PPA05 Tomato  Endophyte Ambreetha et al. (2021) 

PPA06 Tomato  Rhizosphere Ambreetha et al. (2021) 

PPA07 Tomato  Endophyte Ambreetha et al. (2021) 

PPA08 Tomato  Endophyte Ambreetha et al. (2021) 

PPA09 Tomato  Rhizosphere Ambreetha et al. (2021) 

PPA10 Tomato  Endophyte Ambreetha et al. (2021) 

PPA11 Eggplant  Endophyte Ambreetha et al. (2021) 

PPA12 Eggplant  Rhizosphere Ambreetha et al. (2021) 

PPA13 Eggplant  Rhizosphere Ambreetha et al. (2021) 

PPA14 Eggplant  Rhizosphere Ambreetha et al. (2021) 

PPA15 Chili  Rhizosphere Ambreetha et al. (2021) 

PPA16 Chili  Endophyte Ambreetha et al. (2021) 

PPA17 Chili  Endophyte Ambreetha et al. (2021) 

PPA18 Chili  Endophyte Ambreetha et al. (2021) 

Phytopathogens 

Xanthomonas oryzae - - Unpublished 

Pythium aphanidermatum - - Unpublished 

Rhizoctonia solani - - Unpublished 

Fusarium oxysporum - - Unpublished 
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Table 2. Lytic behavior of P. aeruginosa strains 

Strains Hemolysis Proteolysis Lipolysis 

γ-hemolysis -hemolysis Casein Gelatin Lipid 

PPA01 + - - - - 

PPA02 - ++ + - - 

PPA03 - ++ ++ ++ - 

PPA04 - ++ + ++ - 

PPA05 - - + ++ - 

PPA06 + - + - + 

PPA07 - ++ ++ ++ + 

PPA08 - ++ ++ ++ - 

PPA09 + - - - - 

PPA10 - ++ ++ ++ - 

PPA11 - ++ + ++ - 

PPA12 + - + - - 

PPA13 - ++ ++ ++ + 

PPA14 - ++ ++ ++ - 

PPA15 + - ++ ++ + 

PPA16 - ++ ++ ++ - 

PPA17 + - ++ ++ - 

PPA18 + - ++ ++ - 

ATCC10145 - ++ ++ ++ + 

ATCC9027 - ++ - + - 

PAO1 - ++ ++ ++ ++ 

γ-hemolysis – no lysis of blood cells; -hemolysis - partial destruction of blood cells; ‘+’- mild lysis; ‘++’ – extensive lysis; ‘-’ – 

no lysis 
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Figure legends 

Fig. 1. Biofilm production by P. aeruginosa strains. The graph represents the biofilm to 

the planktonic ratio of P. aeruginosa strains recorded after 24, 48, and 72 h of 

incubation. Values plotted are the mean of six replicates with standard errors and 

letters above the bars indicating the ranking of the strains (significant differences, p < 

0.05) based on Duncan’s multiple range test (DMRT). The strains are color-coded based 

on their plant source: cucumber (green), tomato (red), eggplant (purple), and chili 

(yellow).  The clinical isolates, ATCC10145, ATCC9027, and PAO1 are positive controls. R, 

rhizosphere strain; E, endophytic strain. 

 

Fig. 2. Swarming motility by P. aeruginosa strains. (A) Visualization of a non-swarming 

negative control, P. chlororaphis (left), and a superior swarmer, P. aeruginosa 

(PPA08/tomato endophyte), on M9 plates with 0.5% agar.  (B) The graph represents the 

percentage of 90mm Petri-plates covered by the tendrils formed by the P. aeruginosa 

strains during swarming.  Values plotted are the mean of six replicates with the standard 

errors and letters above the bars indicating the ranking of strains (significant differences 

(p < 0.05) based on Duncan’s multiple range test (DMRT).  The strains are color-coded 

based on their plant source: cucumber (green), tomato (red), eggplant (purple), and 

chili (yellow).  The clinical isolates, ATCC10145, ATCC9027, and PAO1, are positive 

controls. R, rhizosphere strain; E, endophytic strain. 

 

Fig. 3. Rhamnolipid production by P. aeruginosa strains. (A) Rhamnolipid production is 

indicated by the appearance of blue halos around the wells upon addition of cell-free 

supernatant of P. aeruginosa strains on CTAB-methylene blue agar medium. (B) 

Quantitative rhamnolipid levels released by P. aeruginosa strains. Values plotted are the 

mean of three replicates with the standard errors and letters above the bars indicating 

the ranking of the strains (significant differences (p < 0.05) based on Duncan’s multiple 

range test (DMRT).  The strains are color-coded based on their plant source: cucumber 

(green), tomato (red), eggplant (purple), and chili (yellow).  The dashed lines indicate 

the levels of rhamnolipid made by the clinical strains, ATCC10145, ATCC9027, and PAO1 

(positive controls).  R, rhizosphere strain; E, endophytic strain. 
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Fig 4. Biocontrol of phytopathogens by P. aeruginosa strains. The percentage inhibition 

of Pythium aphanidermatum (A), Rhizoctonia solani (B), Fusarium oxysporum (C), and 

Xanthomonas oryzae (D) induced by the P. aeruginosa strains. Values plotted are the 

mean of three replicates normalized to PAO1. * denotes the significant difference of 

PAO1 (p < 0.05) based on Duncan’s multiple range test (DMRT).  Strains are color-coded 

based on their plant source: cucumber (green), tomato (red), eggplant (purple), and 

chili (yellow).  R, rhizosphere strains; E, endophytic strain.   

 

Fig. 5. Principal coordinate analysis (PCoA) based on biocontrol ability of the P. 

aeruginosa strains. Euclidean distance-based PCoA plot for the biocontrol of bacterial 

and fungal phytopathogens by the P. aeruginosa strains.  The percentage values in 

parentheses on the x- (PCoA1) and y-axes (PCoA2) depict the similarities and 

differences among the strains based on their mineral solubilizing ability.  The three major 

clusters of PPA strains formed based on their similar biocontrol activity are named A, B, 

and C.  The strains are color-coded based on their plant source: cucumber (green), 

tomato (red), eggplant (purple), and chili (yellow).   

 

Fig. 6. Caenorhabditis elegans death induced by P. aeruginosa strains. (A) 

Stereomicroscopic view of L4 nematodes - live and active worm after feeding on E. coli 

OP50 (left); dead worm after feeding on the most virulent clinical isolate, ATCC 10145 

(right). (B) Percentage of living nematodes after feeding on P. aeruginosa strains 

recorded over the time course of 0-120 hours. Values plotted are the means of three 

replicates with standard errors. The blue lines indicate the percentage of nematodes 

that survived after feeding on the clinical isolates, ATCC10145, ATCC9027, and PAO1 

(positive controls).  The black line indicates the percentage of living nematodes after 

feeding on E. coli OP50 (negative control).  The PPA strains are color-coded based on 

their plant source: cucumber (green), tomato (red), eggplant (purple), and chili 

(yellow).   
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