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Abstract 

Brain-computer interfaces (BCIs) provide an artificial link by which the brain can directly 

interact with the environment. To achieve fine BCI control, participants must modulate the 

patterns of the cortical oscillations generated from the motor and somatosensory cortices. 

However, it remains unclear how humans regulate cortical oscillations, the controllability 

of which substantially varies across individuals. Here, we performed simultaneous 

electroencephalography (to assess BCI control) and functional magnetic resonance 

imaging (to measure brain activity) in healthy participants. Self-regulation of cortical 

oscillations induced activity in the basal ganglia-cortical network (BgCN) and the 

neurofeedback control network (NfCN). Successful self-regulation correlated with striatal 

activity in the BgCN, through which patterns of cortical oscillations were likely 

modulated. Moreover, BgCN and NfCN connectivity correlated with strong and weak 

self-regulation, respectively. The findings indicate that the BgCN is important for self-

regulation, the understanding of which should help advance BCI technology. 
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MAIN TEXT 

 

Introduction 

Brain-computer interfaces (BCIs) provide an artificial link by which the brain can interact with 

the environment without using bodily effectors or sensors (1-4). In BCIs, signals from the brain 

are retrieved and decoded to control external devices. Neurofeedback (NFB) is a related technique 

which encourages users to control their own brain activity according to decoded brain signals (5-

8). Potentials for real-world applications are emerging for both BCIs (9-13) and NFB (14-18), 

though these techniques have limitations. Brain networks of BCI/NFB users are engaged in fine-

tuning their own neural states, involving self-regulation of brain activity or connectivity (7, 19-

22). Furthermore, BCI/NFB performance varies across individuals, reflecting interindividual 

differences in the self-control of brain states (23-27). Some participants fail to self-regulate brain 

activity, even after repeated training sessions (18, 28, 29).  

Further development of BCI technology may overcome those limitations (30), but the 

issue will remain for NFB, which inherently relies on the ability to self-regulate brain activity 

(here, referred to simply as self-regulation). How organisms achieve self-regulation remains 

unknown, despite continued efforts to identify the underlying neural mechanisms and their 

correlates (18).  

 Self-regulation may involve the neurofeedback control network (NfCN), which includes 

the anterior insula cortex (AIC), anterior cingulate cortex, supplementary motor area (SMA), 

dorsolateral prefrontal cortex (dlPFC), lateral occipital cortex (LOC), and superior and inferior 

parietal lobules (SPL and IPL, respectively) (14, 16). The NfCN corresponds primarily to the 

cognitive control network (22), which has been implicated in top-down cognitive control. Thus, 

The NfCN might subserve the top-down control of self-regulation on the basis of explicit 

knowledge about the strategy (i.e., “think” strategy) (31). Alternatively, the basal ganglia-cortical 

network (BgCN), which underlies behaviors stemming from trial-and-error-type procedural 

learning, may be the core neural correlate of BCI/NFB control (32, 33). Compelling evidence 

from rodents indicates that corticostriatal connectivity conveys essential information for BCI-

based operant conditioning (21). Previous evidence points to the role of the BgCN in intuitive 

control of behaviors (22, 34), which may be called the “feel” strategy.  

 To investigate brain activity and connectivity during self-regulation, 

electroencephalography (EEG)-based BCI can be combined with functional magnetic resonance 

imaging (fMRI). Hinterberger et al. (33) conducted a pioneering concurrent BCI-MRI study with 

a sparse sampling method, revealing roles for both the NfCN and BgCN in self-regulation. More 

recently, a few concurrent BCI-fMRI studies reported the neural signature of motor imagery (32) 

and sense of control (35). These studies also indicated that cortical and subcortical regions are 

activated during a BCI-related task, but how the NfCN (18) and BgCN (21) jointly or distinctly 

contribute to self-regulation remains unknown. The NfCN and BgCN are not independent but, 

rather, are interconnected. Recent evidence indicates that part of the striatum may serve as a hub 

for different BgCN networks (37), requiring revision of the canonical theory of parallel and 

largely segregated BgCN circuits (36). Intriguingly, the connectivity of the striatum reflects 

individual variability in brain functions (38), which potentially accounts for the interindividual 

variability in self-regulation.  

Here, we hypothesized that the “intuitive” BgCN and “logical” NfCN would play distinct 

roles in self-regulation during BCI. We also tested if the dorsal striatum serves as a hub 

interconnecting the NfCN and BgCN. We show that the relative involvement of NfCN and BgCN 

in self-regulation reflects interindividual differences in BCI performance.  
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Results 

 

BCI task 

Twenty-six healthy adults participated in the concurrent BCI-fMRI experiment. Each trial began 

with a presentation of a horizontal bar at the bottom of the screen indicating the left target (LT), 

the right target (RT), or a rest (Fig. 1A). A falling cursor was then displayed for 4 s, during which 

its horizontal positioning was controlled by the laterality of the alpha-band (9.5–12.5 Hz) 

sensorimotor rhythms (SMRs) computed from electrodes C3 and C4 (23). The BCI task was to 

move the falling cursor horizontally to hit the target by modulating SMR laterality. For the RT 

and LT trials, participants were instructed to use first-person kinesthetic imagery of finger-thumb 

oppositions with the right and left hands, respectively. First-person kinesthetic imagery refers to a 

task by which the participants imagine themselves performing an action with an associated 

proprioceptive (not visual) sensation (39). The rest trials served as a perceptive control, during 

which participants were asked to pay attention to the falling cursor without performing motor 

imagery. After each trial, participants were briefly notified about whether the trial was a hit or a 

miss (outcome period). 

 

BCI performance 

The BCI experiment was performed over two sessions, including one practice session that was 

performed outside the MRI scanner while seated in a chair (outMRI) and one session that was 

completed inside the MRI scanner during concurrent BCI-fMRI acquisition (inMRI). After 

excluding data from two participants with excessive EEG artifacts, we evaluated the hit rates for 

the remaining 24 participants. Hit rates were calculated as the number of times the cursor hit an 

LT or RT divided by the total number of LT and RT trials. Twenty participants controlled the BCI 

significantly better than chance during the outMRI session, and 14 participants also did so during 

the inMRI session (P < 0.05, two-tailed exact binomial test; see Table S1). The hit rates varied 

across participants during both the inMRI session (mean = 0.70 ± 0.13, range = 0.47–0.91) and 

outMRI session (mean = 0.60 ± 0.09, range = 0.45–0.80), but these were strongly correlated (r = 

0.83, P < 0.001; Fig. 1B). The offline analyses of the inMRI EEG data and extracted spectral 

amplitude (2–23 Hz, 3-Hz bins) showed that event-related desynchronization (ERD) of SMRs 

occurred mostly within the 11-Hz bin (9.5–12.5 Hz) (see Fig. S1 and Supplementary Text). The 

SMR ERD was contralateral to the BCI target and was correlated with BCI performance (RT: r = 

0.66, P < 0.001; LT: r = −0.69, P < 0.001). No statistical differences were found between the LT, 

RT, and rest trials for any electrooculogram or electromyographic electrode channels (repeated 

measures ANOVA, P > 0.1 for each channel), which indicates that BCI performance was not 

influenced by overt eye or body movements.  

 

Cortical and subcortical activity during BCI control 

We first examined whole-brain fMRI signal changes during the RT and LT trials (random-effects 

model analysis, n = 24; P < 0.05 cluster-level family-wise error [FWE] corrected). Compared 

with that during the rest trials, the self-regulation condition induced widespread activity involving 

both the NfCN and the BgCN, including the bilateral premotor (PM)-SMA, SPL, IPL, dlPFC, 

AIC, visual areas, LOC, basal ganglia, thalamus, and posterolateral cerebellum (lobule VI) (Fig. 2 

and see Table S2 for details). In particular, the primary motor cortex (M1), visual areas, and 

anteromedial cerebellum (lobule V) showed lateralized activity regarding the RT and LT tasks. 

Unexpectedly, ipsilateral M1 showed negative signal changes contributing to the SMR laterality, 

whereas contralateral M1 showed equivocal activity, which was not different from that of the rest 

trials.  
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Striatal activity and corticosubcortical connectivity supporting successful BCI control 

To clarify the mechanisms underlying self-regulation for BCI control, we explored activity 

throughout the brain correlated with hit trials. Only the bilateral posterior putamen demonstrated 

greater activity during hit trials than during miss trials (t = 3.48, P < 0.05 cluster-level FWE 

corrected; Fig. 3A). Conversely, cortical motor areas such as the SMA tended to show less 

activity during hit trials than during miss trials (Fig. 3A). We further examined whether this hit-

associated activity of the posterior putamen was present during the BCI control period or during 

processing of information regarding the hit/miss outcome presented at the end of each trial. The 

ventral striatum, which is implicated in reward and motivational processing (40, 41), was chosen 

as a control striatal subsector. To assess the time course of brain activity, we identified volumes 

of interest (VOIs) in the dorsal putamen connecting with the motor cortices (motor putamen) and 

in the ventral striatum connecting with the orbitofrontal cortex, as defined by diffusion MRI (42). 

We found greater activity in the motor-associated putamen for hit trials than for miss trials for the 

control period (between target and outcome presentations) (t(21) = 2.34, P = 0.029, paired t test), 

but not during the outcome period (t(21) = 1.49, P = 0.152) (Fig. 3B). By contrast, activity in the 

ventral striatum was comparable during the control and outcome periods. These findings suggest 

that motor striatal activity reflects brain mechanisms for self-regulation rather than for processing 

of outcome information related to a hit or miss. 

These results also suggested that the motor striatum plays a role in successful self-

regulation. However, it remained unclear how motor striatum activity influences BCI 

performance as determined by the laterality of the ERD with motor and somatosensory cortices 

(43). A possibility was that the BgCN modulates SMRs. To test this hypothesis, we performed a 

psychophysiological interaction (PPI) analysis, using the left motor striatum as the seed (Fig. 4A). 

When comparing hit and miss trials, the left motor striatum showed increased connectivity (P < 

0.05 FWE corrected) with the key nodes of the BgCN: the PM-SMA (x, y, z = −2, 8, 58; Z = 4.55) 

and globus pallidus (x, y, z = −24, −12, 2; Z = 5.13) extending into the thalamus. Hit-related 

increased connectivity with the left motor striatum was also observed in the cerebellum (x, y, z = 

−38, −52, −40; Z = 4.27) and visual cortex (x, y, z = −12, −88, −6; Z = 3.92). These results 

indicate the involvement of the BgCN (44-46) and, possibly, the cerebellar-basal ganglia circuit 

(47, 48) in successful modulation of SMRs. Furthermore, the laterality of ERD, the critical 

determinant of BCI performance, correlated with BgCN connectivity during the hit trials but not 

during the miss trials (Fig. 4B). These findings further corroborate that the motor striatum plays a 

pivotal role in the self-regulation of SMRs by modulating the connectivity within the BgCN. 

 

Difference of functional brain networks related to individual performance  

Thus far, we found evidence for the role of the BgCN, but not the NfCN, in the self-regulation of 

SMRs. Building on previous studies on the neural mechanisms underlying BCI and NFB (23-26, 

49-51), we exploited interindividual differences in self-regulation to test if the BgCN and NfCN 

jointly or distinctly contribute to successful self-regulation.  

We examined whether effective connectivity with the hit-related motor striatum correlates 

with individual differences in BCI performance. In the PPI analysis at the individual level, the 

motor striatum showed various levels of effective connectivity with not only the BgCN but also 

the NfCN. The motor striatum regions of good performers tended to show connectivity with the 

BgCN, while poor performers exhibited widespread striatal connectivity with the BgCN and the 

NfCN (Fig. 5A and B). 

We quantified the extent to which motor putamen connectivity with the BgCN or NfCN 

correlates with individual differences in the hit rate, using least absolute shrinkage and selection 

operator (LASSO) regression analysis. The explanatory variables were the connectivity values 

between the left motor striatum and the key nodes of the BgCN and NfCN: M1, PM, SMA, 

thalamus, cerebellum, IPL, SPL, AIC, dlPFC, and LOC (see Table S2). This LASSO model 
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predicted individual differences in BCI performance, with an R2 of 0.87. The left PM and right 

M1 showed positive weights, indicating stronger BgCN connectivity for good performers. 

Conversely, the right dlPFC, IPL, PM, and cerebellum as well as the left LOC and AIC showed 

negative weights, implicating poor performance for strong striatum-NfCN connectivity (Fig. 5C). 

These results indicated that strong striatum-BgCN connectivity coupled with weak striatum-

NfCN connectivity underlies the individual differences in self-regulation.  

 

Discussion  

We showed that activity and connectivity of the BgCN reflects controllability of a BCI at both 

within-individual (hit vs. miss) and interindividual levels, providing evidence that BgCN supports 

the self-regulation of SMRs. Rather unexpectedly, the recruitment of the NfCN, which might 

reflect attempted top-down control over a BCI/NFB task (18), had a detrimental impact on self-

regulation.  

 

Neural activation and deactivation during BCI control 

Consistent with previous work (32, 35), the BCI task used in this study recruited motor-related 

cortical and subcortical areas. Contralateral M1 activity did not differ between the task and rest 

periods (see Fig. 2); this finding agrees with previous studies showing equivocal M1 activity 

during motor imagery (52, 53). However, our finding of a decrease in ipsilateral M1 activity 

during BCI seems novel and requires some explanation. During unilateral hand movement, 

ipsilateral M1 activity can be suppressed below a resting baseline (54). This phenomenon is 

usually interpreted as the manifestation of interhemispheric inhibition. However, the concept of 

interhemispheric inhibition does not explain the present finding, because ipsilateral M1 activity 

decreased without increases in contralateral M1 activity. We propose that, in addition to the 

increase in neural/synaptic activity (“activation”), suppression of activity below that seen at the 

rest baseline (i.e., “deactivation”) also contributes to BCI task control. This interpretation is based 

on the following considerations. Synchronized SMRs are a signature of a deactivated or “idling” 

motor cortex (43). Thus, a downregulation of ipsilateral motor area activity to levels lower than 

those during the rest periods should correlate with ipsilateral SMR synchronization. In our study, 

increasingly synchronized SMRs in the ipsilateral motor cortex enhanced ERD laterality, yielding 

better BCI control (Fig. S1c). Moreover, ipsilateral M1 connectivity with the striatum correlated 

with the individual differences in self-regulation, supporting the effectiveness of the ipsilateral 

“deactivation” strategy through the BgCN. This hypothesis should be tested in future work, since 

the downregulation of brain activity below a given baseline is considered an idiosyncratic strategy 

for BCI control (22). 

 

Striatal activity and goal-directed modulation of brain rhythms via the BgCN 

A key finding from the present study is that motor striatal activity correlated with BCI 

performance. Striatal activity might reflect processing of the outcome stimuli, corresponding to 

“consummatory” processes during the receipt of a reward (40, 41). Although we did not use 

explicit incentives such as monetary rewards, striatal activity can be elicited merely by positive 

reinforcement (55). However, we considered this consummatory motor striatal activity unlikely, 

because hit-related motor striatal activity occurred during the BCI control period but not during 

the outcome period. Moreover, the ventral striatum, which underlies consummatory behavior 

(41), exhibited robust BCI task-related activity irrespective of the outcome. This indicates that the 

ventral striatum supports the motivation necessary to complete a BCI task (56) regardless of 

whether the response is a hit or miss.  

Current BCIs often require a learning period before users can achieve adequate control 

(22, 57, 58). In the present study, BCI control did not improve over the short experimental period 

during fMRI; thus the hit-related striatal activity cannot be ascribed to BCI learning. Still, we 
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consider that the striatal activity might relate to behaviors categorized as implicit and 

unsupervised learning based on trial-and-error experiences (31, 59). Indeed, previous studies 

found striatal activity during intuitive mental processes for trials and errors (33, 60, 61). 

Therefore, the motor striatum may serve self-regulation through an intuitive “feel” type of 

strategy.  

Increased striatal activity during the hit trials was accompanied by increased effective 

connectivity with important nodes of the BgCN (Fig. 4A). The BgCN constitutes a semiclosed 

loop implicated in a variety of functions, including behavioral selection and switch, procedural 

learning, and motor and cognitive vigor (44, 45). The striatum may switch relevant networks 

according to the behavior (62, 63). We also found that BgCN connectivity correlated with ERD 

laterality, which was the critical determinant of BCI performance (Fig. 4B). This finding provides 

new evidence that the striatum is involved in modulating brain rhythms through the BgCN. 

Therefore, the striatum needs to be included as an important module of the classic circuit for the 

generation of SMRs: the thalamocortical circuit (64, 65). The goal-directed modulation of SMRs 

may relate to the striatum’s role in creating a response bias in the cerebral cortex during 

demanding tasks (46, 66).  

 During the hit trials, the motor striatum also showed increased effective connectivity with 

the cerebellum, which also exhibited substantial BCI task-related activity. This suggests that the 

basal ganglia interacts with the cerebellum for successful BCI control. Anatomical evidence 

indicates direct and reciprocal cerebellar-basal ganglia circuits via the thalamus (47, 48), and 

these circuits may thus contribute to BCI control via the thalamic region, as revealed by the PPI 

analysis.  

 

BgCN vs. NfCN 

The present results demonstrate that the BgCN and NfCN play different roles in self-regulation. 

Good BCI performers exhibited strong striatal connectivity with the BgCN, which included 

regions that subserve an implicit or “bottom-up” strategy of behavioral control (31, 59). BCI 

control may require striatal functions to modulate activity in the cortical areas to lateralize ERD. 

By contrast, the LASSO regression analysis revealed that NfCN connectivity was detrimental for 

BCI performance. Poor BCI performers exhibited stronger connectivity with the NfCN, including 

the dlPFC, IPL, and LOC. This suggests that the use of an effortful “top-down” or cognitive 

strategy results in poor BCI performance. In other words, subjects who exhibited poor BCI 

control might have adapted a “think” strategy to control SMRs declaratively or explicitly 

according to the task instructions about motor imagery. The improvement in BCI performance 

through training may involve shifts in which neural substrates are recruited, from those 

underlying cognitively demanding control (NfCN: “think”) to those related more to intuitive (34) 

and automatic (22) control (BgCN: “feel”). The employment of these two strategies at an early 

stage of learning may explain the interindividual differences observed in this study.  

 

The present findings indicate that it is better to “feel” than to “think” to modulate SMRs as a BCI 

control signal. Researchers should thus tell BCI experiment participants “Don’t think. Feel! Don’t 

concentrate on the target but concentrate on the feeling from the fingers.” Our findings indicate 

that altering the instructions given to participants will promote the implementation of an effective 

strategy and thus reduce interindividual differences in BCI controllability. 
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Materials and Methods 

 

Experimental Design  

 

Participants 

Twenty-six healthy participants (12 female; mean age ± standard deviation [SD], 22.4 ± 2.9 

years) participated in this study. Each participant performed two outMRI runs and three inMRI 

runs, which were completed on different days. All participants took part in an outMRI study 

before the inMRI study (23). All participants were right handed, as assessed using the Edinburgh 

Handedness Inventory (68), had normal or corrected-to-normal vision, reported no history of 

neurological or psychological disorders, and had no prior BCI experience. Written informed 

consent was obtained from all participants before participation, according to the study protocol 

that was approved by the institutional review board of the National Center of Neurology and 

Psychiatry, Tokyo, Japan. After visual inspection, data from two participants were discarded due 

to excessive movement-related EEG artifacts during fMRI; hence, data from 24 participants were 

analyzed. 

 

Simultaneous EEG-fMRI acquisition  

EEG was used as a BCI control modality because of its wide application in the field of 

neuroprosthetic control and neurorehabilitation (9-11). A prototypical BCI was employed that 

uses SMRs, which arise from M1 and somatosensory cortices (32, 33, 35, 43). fMRI was used to 

measure neural/synaptic activity throughout the brain, including NfCN and the BgCN. Blood 

oxygen level-dependent (BOLD) fMRI acquisition was performed with a 3-T MRI scanner 

(Magnetom Trio; Siemens, Erlangen, Germany) using a T2*-weighted, gradient echo, echo planar 

imaging sequence (repetition time, 3 s; echo time, 30 ms; flip angle, 90°; voxel size, 3.0 mm3; 

number of slices, 42). A total of 262 scans were acquired for each run. The first 45 scans were 

dummy scans to minimize the transient effects of magnetic saturation and to initialize the artifact 

correction and BCI classifier algorithms.  

Electrophysiological data were simultaneously acquired using MRI-compatible amplifiers 

(BrainAmp MR plus; Brain Products, Gilching, Germany) and a customized EEG cap (BrainCap 

MR; Brain Products) (69). The EEG cap consisted of 13 electrodes; nine were positioned over the 

sensorimotor area (F3, F4, C3, C4, Cz, P3, P4, T7, and T8), one over the left eye (Fp1), one as the 

ground electrode (AFz), one as the reference electrode (FCz), and one attached by a 35-cm lead 

and placed on the back to record the electrocardiogram. Total impedances were kept at <15 kΩ. 

Electromyograms over the left and right thenar muscles and horizontal electrooculograms were 

also simultaneously acquired. Data were sampled at 5,000 Hz and filtered with 0.1-Hz high-pass 

and 250-Hz low-pass hardware filters.  

 

Online EEG artifact correction  

To provide online BCI classification and online feedback, MRI artifacts incurred on the EEG data 

were corrected online. According to methods reported by Allen and colleagues (70), artifact 

correction algorithms were written in MATLAB R2007b (MathWorks, Natick, MA, USA) that 

operated in conjunction with the BCI software. The system first corrected gradient artifacts, 

which are millivolt-scale distortions in EEG that are caused by the switching gradient magnetic 

fields of MRI. Exploiting the fact that gradient artifacts are mostly stationary and phase locked to 

the repetition timing of a sequence, mean gradient artifact templates were calculated for each 

channel and subtracted from the incoming EEG. 

 After gradient artifact correction, the system then corrected for ballistocardiogram 

artifacts, which are microvolt-scale deflections in the EEG resulting from micromovements of the 

head that are induced by the pulsatile acceleration of blood through the aortic arch (71) and 
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possibly also by the expansion and contraction of scalp arteries (70). The R peak of 

electrocardiogram precedes artifacts by approximately 200 ms; this information was used to 

create a mean ballistocardiogram template over the R-R interval for each channel, which was 

subtracted from the EEG, similarly to the gradient artifact correction process. 

To limit the effects of gross and ballistocardiogram-related head movements, a custom-

made vacuum cushion (72) was placed around the participant’s head that conformed to the space 

inside the MRI head coil. Finally, to reduce remnant scanner-related noise and baseline drift, a 

12th-order elliptic bandpass filter (1–23-Hz bandpass, 0.1-dB passband ripple, and 20-dB 

attenuation) was applied after ballistocardiogram artifact correction. Signals were then 

downsampled to 500 Hz for further processing.  

 

Brain-machine interface control and feedback 

For the BCI system used in this study, visual stimuli, feature extraction, and classification were 

all performed using the BCI2000 software platform (73). Participants were asked to perform two 

motor imagery tasks: imagery of finger-thumb opposition with the left and right hands, and a 

baseline “rest” task. For the imagery tasks, participants were instructed to use, to the best of their 

ability, a first-person perspective and kinesthetic rather than visual imagery (74). Participants also 

overtly practiced the movements before the start of the experiment.  

Tasks were cued using visual stimuli (Fig. 2A) that were projected onto a mirror attached 

to the MRI head coil. For each trial, a rectangular target appeared in the lower left, lower right, or 

entire bottom portion of the display, which cued the LT, RT, or rest task, respectively. After 1 s, a 

cursor appeared at the top center of the screen and immediately began falling at a constant rate, 

such that it would reach the bottom in 4 s. During imagery trials, participants were tasked with 

using motor imagery to control the horizontal positioning of the cursor so that it would hit the 

target at the bottom. During rest trials, participants were asked to passively watch the display and 

refrain from performing the imagery tasks. When the cursor reached the bottom, a 1-s interval 

ensued, during which the cursor and target either turned yellow in the case of a hit trial or 

remained unchanged. The next trial began after a 1-s intertrial interval with a blank screen. 

Trials were organized into blocks, with each block containing three trials of the same task. 

A run consisted of 11 pseudorandom permutations of LT and RT blocks interleaved with 12 rest 

blocks. Each run began and ended with a rest block. The first block of each task was used for 

classifier calibration and was discarded, leaving a total of 30 LT, 30 RT, and 33 rest trials per run. 

To evaluate BCI performance, the hit rate was calculated as the number of times the cursor hit the 

left or right target divided by the number of imagery trials in each run for each participant. The hit 

rate was calculated over all three runs, and the overall significance was compared with chance 

(58%, P < 0.05, two-tailed exact binomial test). BCI performance was pooled from three inMRI 

runs, as no differences in hit rate were found between runs (F(1.9, 43.5) = 1.86, P = 0.17).  

 

Feature extraction and cursor control  

After undergoing noise reduction and downsampling, feature extraction and classification were 

performed to provide BCI control signals (73). Electrodes over the sensorimotor area (F3, F4, C3, 

C4, Cz, P3, P4, T7, and T8) were re-referenced to large Laplacian derivations for C3 and C4. 

Spectral amplitudes for C3 and C4 were then computed using autoregressive estimation (75, 76), 

with a window length of 500 ms and bin width of 3 Hz. For all participants, spectral amplitudes 

were selected from the 9.5–12.5-Hz bin for feature extraction, which allowed the BCI to be 

controlled with SMR desynchronizations related to motor imagery (43). The fixed 9.5–12.5-Hz 

bin was selected according to the results of the previous outMRI study showing that it is effective 

for controlling the BCI (23). The use of a single frequency band also made it easier to analyze and 

interpret all participants’ data as a group. Harmonic noise detected from the MRI scanner 

precluded the inclusion of beta activity (13–30 Hz), which can be used for BCI control. 
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 A control signal for cursor movement was computed from the interhemispheric difference 

(C4 minus C3) during ERD. At each time point, the control signal was normalized to the zero 

mean and unit variance based on data from the previous two trials of all three tasks. This 

normalization provided a linear classifier for the RT and LT tasks. When the C4 spectral 

amplitude decreased relative to the C3 spectral amplitude (i.e., was desynchronized), the cursor 

accelerated to the left. Conversely, sufficient C3 desynchronization resulted in rightward cursor 

movement.  

 

Statistical Analysis 

 

fMRI data preprocessing  

All fMRI data preprocessing and analyses were performed using SPM8 (Wellcome Trust Center 

for Neuroimaging, London, UK). The functional images underwent slice-timing correction and 

spatial realignment. The realigned images were then normalized to the Montreal Neurological 

Institute stereotactic space using the standard echo planar imaging template in SPM8. Finally, the 

normalized images were spatially smoothed using a Gaussian kernel of 6-mm full-width at half-

maximum.  

 

Statistical analyses of fMRI data 

For the first-level analysis, within-subject task effects were examined by including LT, RT, and 

rest as conditions plus head motion parameters in a general linear model. Onset time and duration 

of fMRI data corresponded to the 4-s BCI control intervals, during which the cursor was moving 

and participants were controlling its position. Performance-related effects were examined by 

including two binary parametric modulators corresponding to the hit and miss trials for the LT 

and RT tasks.  

 The second-level analysis revealed greater bilateral dorsal striatum activity during the hit 

trials than during the miss trials (Fig. 3). PPI analysis was performed to examine functional 

coupling of the dorsal striatum with other regions throughout the brain (Fig. 4). The dorsal 

striatum served as a seed region, with the BOLD time series applied as a physiological variable, 

whereas the parametric modulators from the hit/miss model were used as psychological variables. 

These psychophysiological variables and their interaction were then applied in a model to identify 

areas that were functionally coupled with the seed region.  

 For all designs, data were high-pass filtered (1/128-Hz cutoff) to remove low-frequency 

drift, and realignment parameters acquired during preprocessing were included to regress out head 

movement artifacts. Second-level, random-effect model group analyses were then performed 

using contrast-weighted beta images from the first-level analysis. The height threshold at the 

voxel level was set to a P value of <0.001, and FWE correction at the cluster level (P < 0.05) was 

performed using SPM8’s implementation of random field theory.  

 

Striatum parcellation and fMRI 

A map of striatal subdivisions was created using a diffusion-based subcortical gray matter 

classification technique (42, 77, 78). In brief, diffusion tensor MR images (b = 1,000 s/mm2) were 

collected from a separate group (15 volunteers, 5 female, aged 26.7 ± 10.1 years), after obtaining 

written consent and approval by the institutional ethics committee (42). Probabilistic diffusion 

tractography running between the whole striatum seed and the frontal cortical areas was analyzed 

using FSL4.1. The cortical subdivision that had the highest connectivity was identified after 

scaling connectivity in each cortical region relative to the total for each voxel in the entire 

striatum. The ventral striatal VOI connecting with the orbitofrontal cortex and the motor striatal 

VOI connecting with M1 and Brodmann area 6, including the SMA and PM, were used. BOLD 

time series data were extracted from these two striatal VOIs. To assess the time series, data from 
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the BCI control periods just after the rest trials were classified into hit and miss trials. In this 

analysis, data from two participants were excluded (n = 22): one participant had an extreme 

performance (no miss trials for the selected condition) and the other participant had bumpy 

BOLD time-series data (>2 SDs from the group data), possibly due to head motion. 

 

LASSO regression analysis of BCI performance 

To predict task performance during RT, LASSO regression (sklearn.linear_model; 

http://jupyter.org/) was applied using connectivity with the left motor striatum as an explanatory 

variable. The LASSO is a linear regression with an L1 norm penalty term (which thus introduces 

sparseness) (79). A hyperparameter for the penalty weight was determined by 2-fold cross 

validation (α = 0.11). The explanatory variables were values of connectivity with the left motor 

striatum, which were calculated from a 10-mm spheric VOI set at the peak coordinate of each 

cluster in the fMRI analysis. VOIs were set in the following 22 regions: the cerebellum, PM, 

SMA, AIC, M1, SPL, IPL, dlPFC, LOC, motor striatum, and thalamus (all bilateral). To assess 

model fitting, the correlation of the determination parameter was calculated (R2 = 0.87). 
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Figures  

 

 
Fig. 1. Experimental design and correlation between hit rates for sessions outside and inside 

MRI. (A) An example of a “left” trial, with “right” and “rest” targets shown in the dashed 

box. ITI, intertrial interval. (B) Hit rates for sessions outside the MRI (outMRI) are plotted 

against those inside the MRI (inMRI) for each participant. On average, the inMRI hit rate 

(mean ± SD, 0.60 ± 0.09) was significantly lower than the outMRI hit rate (0.72 ± 0.14), 

as determined using a paired t test (t(23) = 6.9, P < 0.001). However, hit rates were strongly 

correlated between the inMRI and outMRI sessions (r = 0.83, P < 0.001). Dashed lines 

indicate the minimum significant hit rate (out of 60 trials per task for outMRI and 90 trials 

per task for inMRI; P < 0.05 for both). Solid line indicates the linear regression. 
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Fig. 2. Task-related signal changes for the BCI task compared with signals at rest. Red and 

blue areas denote BCI-related activity during right target (RT) and left target (LT) tasks, 

respectively, which differed significantly when comparing the two tasks. Magenta- and 

cyan-colored areas represent nonlateralized activity during RT and LT tasks, respectively, 

and white areas represent their overlap. PM premotor area; M1, primary motor area; SPL, 

superior parietal lobule; IPL, inferior parietal lobule; dlPFC, dorsolateral prefrontal cortex; 

a.u., arbitrary units. 
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Fig. 3. Areas of greater activation during the hit trials than during the miss trials. (A) Only 

the bilateral dorsal striatum (yellow) showed greater BCI-related activity during the hit 

trials than during the miss trials (P < 0.05 cluster-level FWE corrected). Supplementary 

motor areas (SMA) showed greater BCI-related activity during the miss trials than during 

the hit trials. (B) Signal change time courses for the left ventral and left motor striatum. 

Both the ventral and motor striatum, defined by diffusion MRI, showed BCI task-related 

activity. However, only motor striatum exhibited greater activity for the hit trials than for 

the miss trials during the BCI control period (dark gray shaded areas, which lag 6 s behind 

the actual BCI control period to accommodate the hemodynamic delay).  

 

 

 
Fig. 4. Motor cortex-basal ganglia connectivity correlates with successful BCI control. (A) 

Hit-related effective connectivity with the left motor striatum increased in the cerebellum, 

globus pallidus, thalamus, and cortical motor areas, including the supplementary motor 

area (SMA) and dorsal premotor cortex (PM). (B) Effective connectivity between the 

motor striatum and SMA correlated with the laterality of event-related desynchronization 

(ERD) during the hit trials (r = 0.56, P = 0.005) but not during the miss trials (r = 0.15, P 

= 0.497) of the right-target (RT) task. Each circle represents data from one individual. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2021.07.19.453008doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.453008
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Fig. 5. Effective connectivity with dorsal striatum represents individual differences in BCI 

performance. (A) Effective connectivity analysis in two representative participants. 

Subject 02, who had good BCI performance (hit rate of 0.79), showed BgCN connectivity 

only, whereas subject 24, who had poor BCI performance (hit rate of 0.45), showed NfCN 

connectivity in addition to BgCN connectivity. (B) The LASSO regression revealed that 

good BCI performance correlated with BgCN connectivity, whereas it was negatively 

affected by connectivity with NfCN, including the lateral occipital cortex (LOC), anterior 

insula cortex (AIC), dorsolateral prefrontal cortex (dlPFC), and inferior parietal lobule 

(IPL). Weights of the left IPL, M1, dlPFC, right motor striatum, superior parietal lobule 

(SPL), and bilateral thalamus were less than 3.0, which represents a weak correlation.  
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