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Abstract  
 

To better define roles that astrocytes and microglia play in Alzheimer’s disease (AD), we used single-nuclei 

RNA sequencing to comprehensively characterize transcriptomes in astrocyte and microglia nuclei isolated 

post mortem from neuropathologically-defined AD and control brains with a range of amyloid-beta and 

phospho-tau (pTau) pathology. Significant differences in glial gene expression (including AD risk genes 

expressed in astrocytes [CLU, MEF2C, IQCK] and microglia [APOE, MS4A6A, PILRA]) were correlated 

with tissue amyloid and pTau expression. Astrocytes were enriched for proteostatic, inflammatory and metal 

ion homeostasis pathways. Pathways for phagocytosis, proteostasis and autophagy were highly enriched in 

microglia and perivascular macrophages. Gene co-expression analyses revealed potential functional 

associations of soluble biomarkers of AD in astrocytes (CLU) and microglia (GPNMB).  Our work 

highlights responses of both astrocytes and microglia for pathological protein clearance and inflammation, 

as well as glial transcriptional diversity in AD.   
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Introduction 
 
Astrocytes and microglia play important and potentially causal roles in the disease1. Activated astrocytes 

and microglia are found around amyloid plaques2 and genes associated with AD risk are enriched in both 

cell types, particularly in microglia3,4.  However, the mechanisms by which microglia and astrocytes 

contribute to disease genesis, progression and response still are poorly defined;   a recent meta-analysis 

suggested that the diversity of glial responses in late onset sporadic Alzheimer’s disease is not well captured 

by mouse models5.   

 

Single-nuclei RNA-sequencing (snRNASeq) from post mortem brain tissue6,7 is transforming the potential 

to characterise the molecular neuropathology of AD at the level of single cells8-10.  However, because of 

their lower cellular abundance in the brain, microglia and astrocytes have been poorly represented in most 

studies published to date (e.g., 449-3982 microglia, representing only 1-3% of the total nuclei annotated 

8,9,11), limiting the depth to which they can be characterised.  Astrocytes and microglia also have highly 

heterogeneous phenotypes12-14.  To address these limitations, we employed a novel negative-selection 

approach that enriches for them in nuclei isolated from post mortem tissue. This allowed us to characterise 

snRNASeq transcriptomes from much larger numbers of these nuclei (52,706 astrocytes and 27,592 

microglia) efficiently. After quantitative assessments of neuropathological features in each brain region, we 

generated transcriptional signatures associated with amyloid-beta or pTau pathology in non-diseased control 

(NDC) and AD brains.  These data allowed us to develop comprehensive descriptions of gene co-expression 

networks that provide both further insights into responses of astrocytes and microglia to AD pathology and 

evidence for cell-type specific functions of genes associated with risk for AD. Transcription factors 

potentially responsible for the differential gene expression with pathology were identified from these co-

expression modules. We confirmed our major observations by re-analyses of data from four previously 

reported AD snRNASeq studies. Our work provides new insights into linked glial-specific responses 

mediating pathological protein clearance and inflammation in AD, highlighting diverse roles of astrocytes 

and microglia.   
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Results 

 

Selective astrocyte and microglia transcriptome sequencing 

The proportions of microglia and astrocytes defined by snRNASeq of nuclei isolated from the human brain 

post mortem are low and variable8,9. To enable comprehensive analyses of differential transcript expression 

in astrocytes and microglia with AD pathology, we enriched for these glia by selectively removing neuronal 

(NeuN-positive7) and oligodendrocyte (Sox10-positive15) nuclei using FACS (Fig. 1 and Extended Data Fig. 

1). For this, we isolated nuclei from each of two cortical regions (entorhinal and somatosensory cortex) 

taken from six brains with low levels of AD neuropathology provided by donors without reported cognitive 

impairment and from six brains with high levels of AD pathology (Extended Data Fig. 2). Astrocyte nuclei 

had a mean unique molecular identifier (UMI) count of 8,775 with an average of 3,166 distinct genes and 

microglial nuclei had a mean UMI count of 4,808 with an average of 2,132 genes. Amongst the 52,706 

astrocyte nuclei, we found expression of 90% of astrocyte transcripts previously reported from human brain 

astrocytes (500 genes)16.  16/65 AD risk genes were represented in the astrocyte co-expression network 

(Extended Data Fig. 3a). The 27,592 total microglial nuclei included expression of 96% of the recently 

described microglial “core” consensus transcriptome (249 genes)17. Microglia also were highly enriched in 

genes associated previously with genetic risk for AD (27/65)1,18,19(Extended Data Fig. 4a).    

 

Increased expression of genes related to metal ion homeostasis, proteostasis and inflammation in 

astrocytes with AD pathology 

Gene expression associated with extracellular amyloid plaques or intraneuronal neurofibrillary tangles 

(pTau) (Fig. 2) were discovered by regressing gene expression against amyloid-beta (expressed as log2 fold 

difference/% area stained) or pTau (expressed as log2 fold difference/% pTau positive cells) densities in 

sections prepared from homologous regions of the contralateral hemispheres for each of the brains. Half of 

the significantly positively associated genes expressed were correlated with both amyloid-beta and pTau 

pathology, but almost three-fold more transcripts were associated uniquely with amyloid-beta (313 genes) 

expression relative to pTau (106 genes) (Fig. 2). We found significant astroglial functional enrichment for 
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pathways involved in the ‘cellular response to zinc ion’, ‘cellular response to copper ion’ and ‘response to 

metal ions’ with both amyloid-beta and pTau expression (Fig. 3); genes encoding proteins involved in metal 

ion homeostasis  (MT1G, MT1F, MT1E, MT2A, MT3 and FTL) were amongst the top transcripts most highly 

positively associated with pathology in astrocytes. Transcripts involved in ‘chaperone-mediated protein 

complex assembly’ and ‘response to unfolded protein’ pathways, such as CRYAB, HSPB1, HSPH1 and 

HSP90AA1 also were positively differentially expressed. Increased expression of the AD risk gene CLU was 

associated with pTau pathology in astrocytes (Extended Data Fig. 5). Expression of the AD risk gene IQCK 

was positively associated with both amyloid-beta and pTau (Extended Data Fig. 5). Pathways involved in 

inflammatory processes also were significantly enriched (‘NLRP3 inflammasome’ and ‘NFkB is activated 

and signals survival’). By contrast, “core” or homeostatic astrocyte transcripts, such as those for glutamate 

transporters SLC1A3 and SLC1A2 or for IL-33 (CSF1R ligand, which promotes microglial synaptic 

remodelling20) were down-regulated.  The AD risk-associated MEF2C transcription factor, as well as 

MAFG, JUND, CEBPB, MAF and LHX2 were up-regulated, suggesting roles for these transcription factors 

in the regulation of responses to AD pathology.   

 

We confirmed with gene set enrichment (AUCell) that transcripts positively differentially expressed with 

pathology also were significantly enriched in nuclei with human AD pathology reported in previously 

published snRNASeq studies 8-10,21, albeit with very low log fold changes in one21 out of the four datasets 

analysed. 

 

Expression of genes related to autophagy, phagocytosis and proteostasis in microglia with AD 

pathology 

Microglial transcripts most highly positively associated with tissue amyloid-beta and tissue pTau density 

included those for genes associated with AD risk (APOE, MS4A6A and PILRA, Fig. 2 and Extended Data 

Fig. 5), as well as those for genes associated with risks for other neurodegenerative disorders (LRRK2, 

SNCA and GPNMB, associated with Parkinson’s disease22, and GRN, associated with ceroid lipofuscinosis23 

and frontotemporal dementia24). Four-fold more transcripts were associated uniquely with amyloid-beta 
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(109 genes) expression relative to pTau (27 genes), while 60% of the significantly positively associated 

genes expressed were correlated with both amyloid-beta and pTau pathology (Fig. 2). Differentially 

expressed transcripts were functionally enriched in ‘selective autophagy’ and ‘microglia pathogen 

phagocytosis’ pathways (Fig. 4); ASAH1, ATG7, STARD13 and MYO1E were amongst the most strongly 

positively associated genes. Perivascular macrophages (PVM) also showed functional enrichment in 

‘selective autophagy’, as well as several CCT/TriC molecular chaperone complex pathways involved in 

proteostasis and actin/tubulin folding (Extended Data Fig. 6). Up-regulation of the transcription factors 

MAFG, MITF and JUND with amyloid-beta or pTau pathology suggests their involvement in transcriptional 

regulation of these microglial and PVM responses to pathology.   

 

We confirmed that transcripts positively differentially expressed in microglia were significantly enriched in 

nuclei with human AD pathology in previously published snRNASeq studies 8-10,21.  Toll-like receptors 

(TLR2 and TLR10), HK2 (hexokinase 2), JAK2 (Janus kinase 2) and ITGAM (CD11b) were amongst the 

smaller number of transcripts in these cells that were significantly negatively associated with tissue amyloid-

beta or pTau.  

 

Gene co-expression modules suggest glial cell-specific functional roles of AD GWAS genes  

Evidence for involvement of CLU in astrocyte metal ion homeostasis and proteostasis pathways with AD 

Co-expression network analyses were used to characterise gene expression modules (MEGENA) in 

astrocytes and microglia, suggesting potential functional relationships. AD GWAS genes CLU and IQCK 

were co-expressed in an astrocyte module (module 9) which was amongst the most strongly positively 

correlated with both amyloid-beta and pTau density. Both CLU and GJA1 (Gap Junction Protein Alpha 1; 

Connexin-43) are hub genes in this module, which was functionally enriched in transcripts for proteins 

involved in metal ion homeostasis (e.g., ‘metallothioneins bind metals’ and ‘response to metal ions’) and 

proteostasis (‘HSF1 activation’, ‘response to unfolded protein’ and ‘chaperone-mediated protein complex 

assembly’).  They also were hub genes in the related child module 30, which includes genes in pathways for 

‘ceramide transport’ and ‘gap junction assembly’ (Extended Data Fig. 3b). CLU was associated with the 
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astrocyte regulons (for transcription factors MAF, MAFG, JUND and CEBPB) that had the strongest 

correlations with pTau and amyloid-beta. CLU-containing modules and the associated regulons also were 

enriched in AD nuclei reported in earlier studies.  

 

Evidence for a cell-specific role for APOE in microglia linking phagocytic, complement and inflammatory 

activation pathways in AD 

APOE, the largest genetic risk factor for AD, was up-regulated in microglia with both pTau and amyloid-

beta pathology. APOE was a hub gene in microglia co-expressed both with TREM2 and inflammatory 

activation and response genes (e.g., C1QB, C1QC, CD74, CTSB) in a module functionally enriched for 

pathways including the ‘endosomal/vacuolar pathway’, ‘microglia pathogen phagocytosis’, and ‘antigen 

processing – cross presentation’ (module 19) (Extended Data Fig. 4b).  Regulons inferred to be responsible 

for microglial APOE expression included those for transcription factors MXD4, MITF, PBX3 and JUND. 

APOE expression in astrocytes was not significantly correlated with either amyloid or pTau pathology and 

co-expression relationships suggested a different functional role for APOE in astrocytes as a hub gene in a 

module functionally enriched for ‘dermatan sulphate biosynthesis’, ‘extracellular matrix organisation’ and  

‘ferroptosis’ (module 13).   

 

Microglial and PVM GPNMB are up-regulated with AD pathology in modules related to lipid homeostasis 

Glycoprotein nonmetastatic melanoma protein B (GPNMB) is elevated in plasma and CSF with AD and has 

been proposed as a biomarker of disease25. We found that GPNMB is up-regulated in microglia with 

amyloid-beta and pTau pathology and in PVMs with pTau pathology.  Consistent with this, GPNMB was 

found in association with the MAFG, JUND, MAFB, CEBPD and CEBPA transcription factor regulons 

which showed strong correlations to amyloid-beta and pTau in microglia (Fig. 5a). GPNMB also is a hub 

gene in microglial co-expression modules 11 and 34, which are strongly associated with amyloid-beta and 

pTau expression. As well as GPNMB, hub genes for module 11 also include ASAH1, ATG7, STARD13, 

IQGAP2, CPVL, TANC2 and MITF, all of which were positively differentially expressed with one or both of 

the AD pathologies (Fig. 5a). We found that module 11 was enriched in AD (relative to control) samples 
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from three out of four previous human snRNASeq studies analysed8,10,21. Pathways involving the 

differentially expressed genes in module 11 suggest a functional role in cholesterol homeostasis (‘regulation 

of cholesterol storage’). We found that the smaller module 34 was enriched in AD samples from two out of 

four previous studies9,21. Functional pathways enriched in the GPNMB hub gene module 34 relate to 

phospholipid and lipoprotein homeostasis (‘phospholipid efflux’, ‘phospholipid homeostasis’, ‘lipoprotein 

metabolism’).   

 

Consistent with the expected GPNMB expression in PVM, immunohistochemistry for GPNMB showed 

prominent staining around blood vessels, as well as in a subset of parenchymal microglia (Fig. 5b). There 

was a mean ~1.8-fold increase in GPNMB-positive cells/μm2 in AD (relative to NDC) in the cortical tissue 

studied here (Fig. 5c). GPNMB staining density in sections of samples was positively correlated both with 

tissue pTau (R=0.39) and with expression of modules 11 and 34 (R=0.507 and 0.576, respectively) defined 

by snRNASeq of the same region in the contralateral hemisphere.  

 

Transcriptional heterogeneity associated with AD pathology in sub-sets of human astrocytes and 

microglia 

Our snRNASeq data reduction identified six distinguishable clusters that expressed the core set of astrocyte 

genes. Each also expressed distinct sets of genes that suggested sub-types of astrocytes (Fig. 1). Astro1 and 

Astro2 expressed higher levels of genes involved in core astrocyte functions, such as SLC1A2 (GLT1) and 

glutamine synthetase (GLUL) and Astro2 was enriched for pathways including ‘neurotransmitter uptake’, 

‘glutamatergic synapses’ and ‘amino acid import’.  In contrast, Astro4 and Astro5 were characterized by 

relative expression of genes involved in extracellular matrix formation and functions26 and were enriched for 

pathways including ‘carbohydrate binding’ and ‘cell-matrix adhesion’. Astro4 was distinguished from 

Astro5 by relatively high expression of VEGFA, while Astro5 was enriched uniquely for immune response 

pathways, such as the Toll-like receptor cascade and the activated astrocyte marker GFAP.  Transcripts in 

Astro6 were enriched for metallothionein genes.  Astro5 and Astro6 showed the greatest specificity for 

regulons most highly up-regulated with pTau (for transcription factors JUND, MAF and CEBPB).  
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The disease associated astrocyte (DAA) expression signature defined in a mouse model27 was represented in 

all astrocyte clusters other than Astro3.  4.6% of DAA genes were up-regulated with amyloid-beta and 9.2% 

with pTau. Although the A1 (12/15 genes expressed) or A2 (13/13 genes expressed) gene sets28 associated 

previously with injury-responsive or homeostatic astrocytes in rodent models, respectively, were represented 

in the astrocyte clusters, neither A1 nor A2 gene sets were enriched significantly in the total astrocyte nuclei 

or in any of the clusters.  

 

Clustering parameters selected to distinguish PVM (identified by markers such as CD163, MRC1 (CD206) 

and MSR129) also identified three clusters of nuclei (designated Micro1, 2 and 3) expressing different sets of 

microglial marker genes (Fig. 1).  Micro1 was most highly enriched in transcripts for human ‘core’30 

homeostatic genes, Micro2 showed a relative functional enrichment for the  ‘TYROBP causal network’ and 

‘ferroptosis’ pathways and Micro3 expressed lower levels of both homeostatic and activation genes, but had 

higher expression of C3 and LPAR6.  Micro2 showed the greatest specificity for the MAFG, CEBPA, 

JUND, CEBPD and MITF regulons found here to be highly correlated with amyloid-beta and pTau. Plaque-

induced (PIG31),  disease associated (DAM32), activated response (ARM33) and interferon response 

microglial (IRM33.34) gene sets identified in rodent amyloid models were expressed in all of the clusters, 

with relative enrichment of DAM, ARM and, to a lesser degree, IRM gene sets in Micro2 (Extended Data 

Fig. 7). PVMs were also relatively enriched in these gene sets related to microglial activation, as well as in a 

gene set associated with human microglial aging35 (Extended Data Fig. 7).  

 

Discussion  
Our results describe potentially neuroprotective gene up-regulation for proteostasis, phagocytosis and 

protein clearance with amyloid-beta and pTau pathology in both astrocytes and microglia. A 3-4 fold greater 

number of genes were uniquely differentially expressed with amyloid-beta relative to pTau, mirroring 

observations with microglia in preclinical transgenic models overexpressing the two proteins36.  

Differentially expressed genes in astrocytes were associated with increased expression of genes for the 
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regulation of metal ion homeostasis that may both protect cells from oxidative injury and facilitate redox-

dependent chaperone clearance of abnormal proteins by astrocytes37. However, astrocytes also expressed 

inflammasomes and inflammatory activation pathways commonly found in microglia, both of which may 

promote neurodegeneration. Transcriptional functional diversity suggests distinguishable sub-types of 

human astrocytes and microglia enriched in gene sets related to (but distinct from) those previously 

described in transgenic amyloid or tau mouse models or with aging27,32,33,35. Moreover, co-expression 

networks suggest cell-specific functional roles for genes associated with AD risk, most notably highlighting 

APOE as a hub gene in microglial co-expression modules linking gene expression subserving phagocytic, 

complement and inflammatory activation pathways.  

 

We extended previous approaches to enrich our post mortem brain snRNASeq data for microglia and 

astrocytes in our study.  Several recent publications have described approaches for selective glial nuclei 

isolation from biopsy and rapid post mortem delay tissue, including the use of antibodies to microglial 

transcription factor PU.138, a combination of NeuN and Olig239, and IRF840. Our negative-selection 

approach is distinguished by relying on nuclear markers that we have found to be robust to post mortem 

delay, reliably at least to 24 hr. Our analytical approach for addressing heterogeneity in the samples also 

differs from most prior studies (although it is not without similar precedents11,41). Categorical descriptions of 

brains by Braak stage do not directly reflect tissue pathology in the local regions studied, so we associated 

each glial nuclear preparation with quantitative measures of pTau and amyloid-beta density specific to the 

regions studied in each of the brains.  We also used of a mixed regression model to account for uncontrolled 

sources of variance related to each sample42.   

 

Astrocytes expressed genes suggesting functional roles for proteostasis with amyloid-beta and pTau-

associated functional enrichment for HSF1 activation and chaperone pathways. This was accompanied by 

expression of genes for pro-inflammatory NF-kB and inflammasome pathways. Greater regional amyloid-

beta and pTau also was associated with enrichment of astrocytes for metal ion homeostasis pathways and the 

expression of metallothioneins 43-45. Identification of CLU as a hub gene in astrocyte co-expression modules 
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including genes for metal ion homeostasis and proteostasis may reflect dependence of clusterin chaperone 

functions on the local redox environment37.  We found increased expression of the astrocyte CLU module 

with greater amyloid or pTau.    

 

Co-expression analysis in microglia identified APOE as a hub gene for a module including complement 

genes (C1QA, C1QB, C1QC) and functionally enriched in phagocytosis pathways. Microglia may contribute 

to astrocyte activation through C1q expression and C1q and other complement cascade proteins co-localise 

with amyloid plaques in AD46. These analyses also highlighted potential functional relationships of GPNMB 

(concentrations of the protein product of which are increased in brain samples and cerebrospinal fluid of 

sporadic AD patients25) with a diverse group of genes connected to transcription factors whose regulons 

were up-regulated with amyloid and pTau, suggesting that GPNMB provides a biomarker for a human 

microglial neurodegenerative activation state central to pathological responses in AD.  

 

We tested the relevance of microglial sub-cluster expression signatures defined in mouse transgenic models 

of AD using gene set enrichment analyses (Extended Data Fig. 7). We found evidence for similar, moderate 

levels of relative enrichment for inflammatory activation gene sets (DAM and ARM) in Micro2 and 

PVM32,33. The relatively low expression of both homeostatic and activation genes in Micro3 corresponded to 

patterns associated with ‘dystrophic’, immuno-senescent microglia47. Transcripts from the disease 

associated astrocyte (DAA) gene set were up-regulated with amyloid-beta and pTau, but not restricted to 

any particular astrocyte sub-set27. Our results highlight distinct features and a greater functional diversity 

amongst microglia and astrocytes in the human disease relative to related preclinical models. 

 

We recognise limitations of our data, as well as their considerable promise for further exploration. Although 

restricted to end-stage tissue post mortem, we attempted to maximise the dynamic range of pathology 

sampled by evaluating correlations with quantitative pathological measures across two anatomical regions 

and brains of different Braak stages. We tried to compensate for the sparse 10X technology sampling of the 

transcriptome by increasing the number of glial nuclei of interest and provided evidence for generalisability 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2021.07.19.452932doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.452932
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

12

12

of our results by demonstration that major co-expression modules, regulons and gene expression analyses 

discovered here also were represented in previous human post mortem snRNASeq datasets8-10,21.  Even so, 

the nuclear transcriptome may be biased relative to that from a whole cell, potentially reducing the power to 

detect some genes reported from studies of related pathologies in mouse models48. The need to maximise 

detection sensitivity motivated us to enrich our sample for microglia and astrocytes for maximising the 

number of nuclei characterised and to make use of co-expression-based analyses, which rely less on 

detection of absolute expression levels than do single gene differential expression analyses.  

 

Our work has extended previous studies defining AD-associated molecular pathology of glial cells 

substantively by describing proteostasis, metal ion homeostasis and inflammatory mechanisms in astrocytes 

and phagocytotic, proteostatic and autophagic pathways in microglia. We found that gene sets described in 

transgenic mouse models are variably represented in AD in the context of more complex glial phenotypes. 

Our data add to evidence that there are functionally distinct sub-types of astrocytes and microglia, with 

particular diversity amongst the former, in which we distinguished enrichments for gene sets associated with 

synaptic function, extracellular matrix formation, immune responses and control of metal ion 

homeostasis/redox state. While this diversity suggests multiple potential targets for therapeutic modulation, 

the complexity of human astroglia and microglial phenotypes simultaneously expressed in AD also needs to 

be taken into account. 
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Methods  
 
Brain tissue 

This study was carried out in accordance with the Regional Ethics Committee and Imperial College Use of 

Human Tissue guidelines. Cases were selected from the London Neurodegeneration (King’s College 

London) and Parkinson’s UK (Imperial College London) Brain Banks.  Entorhinal and somatosensory 

cortex from 6 non-diseased control (NDC) cases (Braak stage 0-II) and 6 AD cases (Braak stage III-VI) 

were used (total of 24 brain samples). Cortical samples from two regions were prepared from each brain in 

order to characterise transcript expression with both higher (entorhinal cortex) and lower (somatosensory 

cortex) tissue densities of pTau in neurofibrillary tangles and amyloid-beta plaques. Brains used for this 

study excluded cases with clinical or pathological evidence for small vessel disease, stroke, cerebral amyloid 

angiopathy, diabetes, Lewy body pathology (TDP-43), or other neurological diseases. Where the 

information was available, cases were selected for a brain pH greater than 6 and all but one had a post 

mortem delay of less than 24 hr.  

 

Table 1: Cohort information 
 M:F ratio Age at death (yrs, 

mean +/- SD) 
Post mortem 
delay (hr, mean 
+/- SD) 

RIN (mean +/- 
SD) 

Non-diseased controls (Braak 
0-II) 

4:2 79.3 +/- 6.5 18 +/- 6.9  4.9 +/- 2.0 

Alzheimer’s disease (Braak 
III-VI) 

4:2 81 +/- 6.8 22.1 +/- 15.9 7.1 +/- 0.7 

 
 
Immunohistochemistry 

Immunohistochemical staining was performed on formalin-fixed paraffin-embedded sections from 

homologous regions of each brain used for snRNASeq. Standard immunohistochemical procedures were 

followed using the ImmPRESS Polymer (Vector Laboratories) and SuperSensitive Polymer-HRP 

(Biogenex) kits (Table 2). Briefly, endogenous peroxidase activity and non-specific binding was blocked 

with 0.3% H2O2 and 10% normal horse serum, respectively. Primary antibodies were incubated overnight at 

4°C. Species-specific ImmPRESS or SuperSensitive kits and DAB were used for antibody visualization. 

Counter-staining for nuclei was performed by incubating tissue sections in haematoxylin (TCS Biosciences) 
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for 2 min. AD pathology was assessed by amyloid plaque (4G8, BioLegend 17-24) and pTau (AT8, NBS 

Biologics) staining. GPNMB staining in microglia was assessed using R&D antibody AF2550. 

 

Table 2. List of antibodies and immunostaining methods.  

Antigen  Antibody Dilution  
Antigen 

Retrieval  
IHC Staining Kit 

Amyloid-β 

4G8 

BioLegend 

(800702) 

1:15,000 

Citrate 

Buffer, in 

Steamer 

Supersensitive Kit 

pTau 

AT8 

Invitrogen 

(MN1020) 

1:1,600 

Citrate 

Buffer, in 

Steamer 

Supersensitive Kit 

GPNMB R&D 
(AF2550) 

1:500 

Citrate 

Buffer, in 

Steamer 

ImmPRESS Kit 

 
 
Quantitative image analysis 
Labelled tissue sections were imaged using a Leica Aperio AT2 Brightfield Scanner (Leica Biosystems). 

Images were analysed using HALO software (Indica Labs, Version 2.3.2989.34). The following image 

analysis macros were used for the study: area quantification macro (amyloid), multiplex macro (pTau) and 

microglia macro (GPNMB). GraphPad Prism version 8 for Windows (GraphPad Software, La Jolla, CA, 

USA) was used for plotting immunohistochemical results and performing statistical analysis. A Mann 

Whitney test was used to test for the significance of differences between NDC and AD.  

 

We found that densities of pTau staining were greater in brains from the higher Braak stages, and that pTau 

and amyloid pathology both were found in the regions studied even in brains with lower Braak stages 

(Extended Data Fig. 2).  This variability of local tissue pathology within similar Braak stages emphasises the 

potential importance of matching regional neuropathology with transcript expression for each brain 

individually.  

 
Nuclei isolation and selective glial enrichment  
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Fresh frozen entorhinal and somatosensory cortical tissue blocks were sectioned to 80 μm on a cryostat and 

grey matter separated by scoring the tissue with sharp forceps to collect ~200 mg grey matter in an RNAse-

free Eppendorf tube.  Nuclei from NDC and AD samples were isolated in parallel using a protocol based on 

Krishnaswami et al. (2016)6. All steps were carried out on ice or at 4°C. Tissue was homogenized in a 2 ml 

glass douncer containing homogenization buffer (0.1% Triton-X + 0.4 U/μl RNAseIn + 0.2 U/μl 

SUPERaseIn). The tissue homogenate was centrifuged at 1000 g for 8 min, and the majority of supernatant 

removed without disturbing the tissue pellet. Homogenised tissue was filtered through a 70 μm filter and 

centrifuged in an Optiprep (Sigma) density gradient at 13,000 g for 40 min to remove myelin and cellular 

debris. The nuclei pellet was washed and filtered twice in PBS buffer (PBS + 1% BSA + 0.2 U/ml 

RNAseIn). Isolated nuclei were labelled in suspension in 1 ml PBS buffer with 1:500 anti-NeuN antibody 

(Millipore, MAB377, mouse) and 1:250 anti-Sox10 antibody (R&D, AF2864, goat) for 1 hr on ice. Nuclei 

were washed twice with PBS buffer and centrifuged at 500 g for 5 min. Nuclei were incubated with Alexa-

fluor secondary antibodies at 1:1000 (goat-anti-mouse-647 and donkey-anti-goat-488) and Dapi (1:1000) for 

30 min on ice, and washed twice. Nuclei were FACS-sorted on a BD Aria II, using BD FACSDiva software, 

gating first for Dapi +ve nuclei, then singlets and then Sox10- and NeuN-negative nuclei. A minimum of 

150,000 double-negative nuclei were collected. 

 

Single nucleus capture and snRNA sequencing 

Sorted nuclei were centrifuged at 500 g, resuspended in 50 μl PBS buffer and counted on a LUNA-FL Dual 

Fluorescence Cell Counter (Logos Biosystems, L20001) using Acridine Orange dye to stain nuclei. 

Sufficient nuclei were added for a target of 7,000 nuclei for each library prepared. Barcoding, cDNA 

synthesis and library preparation were performed using 10X Genomics Single Cell 3’ Gene Expression kit 

v3 with 8 cycles of cDNA amplification, after which up to 25 ng of cDNA was taken through to the 

fragmentation reaction and a final indexing PCR was carried out to 14 cycles. cDNA concentrations were 

measured using Qubit dsDNA HS Assay Kit (ThermoFisher, Q32851), and cDNA and library preparations 

were assessed using the Bioanalyzer High-Sensitivity DNA Kit (Agilent, 5067-4627). Samples were pooled 

to equimolar concentrations and the pool sequenced across 24 lanes of an Illumina HiSeq 4000 according to 
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the standard 10X Genomics protocol.   The snRNAseq data will be made available for download from the 

Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) under accession number 

GSE160936. 

 

Processing of FASTQ files, dimensionality reduction and clustering  

snRNASeq data were pre-processed and clustered using 10X Genomics Cell Ranger and Seurat analysis 

tools10,39,49. Illumina sequencing files were aligned to the genomic sequence (introns and exons) using 

GRCh38 annotation in Cell Ranger v3.1. Nuclei were identified above background by the Cell Ranger 

software. Filtered gene matrices from CellRanger were loaded into R where Seurat v3 single-cell analysis 

package was used for analysis50. Genes that were expressed in three or more nuclei were used for further 

analysis. Further QC was performed to exclude nuclei with less than 200 genes or greater than 6000 genes or 

25,000 UMIs, which likely represent low quality or doublet nuclei, respectively. Nuclei with greater than 

5% mitochondrial genes were also excluded. Mitochondrial gene reads were excluded. The 24 samples had 

an average of 3819 nuclei per sample after passing QC. 

 

Data was normalized and scaled using the NormalizeData function with 

normalisation.method�=�“LogNormalize” and scale.factor�=�10,000. Variable genes then were 

identified using the FindVariableFeatures function with nfeatures (number of variable genes) set to 2000. 

To integrate the data from all samples, FindIntegrationAnchors (dims = 1:20) and IntegrateData (dims = 

1:20) functions were used. PCA analysis was run, using variable genes, for the top 30 components. Clusters 

were identified using FindClusters (resolution = 0.5) and UMAP was used for 2D visualization of clusters 

(with the top 15 PCs, based on the ranking of PCs by the variance explained by each).  

 

Cell-type identification of clusters was performed using AUCell (see below) with cell-type specific genes 

identified by previous human brain snRNASeq studies 51. Cell type annotation was confirmed by visual 

inspection of key marker genes (Fig. 1 and Extended Data Fig. 1). Glial cluster specific genes were 

identified using the FindMarkers function. All clusters were composed of nuclei from all samples and did 
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not represent a single case or disease group. A small number of nuclei that either did not express any major 

cell-type markers, or expressed a combination of cell-type markers, were categorized as ‘unclassified’. We 

used the thresholding method described above for identification and removal of unclassified clusters 

(Extended Data Fig. 1).     

 

Differential gene expression analysis  

MAST was used to identify genes differentially expressed (associated) with histopathological features 

(using pTau or amyloid-beta as markers)42,52 to perform zero-inflated regression analysis by fitting 

a mixed model. The model specification was zlm(~histopath_marker + (1|sample) 

+ cngeneson + pc_mito + sex + brain_region, sca, method = "glmer", ebayes = F).  The fixed effect term 

pc_mito accounts for the percentage of counts mapping to mitochondrial genes. The term cngeneson is the 

cellular detection rate.  Each nuclei preparation was considered as a distinct sample for the mixed effect.  

Models were fit with and without the dependent variable and compared using a likelihood ratio test. Units 

for differential expression are defined as log2 fold difference/% pTau positive cells (or log2 fold difference/% 

amyloid area), i.e., a one unit change in immunohistochemically-defined pTau (or amyloid density) is 

associated with one log2 fold change in gene expression. Genes expressed in at least 10% of nuclei from 

each cell type (either total microglia or total astrocytes) were tested. Genes with a log2 fold-change of at 

least 0.25 and adjusted p-value <0.05 were defined as meaningfully differentially expressed. As an 

additional filter, the percentage of the inter-individual variance in expression between the NDC subjects was 

calculated for each gene and three genes with unusually high (>2 standard deviations) variance (LINGO1, 

SLC26A3 and RASGEF1B) in one or two samples were excluded.  

 

Gene ontology and pathway enrichment analysis 

The gene ontology (GO) enrichment and the pathway enrichments analysis were carried out using the R 

package enrichR (v 3.0), which uses Fisher's exact test (Benjamini-Hochberg FDR < 0.1)53,54. Genesets with 

minimum and maximum genes of 10 and 500 respectively were considered. To improve biological 

interpretation of functionally related gene ontology and pathway terms and to reduce the number of 
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redundant gene sets, we first calculated a pairwise distance matrix using Cohen’s kappa statistics based on 

the overlapping genes between the enriched terms and then performed hierarchical clustering of the enriched 

terms55.    

 

Gene Set Enrichment Analyses (GSEA) 

AUCell56 (R package v1.6.1) was used to quantify the expression of published gene set signatures. Mouse 

genes were converted to human orthologues where applicable using bioDBnet. Normalised data was 

processed in AUCell using the AUCell_buildRankings function. The resulting rankings, along with the gene 

lists of interest, were then put into the function AUCell_calcAUC (aucMaxRank set to 1% of the number of 

input genes). Resulting AUC scores were scaled across clusters and plotted in a heatmap (Extended Data 

Fig. 7). 

  

We also used AUCell to test for enrichment of the gene sets that we identified on previously published 

human single-nuclei data 8-10,21. Where possible for the AUCell tests for enrichment of gene sets from 

previously reported data, the cell type annotations from the published data were used.  Filtered matrices 

were processed and cell types identified using the methods described above for the Zhou et al.10 data set. 

The scFlow single cell analysis pipeline (https://nf-co.re/scflow) was employed for analysis of the Gerrits et 

al. data set. In brief, quality control was performed using the same criteria as described above. Sample 

integration was performed using Liger57 and dimension reduction using PCA and UMAP and finally 

clustering was performed using the Leiden algorithm58. Microglia and astrocytes were then identified using 

the same sets of marker genes used for the primary analysis (Fig. 1). AUCell was then run separately on 

microglia and astrocyte populations from each study using lists of our significantly up-regulated and down 

regulated genes with pTau and amyloid pathology, from microglia and astrocytes (thresholded as described 

above). The aucMaxRank term was set to 200 genes. LogFC values between Control and AD samples were 

estimated using the limma package in R59, using the default configuration and the following linear model: 

~diagnosis+nFeature, where nFeature is the total number of distinct features expressed in each nucleus (to 

account for the fact that nuclei that express a higher number of features may have higher AUCell scores). 
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Over-representation analyses of literature gene sets in our glial sub-clusters and differentially expressed 

gene lists were performed by Fisher's exact test using the "enrichment" function of the R package "bc3net" 

(https://github.com/cran/bc3net). The p values associated with the Fisher's exact test correspond to the 

probability that the overlap between the literature gene sets and the sub-cluster markers/differentially 

regressed genes from our dataset has occurred by chance. 

 

Gene co-expression (module), regulatory network (regulon) and enrichment analyses 

Gene co-expression module and hub-gene identification analysis were performed separately for microglial 

and astrocyte populations using the MEGENA (v1.3.7) package59. The top 15% most variably expressed 

genes were used as input13. We evaluated the mean expression of each of these genes across all the nuclei in 

the expression matrices: all the genes in both astrocyte and microglia matrices were among the top 25% 

most highly expressed genes confirming that the choice to filter the expression matrix based on variability 

did not bias the inclusion towards genes with a particularly low level of expression. In addition, we verified 

that the filtered expression matrices for both astrocytes and microglia included a substantial proportion of 

the differentially expressed genes: over 90% for astrocytes and all but two of the microglial differentially 

expressed genes were included in the respective filtered expression matrices, suggesting that the filtered 

expression matrices contained a biologically meaningful gene set.   The MEGENA pipeline then was 

applied using default parameters, using Pearson’s correlations and a minimum module size of 10 genes. 

Parent modules were produced from which a sub-set of genes form smaller child modules. For downstream 

analysis, interpretation and presentation of results, modules with >20 genes were retained. Co-expression 

modules were represented graphically using Cytoscape software (Mac OS version 3.8.0)60 with hub genes 

represented with a triangle and nodes with a circle with a diameter proportional to the node degree59. Genes 

previously associated with AD as defined by Kunkle et al. (Table 119, 23 genes), Jansen et al. (Table 118, a 

further 17 genes) and Andrews et al. (Table 11, a further 25 genes), for a total of 65 genes, were annotated in 

the co-expression networks. 
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Gene regulatory networks were built using pySCENIC (0.10.3) 61 62 package default parameters. The inputs 

for the pySCENIC gene regulatory network analyses were the same filtered expression matrices as for the 

MEGENA gene co-expression module analyses.  Correlations between a list of 1390 human transcription 

factors (TFs) curated by Lambert et al (2018)63 and the genes in the expression matrix were evaluated and 

co-expression modules with a minimum size of 20 genes were defined. From these, regulons (gene modules 

sharing a common association with a TF) were built after removing the genes without a recognition motif 

(based on the hg19-500bp-upstream-7species.mc9nr and hg19-tss-centered-10kb-7species.mc9nr databases 

provided in the pySCENIC package) for the correlated TF.  Only regulons with activator-TFs were 

retained61. Regulons including 50 or more genes were retained for downstream analyses and 

Cytoscape software (Mac OS version 3.8.0)60 was used for their graphical representation.   

 

To evaluate module and regulon enrichment with AD pathology, the AUCell scores for each gene co-

expression module or regulon in each nucleus were calculated (aucMaxRank set to 5% of the number of 

input genes). The statistical analysis was performed using the limma package in R64, using the default 

configuration and the following linear model: ~pathology+nFeature+pc_mito, where pathology is the 

average immunohistochemistry quantification value for Aβ or pTau, nFeatures is the total number of distinct 

features expressed in each nucleus (to account for the fact that nuclei that express a higher number of 

features may have higher AUCell scores) and pc_mito is the percentage of counts mapping to mitochondrial 

genes. We also corrected for a potential pseudoreplication bias65, by using the duplicateCorrelation function 

of the limma package with the sample as the “blocking” variable.  

 

 

Sub-cluster-specificity of modules and regulons were estimated using the regulon_specificity_scores 

function in pySCENIC66.   Briefly, the module/regulon specificity score employs the Jensen-Shannon 

Divergence, a metric previously used to assess cell type specificity of transcripts67 and regulons66. Modules 

and regulons with the highest specificity score may be considered subcluster-specific. A specificity score of 
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1 indicates a gene set that is only expressed in one sub-cluster while a specificity score of 0 indicates an 

evenly expressed gene set across all sub-clusters.   
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Figures 

 

Figure 1: Analysis of human brain microglia and astrocytes from low and high AD pathology brains by 

single-nuclei RNASeq.  

a) FACS gating method for sorting of human brain nuclei to enrich for microglia and astrocyte double-

negative population (pink; mean for 24 samples = 17.9%, standard deviation = 6.2%). Dapi+ve nuclei were 

selected first, followed by separation based on NeuN and Sox10 staining.  

b) UMAP 2D visualisation of clustering of 91,655 single nuclei from the 24 brain samples (average of 3,819 

nuclei per sample) including 52,706 (58%) astrocytes and 27,592 (30%) microglia. Smaller numbers of 

nuclei from neurons, oligodendrocytes and vascular cells also were found (Extended Data Fig. 1), but these 

cell types formed distinct UMAP clusters that were not analysed further. 

c) Heatmap showing cell type-specific marker gene expression in the nuclei clusters. 

d) Heatmap of top differentially expressed genes in each microglial cluster. 

e) Heatmap of top differentially expressed genes in each astrocyte cluster. 

 

 

Figure 2: Differential gene expression in astrocytes and microglia with amyloid-beta and pTau pathology.  

a,b) Volcano plot of transcripts differentially expressed in astrocyte nuclei (threshold of <0.05 adjusted p-

value, abs logFC> 0.25, omitting the top three most variable genes between samples) with 

immunohistochemically-defined tissue amyloid-beta (a) and pTau (b) density.  

c) Venn diagram illustrating the number of genes positively correlated (top) and negatively correlated 

(bottom) with amyloid-beta (blue) and pTau pathology (pink) in astrocytes. 

d,e) Volcano plot of transcripts differentially expressed in microglial nuclei (threshold of <0.05 adjusted p-

value, abs logFC> 0.25, omitting the top three most variable genes between samples) with 

immunohistochemically-defined tissue amyloid-beta (d) and pTau (e) density.  

f) Venn diagram illustrating the number of genes positively correlated (top) and negatively correlated 

(bottom) with amyloid-beta (blue) and pTau (pink) pathology in microglia 
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Figure 3: Functional enrichment of differential gene expression with amyloid-beta (left) and pTau (right) 

pathology in astrocytes. The plots describe the significant functionally enriched pathways in astrocytes 

obtained using enrichR (see Methods) from Gene Ontology (GO), Reactome and Wikipathways (WP) 

databases 

 

 

Figure 4: Functional enrichment of differential gene expression with amyloid-beta (left) and pTau (right) 

pathology in microglia. The plots describe the significant functionally enriched pathways in microglia 

obtained using enrichR (see Methods) from Gene Ontology (GO), Reactome and Wikipathways (WP) 

databases 

 

Figure 5: GPNMB is a hub gene in microglial gene co-expression modules up-regulated with AD 

pathology.  

a) Graph of microglial gene co-expression module 11 enriched with amyloid-beta and pTau pathology for 

which GPNMB is a hub gene (Triangles = module hub genes). GPNMB is expressed in regulons identified 

by their transcription factors (in green). 

b) Immunohistochemical staining of GPNMB in post mortem human brain tissue from representative NDC 

and AD brains with nuclear counterstain. Staining is present in both microglia and perivascular macrophages 

(insets). Scale = 100μm. 

c) Quantification of density of GPNMB-positive cells in cortical tissue by automated image analysis 

showing an increase in GPNMB-positive cells per μm2 for AD cases compared to NDC (p = 0.0023; Mann 

Whitney test, two-tailed; N = 12). Each point represents a single sample and the horizontal bar indicates the 

median.  
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