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Summary  

Mitochondrial respiratory chain (RC) function requires the stoichiometric interaction among 

dozens of proteins but their co-regulation has not been defined in the human brain. Here, using 

quantitative proteomics across three independent cohorts we systematically characterized the co-

regulation patterns of mitochondrial RC proteins in the human dorsolateral prefrontal cortex 

(DLPFC). Whereas the abundance of RC protein subunits that physically assemble into stable 

complexes were correlated, indicating their co-regulation, RC assembly factors exhibited modest 

co-regulation. Within complex I, nuclear DNA-encoded subunits exhibited >2.5-times higher co-

regulation than mitochondrial (mt)DNA-encoded subunits. Moreover, mtDNA copy number was 

unrelated to mtDNA-encoded subunits abundance, suggesting that mtDNA content is not limiting. 

Alzheimer’s disease (AD) brains exhibited reduced abundance of complex I RC subunits, an effect 

largely driven by a 2-4% overall lower mitochondrial protein content. These findings provide 

foundational knowledge to identify molecular mechanisms contributing to age- and disease-

related erosion of mitochondrial function in the human brain. 
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Introduction 

 The brain contains energivorous networks of interacting neural and glial cells whose 

energy demands are largely sustained by mitochondria. Mitochondria contain approximately 

1,300 proteins (Rath et al., 2020), many of which physically interact with others to produce 

functional organelles. Key molecular operations in mitochondria are performed by multi-subunit 

protein complexes, and there is mounting evidence that the stoichiometry of specific protein 

subunits can influence metabolism and cellular functions. One key example is the mitochondrial 

respiratory chain (RC), also known as the electron transport chain, which converts reducing 

equivalents into an electrochemical gradient (Nicholls, 2013) through a process that depends on 

the stoichiometry of multiple protein subunits.  

Perturbing RC protein subunit stoichiometry has functional consequences on 

mitochondrial and organ function. For instance, mice  overexpressing NDUFAB1  (one of the 

complex I subunits) in skeletal muscles are refractory to obesity and insulin resistance when fed 

a high-fat diet (Zhang et al., 2019). In addition, overexpression of NDUFAB1 in the heart enhances 

mitochondrial bioenergetics and limits reactive oxygen species (ROS) production to protect the 

heart from ischemia-reperfusion injury (Hou et al., 2019). Other studies have shown that the level 

of expression of NDUFA13 (a complex I subunit also referred to as GRIM-19) is reduced in 

hepatocellular carcinoma (HCC) cells relative to wildtype controls; and overexpression of 

NDUFA13 in HCC cells arrests cell proliferation and stimulates apoptosis (Kong et al., 2014). 

Therefore, the relative abundance of individual subunits in relation to their molecular binding 

partners is emerging as a contributor to overall organelle and cellular function. 

The RC is located within the inner mitochondrial membrane (IMM) and includes five 

protein complexes. The RC complexes assemble with the help of assembly factors that only 

temporarily interact with core and accessory protein subunits that are later released from the 

assembled complexes (Formosa et al., 2018; Mukherjee and Ghosh, 2020). In neurons and other 

brain cells, RC function ultimately powers not only adenosine triphosphate (ATP) synthesis but 
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also calcium uptake and other biological functions essential to brain function and cognition (Picard 

and McEwen, 2014; Rangaraju et al., 2019). The ability of the RC to produce adequate amounts 

of ATP therefore depends on the coordinated expression and stability of its components, the RC 

protein subunits that are encoded both by the nucleus and by the mitochondrial DNA (mtDNA).  

The entry point for the electron transfer is complex I which is the largest RC complex. 

Complex I contains 45 subunits in humans and assembles in 3 major modular intermediates 

(Formosa et al., 2018; Garcia et al., 2017). Assembled complex I can further assemble as 

multimeric supercomplexes with complexes III and IV to enhance electron transfer efficiency 

(Acín-Pérez et al., 2008; Lapuente-Brun et al., 2013; Letts and Sazanov, 2017; Milenkovic et al., 

2017; Vartak et al., 2013). In complex I, 14 of the 45 subunits that form the catalytic centers are 

referred to as the core or central subunits. Although mitochondrial protein synthesis is considered 

a highly regulated process (Kummer and Ban, 2021), the extent to which mtDNA-encoded 

proteins are coregulated to achieve equimolar abundance and the extent to which their 

abundance is matched to nuclear DNA (nDNA) encoded subunits have not been defined in the 

human brain.  

Mitochondrial RC dysfunction has emerged as a putative cause of neurodegeneration in 

Alzheimer’s disease (AD) (Holper et al., 2019; Swerdlow et al., 2014) and cognitive decline 

(Mostafavi et al., 2018; Wingo et al., 2019), as well as Parkinson’s disease (Grünewald et al., 

2016), highlighting the importance of understanding brain mitochondrial biology. In particular, we 

still lack a molecular-resolution understanding of the mitochondrial alterations or recalibrations 

that may underlie brain dysfunction and AD. Here we investigate mitochondrial RC components 

in molecularly-profiled post-mortem human brains in relation to AD status and sex. Using 

proteomic datasets in the human dorsolateral prefrontal cortex (DLPFC), an associative brain 

region involved in AD, we specifically investigate the co-regulation patterns among known RC 

protein subunits. 
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Results 

We characterized the co-regulation of the DLPFC mitochondrial RC proteins by 

repurposing high-throughput quantitative proteomics measured by liquid chromatography coupled 

with tandem mass spectrometry (LC-MS/MS). Data from three independent cohorts were 

analyzed: ROSMAP (N=400) (Bennett et al., 2018; Robins et al., 2019), BLSA (N=47) (Ferrucci, 

2008; Swarup et al., 2020; Wingo et al., 2019), and Banner (N=201) (Beach et al., 2015; Swarup 

et al., 2020; Wingo et al., 2019). Each cohort included both women and men who had either 

normal cognition, mild cognitive impairment, or AD at the time of death (see fig. 1A, fig. S1 and 

table S1).  

The coverage of RC proteins by all three datasets ranged from 72% to 91% and was 

largest (91%) in ROSMAP (illustrated in fig. S1B). In the ROSMAP dataset, both nDNA-encoded 

and mtDNA-encoded protein subunits were available, while only nDNA-encoded protein subunits 

were detected in Banner and BLSA, which used a different proteomics approach to determine 

protein abundance characterized by less depth than the one used in ROSMAP. Thus, we focused 

most of our analyses on ROSMAP, the most comprehensively profiled cohort. 

Our goal was to assess the degree to which physically-related or non-physically-

interacting RC proteins are co-regulated within the human DLPFC. To estimate co-regulation, we 

performed protein covariation analysis (Kustatscher et al., 2019) by computing the Spearman 

correlations for each protein pairs and averaging the correlation coefficients (for visualization see 

fig. S2). Additionally, we performed statistical analysis to compare the average co-regulation by 

subsets of subunits. 

 

RC protein subunits show co-regulation across RC complexes 

Across the three cohorts, the nDNA encoded RC protein subunits exhibited significant co-

regulation. This means that brains with higher abundance of a specific RC protein also have more 

of other related RC proteins, as expected from their assembly in the same complexes (fig. 1B, 
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see fig. S3-S5 for the heatmaps of RC subunits and assembly factors). Computing average co-

regulation indices for each RC complex in ROSMAP showed that subunits of Complex I (average 

across three cohorts r=0.53) were most strongly correlated with each other.  

Patterns of co-regulation within each RC complex can also be visualized as frequency 

histograms indicating the number of protein pairs exhibiting increasing strengths of correlations 

with other subunits (fig. 1C). If co-regulation was absent, we would expect a median distribution 

value of 0. Here the distribution ranged between r=0.27 - 0.64 which suggests moderate to large 

co-regulation among RC protein subunits. Between RC complexes, the highest degree of co-

regulation was found for Complex I across the three cohorts (average r=0.48). To validate this 

observation, we also used selected reaction monitoring (SRM), a targeted proteomics approach 

on a subset of RC proteins in a larger sample of DLPFC samples from the ROSMAP cohort 

(N=1,228). Again, Complex I subunits showed the highest degree of correlation, suggesting 

particularly high stability of Complex I and of its subunits in the human brain (fig. S6). Of all 

complexes, Complex IV (average r=0.30) showed the lowest degree of co-regulation. Complex II 

was not assessed individually since it includes too few (four) subunits.  

Across the RC proteins, assembly factors are not part of the final assembled RC 

complexes. If the physical interactions of subunits among assembled complexes contribute to co-

regulation, assembly factors should exhibit lower co-regulation. Indeed, compared to RC subunits 

across all complexes (average r=0.37), we found approximately two-third lower co-regulation for 

assembly factors (average r=0.14) (fig. 1D). Among actual RC protein subunits, accessory 

subunits, which represent the structural components of the RC, showed lower co-regulation 

(average r=0.33) than core subunits responsible for performing the catalytic activities (average 

r=0.65) (fig. 1E). 
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Co-expression of RC subunits in RNAseq 

To examine if the observed co-regulation of RC subunits is a feature only present at the 

protein level, or if transcriptional activity (i.e., gene expression) could contribute to these effects, 

we also examined the co-expression of RC components based on mRNA transcripts. Bulk 

RNAseq data was examined in the DLPFC (N=1,092), as well as two other brain regions: the 

posterior cingulate cortex (PCC, N=661) and the anterior caudate (AC, N=731).  

Similar to our observations at the protein level, in the DLPFC, PCC and AC, individuals 

with higher mRNA levels for specific subunits tended to also have higher levels of other related 

transcripts, consistent with the co-expression of RC genes as part of a common genetic program 

(fig. S7-9). In the DLPFC, co-regulation estimates based on proteins were slightly weaker (-7.3%) 

than RNA levels (fig. S7C). Thus, these data suggest that co-regulation of RC subunits occurs at 

both the protein and transcript levels. 

 

Partial evidence for the existence of RC supercomplexes in the human brain 

Research in drosophila and mammalian model systems suggests that the RC complexes 

I, III and IV assemble as supercomplexes (Acín-Pérez et al., 2008; Lapuente-Brun et al., 2013; 

Letts and Sazanov, 2017; Milenkovic et al., 2017; Vartak et al., 2013). If supercomplexes (SC) 

also existed in the human brain, we would expect RC subunits between these complexes to be 

more highly co-regulated than with subunits of non-SC subunits (complex II and V). We therefore 

asked if pairs of subunits derived from complex I-III-IV are more strongly co-regulated with each 

other than other RC complexes (II, V). In the more comprehensive ROSMAP dataset, we find that 

co-regulation between SC RC complexes was 46% higher compared to non-SC RC complexes 

in ROSMAP (fig. 1E, fig. S11A-C). Similarly, in the Banner dataset, the co-regulation between 

complex I, III and IV was 43% higher (p<0.01) than for complex I and II. This effect, however, was 

not observed in the BLSA cohort, perhaps due to lower power in detecting a difference in co-

regulation or possibly due to other inherent differences in participants characteristics between 
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cohorts. Higher co-regulation of SC was also observed at the RNA levels across three brain 

regions, DLPFC, PCC, AC (ROSMAP) (fig. S10, fig. S11D-F).  

 
Variation in RC protein abundance, mitochondrial mass, and mtDNA density 

To understand what drives the variation in RC subunits in the DLPFC, we assessed the 

correlation between nDNA- and mtDNA-encoded RC subunits and i) markers of mitochondrial 

content, ii) mtDNA copy number (mtDNAcn), and iii) neuronal proportion (fig. 2 A,B, see table S1 

for the descriptive statistics). We built an index of mitochondrial content using the average of the 

scaled values of four housekeeping proteins including the translocator of the outer membrane 

(TOMM20.Q15388), voltage-dependent anion channel 1 (VDAC1.P21796, also known as porin), 

and citrate synthase (CS.O75390, CS.H0YIC4). As expected, brains with higher general 

mitochondrial content also had higher RC protein subunits abundance, as indicated by the 

positive correlation of the mitochondrial content index and individual proteins (fig. 2 A,B). Based 

on these estimates, overall mitochondrial content explains ~23% of the variance in RC protein 

abundance. The unexplained variance suggests that mitochondria may vary in their RC protein 

density (i.e., how much RC each mitochondrial unit contains) (McLaughlin et al., 2020). 

Modest positive associations were found between mtDNAcn quantified from whole 

genome sequencing (WGS) (N=454) and either nDNA- and mtDNA-encoded RC subunits, such 

that mtDNAcn accounted for only 0.1 % of the variance in RC protein abundance. Thus, mtDNAcn 

alone or in combination with mitochondrial content, accounts for at most 24% of inter-individual 

differences in RC protein abundance in the DLPFC (fig. 2).  

To examine whether the number of mtDNA copies per mitochondrion is a fixed quantity or  

varies between individuals, we divided mtDNA copies by the mitochondrial content index. The 

resulting metric of mtDNA density per mitochondrion differed by up to 6% between individuals 

with the highest and lowest mtDNA density, establishing the range and natural variability of this 

parameter in the human DLPFC. Interestingly, brains with greater mtDNA density tended to have 
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lower total RC protein abundance, including mtDNA-encoded proteins (fig. 2 A,B and C for an 

example). This suggests that increased mtDNA copies for a given mitochondrial mass does not 

lead to higher mitochondrial RC abundance. Rather, elevated mtDNA per mitochondrion might be 

the result of compensatory mechanisms activated by low RC protein concentration, as seen in 

genetic cases of mitochondrial dysfunction (Giordano et al., 2014; Yu-Wai-Man et al., 2010). 

Neurons are rich in mitochondria, and differences in the number of neurons per unit of 

brain tissue that may occur secondary to neuronal loss with neurodegeneration (Gómez-Isla et 

al., 1997) could theoretically contribute to RC chain abundance. As an exploratory analysis, we 

also examined to what extent RC protein abundance may be driven by neuronal abundance. In 

other words: do brains with more neurons relative to other cell types have higher RC protein 

abundance? On average less than 5% of the variance in RC protein abundance was explained 

by neuron density derived from RNA-seq within the DLPFC (fig. 2 A,B), ruling out neuronal 

density as a major confounding factor in these analyses, and confirming that non-neuronal cells 

make a significant contribution to the brain proteomics signal. 

 
Evidence of mito-nuclear crosstalk in human DLPFC 

Both nDNA- and mtDNA-encoded protein subunits physically interact in the RC, and 

coordination of mitochondrial and nuclear genomes (i.e., mitonuclear crosstalk) is considered an 

important determinant of mitochondrial biology (Kim et al., 2018; Quirós et al., 2016). To indirectly 

quantify evidence of co-regulation within and across genomes, we assessed the co-regulation 

among nDNA-encoded subunits, and separately among mtDNA encoded subunits in ROSMAP. 

Moreover, to estimate to what extent mito-nuclear crosstalk produces coordinated levels of 

proteins encoded in both genomes, we specifically quantified the co-regulation between nDNA- 

and mtDNA-encoded subunits (fig. 3A).  

The extent of co-regulation among nDNA-encoded subunits was more than double 

(r=0.38) that of mtDNA subunits (r=0.18) (fig. 3B). The degree of crosstalk between nDNA- and 
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mtDNA-encoded subunits was also low (r=0.23) (fig. 3B). Among individual RC complexes, the 

lowest degree of nDNA-mtDNA crosstalk was found for complex III (r=0.08, <1% of shared 

variance) and the highest was found for complex I and IV (r=0.31-0.33, ~10% shared variance) 

(fig. 3C). For mtDNA-encoded genes, the observed strength of co-regulation was not associated 

with the order of the genes or their distance from the initiation of transcription sites. Co-regulation 

with nDNA-encoded subunits was largest for ND1, COX2, and ND5, and lowest for CYTB (fig. 3 

D,E, fig. S12). Co-regulation differences between proteins were not confounded by their 

abundance (fig. 3F), although we note the existence of a possible trend (excluding ND1 and ND2) 

whereby lower abundance proteins may exhibit higher mito-nuclear crosstalk. 

We then explored how much the observed inter-individual differences in the abundance 

of nDNA- and mtDNA-encoded subunits are explained by canonical transcription factors (TFs) 

believed to mediate mito-nuclear crosstalk. We examined TFs acting either on the nuclear (NRF1, 

NRF2, PGC1a) or mitochondrial (TFAM) genomes, and quantified their expression measured by 

RNA-seq with RC protein and transcript abundance. TFs expression did not correlate with RC 

subunits abundance (all rs<0.1) (fig. 3G,H fig. S13) but expression of NRF2 and TFAM correlated 

moderately with RC transcript abundance (fig. S14).  Importantly, we also found either no or weak 

associations between RC transcript (RNA-seq) (Raj et al., 2018) and protein abundance levels 

(fig. S15).  

 

Complex I proteins co-regulation by topology 

Since co-regulation was highest for complex I in ROSMAP as well as in BLSA, and since 

it is the largest RC complex with high-fidelity three-dimensional maps of its subunits, we refined 

our covariance analysis of complex I subunits according to their topological location (fig. 4A). This 

analysis focused on the ROSMAP cohort because it is the largest, has the best global coverage, 

and included both nDNA and mtDNA-encoded proteins. Moreover, ROSMAP contains a 
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substantial number of individuals with either normal cognition or with an AD diagnosis, allowing 

to examine associations with AD.  

Fig. 4B displays the detailed correlation matrix of RC complex I subunits arranged by their 

topological location. Fig. 4C shows the corresponding protein abundance for each subunit, 

illustrating that co-regulation is not driven by protein content (fig. 4B,C). As observed across all 

RC complexes, structural subunits that physically assemble into the protein complex showed 

substantially higher co-regulation than assembly factors (fig. 4D). Among RC subunits, accessory 

subunits had 30% larger co-regulation than core subunits, but this difference is mainly driven by 

mtDNA-encoded subunits that show substantially lower co-regulation than nDNA encoded 

subunits (r=0.26 vs r=0.76).  

Next, we assessed whether RC protein co-regulation varies according complex I subunit 

topological location. Mitochondrial complex I is an ‘L’ shaped enzyme composed of a hydrophilic 

arm that protrudes into the matrix, and a hydrophobic arm that is embedded within the inner 

membrane. Matrix-located subunits showed 24% higher co-regulation than membrane subunits 

(fig. 4G). Proteins located in the N module (r=0.68) showed greater co-regulation than proteins 

located in the Q (r=0.50) or P module (r=0.49) (fig. 4H). These topologically-sensitive covariance 

patterns in the human DLPFC provide information about the relative co-regulation and/or stability, 

or regulated turnover of all proteins within each module in vivo in the human brain. 

 We also note that some nDNA-encoded complex I subunits exhibited particularly low co-

regulation with any of the other subunits, such as NDUFA9.F5GY40, and NDUFV3.P56181.2. In 

both cases, these proteins have a related isoform that has high co-regulation with neighboring 

and other subunits, suggesting that these isoforms are generally not incorporated in the 

assembled complex I in the human DLPFC.  
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Complex I proteins co-regulation by sex  

Sex differences in energy metabolism have been observed in humans (Mittelstrass et al., 

2011), and studies of various aspects of mitochondrial biology in model organisms suggest that 

mitochondria in males exhibit lower mitochondrial content and ATP production capacity compared 

to females (Ventura-Clapier et al., 2017). Therefore, we examined whether males and females 

exhibit differences in complex I co-regulation. To explore this question, we computed the same 

covariance matrix for all complex I subunits as in figure 4, but separately for men (fig. S16A) and 

women (fig. S16B), then generated a difference matrix (see fig. S16C for the matrix of women-

men difference where correlations that differ between the sexes appear in darker colors). 

Differences in co-regulation ranged from -0.43 to 0.36 (average=0.02). We then ran an interaction 

analysis (correlations of protein-protein x sex) on the top 100 most different correlation pairs, of 

which the top-15 most significant are shown in fig. S16D. Although we did not find any systematic 

difference between women and men, these data suggest potential differences among specific 

protein pairs that could be of interest to future studies of sex differences. For example, ND2 and 

NDUFA13 (both P module subunits) were strongly correlated in women, but not in men. 

 

Complex I proteins co-regulation by clinical diagnosis 

In relation to AD, multiple studies have found that Complex I enzymatic activity is reduced 

in AD (see (Holper et al., 2019) for a meta-analysis). Therefore, we hypothesized that this 

enzymatic deficiency could be associated with altered complex I protein co-regulation. To explore 

differences in complex I protein co-regulation according to clinical diagnosis of AD in ROSMAP, 

we assessed separately the correlation between subunits in individuals with normal cognitive 

function at death (NCI, N=170, fig. S16F) and in individuals with AD (N=123, fig. S16E); then, we 

assessed the difference in effect size between NCI and AD (fig. S16G). AD was defined using 

the NIA-Reagan criteria for the pathologic diagnosis of AD  (high or intermediate likelihood of AD) 

(Bennett et al., 2006) and final clinical diagnosis of cognitive status (AD and no other cause of 
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cognitive impairment) as described previously (Klein et al., 2020). Differences in protein-protein 

correlations ranged from -0.32 to 0.30 (average=-0.02). Then, we ran an interaction analysis on 

the top 100 most different correlation pairs, of which the top-15 most significant are shown in fig. 

S16H. As for sex differences, there was no systematic difference in complex I co-regulation 

between AD and NCI, indicating that co-regulation of complex I subunits is unlikely to underlie 

enzymatic activity defects in AD. 

 

Complex I proteins abundance by sex 

In the absence of systematic co-regulation differences between women and men, or 

between AD and NCI, we reasoned that there may be a coordinated up or down regulation in 

protein abundance between women/men and AD/NCI. Overall, men and women did not show a 

difference in the overall complex I protein abundance. The average standardized effect size 

Hedge's g was 0.004, indicating the absence of a difference in complex I subunit abundance in 

relation to sex (fig. S17A).  

 

Complex I proteins abundance by clinical diagnosis 

In contrast, the analysis by AD status revealed a general downregulation of several 

complex I subunits. Of the 44 complex I subunits available, 95% were significantly lower in AD 

than in NCI (p<0.0001, Chi-square compared to chance (50%)), and none were upregulated. The 

protein with the largest effect size was NDUFB7, decreased by an average of 7%, representing a 

medium to large effect size (g=0.70) (fig. S17B).  

 

RC proteins abundance and mitochondrial mass by sex and clinical diagnosis 

We next determined whether the observed AD/NCI difference were i) specific to complex 

I or whether they generalized to other RC complexes, ii) observed in other cohorts, and ii) driven 

by reduced mitochondrial mass in AD brains. Therefore, we studied men/women and AD/NCI 
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differences in the five RC complexes (fig. 5) using the average fold change in individual subunits 

(fig. 5A, D). We also used summary scores representing mitochondrial content and average RC 

abundance by complex, adjusted or not for mitochondrial content (fig. 5B, E). While we did not 

observe any systematic difference in RC abundance between women and men, mitochondrial 

content tended to be 0.3-1.6% higher in men than in women (fig. 5C). Relative to NCI, AD brains 

had on average 2.6-3.7% lower abundance of RC complexes, but this effect was largely driven 

by a 1.9-3.9% lower mitochondrial content across all three cohorts. Therefore, when accounting 

for mitochondrial content, mitochondria from AD and NCI do not appear to differ in their RC protein 

abundance (fig. 5F). However, at the brain tissue level, our proteomics results are consistent with 

and could explain the reported loss of cortical mitochondrial oxidative capacity in AD (Holper et 

al., 2019). 

 

Discussion  

 We deployed untargeted proteomics and covariance analysis to identify patterns of co-

regulation among mitochondrial RC proteins in the human DLPFC. A key aspect of this study was 

the integration of known biological and topological information, particularly for complex I, to inform 

the interpretation of protein co-regulation. Consistent with the physical assembly of bona fide 

subunits into physical complexes that have coordinated turnover (Szczepanowska et al., 2020), 

relative to assembly factors that assist in the assembly but are not part of the final assembled 

complexes, our approach reliably detected higher co-regulation of assembled subunits than 

assembly factors across all examined cohorts. Focusing on the largest cohort, ROSMAP, which 

also has the highest proteomic coverage across both mtDNA- and nDNA-encoded subunits, we 

find that the largest RC complex, complex I, exhibits a high level of co-regulation relative to other 

complexes. Our data also identifies interesting patterns of regulation, notably the lack of 

association between RC subunits and mtDNA abundance in brain tissue.  
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 Our data aligns well with a recent model of complex I maintenance in cultured cells 

(Szczepanowska and Trifunovic, 2021) and extends its potential applicability to the human brain. 

In particular, our analysis of protein-protein co-regulation and abundance for different complex I 

subunits and isoforms in 400 individuals provides a platform to further examine mitochondrial RC 

regulation. For example, specific isoforms exhibiting relatively normal abundance but no co-

regulation with other subunits may not assemble in vivo. The high co-regulation of groups of 

subunits, such as those contained within the N-module of complex I, could be attributable to its 

high turnover as a single module (Szczepanowska et al., 2020). The conservation of this pattern 

from cultured cells to the human brain suggests that this process is robust and possibly a general 

principle of mitochondrial RC maintenance. 

Another noteworthy observation is the lack of apparent co-regulation between RC subunits 

encoded in the nuclear and mitochondrial genomes. Although in theory transcription and 

translation of gene products in both genomes are coupled via several mito-nuclear communication 

mechanisms (Quirós et al., 2016), our results indicate a disconnect (i.e., lack of effective co-

regulation) between RC proteins, which may point to protein regulation mechanisms operating 

relatively independently between mitochondrial and nuclear compartments in the human DLPFC. 

In other words, brain mtDNA-related protein synthesis could occur relatively independently from 

that of cytoplasmic nDNA-encoded proteins. Whether this potential mito-nuclear protein 

imbalance in the human brain could contribute to activating compensatory mechanisms, such as 

the mitochondrial unfolded protein response (UPRmt) (Houtkooper et al., 2013), could also be 

examined in relation to proteotoxic stress and brain pathology. This point also may be consistent 

with the fact that mtDNAcn was not found to be correlated with mtDNA- or nDNA-encoded RC 

proteins, possibly implicating translational regulation (Kummer and Ban, 2021) and/or equally 

influential degradation and turnover processes, as the main drivers of RC protein abundance, 

rather than the number of mtDNA molecules per cell. Moreover, potential differences in 

compartment-specific translation (Kummer and Ban, 2021) and degradation (Chung-ha et al., 
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2014) (e.g., in axons, synaptic terminals, cell bodies) that could not be resolved in our work should 

also be considered in future studies.   

In relation to mtDNA abundance, combining precise estimates of mtDNA copies per cell 

from WGS and proteomic estimates of mitochondrial abundance showed two main points. First, 

that mtDNAcn is not a good surrogate for mitochondrial abundance. It is recognized that mtDNAcn 

is under the influence of a multitude of factors (Filograna et al., 2020) and is generally not a good 

marker of mitochondrial content, at least in human skeletal muscle (Larsen et al., 2012). Our data 

corroborate this notion in the human DLPFC. Furthermore, by quantifying the number of mtDNA 

copies per mitochondria, or mtDNA density, we find that mitochondria with greater mtDNA density 

have lower RC protein abundance. This inverse association could be similar to what occurs in 

mitochondrial disease, where poorly functioning mitochondria (few RC proteins) activate signaling 

cascades to produce a compensatory upregulation of mtDNA copies as an attempt to restore 

mitochondrial oxidative capacity – an effect observed at the tissue and single-cell level (Giordano 

et al., 2014; Vincent et al., 2018; Yu-Wai-Man et al., 2010). A meta-analysis showed that aging 

(the majority of our population) and AD are associated with lower complex I and IV enzymatic 

activities (Holper et al., 2019), suggesting that functional impairments could indeed exist in a 

portion of the brains examined here. Combined with the marginally lower mitochondrial content 

detected in our data, this could possibly drive elevation in mtDNA density in the DLPFC. 

Therefore, we speculate that combined with other measures of mitochondrial function (such as a 

ratio reflecting mtDNA abundance per mitochondrial mass), mtDNA density could represent a 

potential marker of mitochondrial dysfunction to be examined in future studies. 

Finally, similar to previous work (de Sousa Abreu et al., 2009; Maier et al., 2009) and to 

recent observations across human tissues showing that RNA transcript levels are generally poorly 

correlated with protein abundance (Jiang et al., 2020), we found no evidence of correlation 

between RNA and protein levels for most RC proteins. Although RNA integrity is generally high 

in all postmortem samples processed (Mostafavi et al., 2018), we cannot entirely rule out the 
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influence of uncontrolled confounds, such as degradation of RNA transcripts during the post-

mortem interval relative to greater protein stability, which would contribute to diminish RNA-

protein correlations. Regardless, our analyses of the human brain proteome show conserved and 

expected co-regulation patterns consistent with RC composition and topology. Overall, this 

comprehensive analysis of RC subunit co-regulation patterns in a large cohort of women and 

men, with or without AD, adds molecular-resolution data to further examine the basis for normal 

and abnormal mitochondrial function in the human brain. 
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Figure Legends 

Fig. 1. Mitochondrial respiratory chain (RC) complexes proteins co-regulation. (A) Study 

design: we assessed co-regulation of mitochondrial RC proteins (or subunits) in the human 
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dorsolateral prefrontal cortex (DLPFC) across three independent cohorts: ROSMAP (N=400), 

Banner (N=201) and BLSA (N=47) (for more details see Fig. S1). (B) Heatmap of the association 

between RC nuclear DNA (nDNA) encoded subunits assessed with Spearman rank correlation in 

ROSMAP, Banner and BLSA. Heatmaps with individual pairs of correlations are presented in Fig 

S3-S5 and correlation matrices are presented in table S2. Average Spearman’s rho (95% CI) for 

nDNA encoded subunits for RC complexes I, III, IV, V. (C) Distribution of correlation results 

(Spearman’s rho) for RC complexes I, III, IV, V. Co-regulation of complex II was not studied 

individually due to its small number of subunits. (D) Average Spearman’s rho (95% CI) for nDNA 

encoded subunits and assembly factors and for (E) core and accessory subunits for all RC 

complexes. (F) Average Spearman’s rho (95% CI) for RC complexes part of the hypothesized 

supercomplexes (SC, I, III, IV) and other possible pairs of RC complexes. P-values from Dunn’s 

multiple comparisons test are shown in Fig S11A-C. P-values from Mann-Whitney test (D-E) or 

Kruskal-Wallis test with Dunn’s multiple comparisons test (B), p<0.05*, p<0.01**, p<0.001***, 

p<0.0001****. 

 

Fig. 2. Relationship between mitochondrial respiratory chain (RC) protein abundance, 

mitochondrial mass, mtDNA density, mitochondrial DNA copy number (mtDNAcn) and 

neuron proportion. Association between RC nuclear DNA (nDNA) and mtDNA encoded subunits 

abundance and mitochondrial content (average of the scaled values of CS.O75390, CS.H0YIC4, 

TOMM20.Q15388, VDAC1.P21796), mtDNAcn, mtDNA density (mtDNAcn/mito content) and 

neuron proportion (neuron %) shown as (A) heatmaps of Spearman’s rho (B) and as average 

Spearman’s rho (95% CI). P-value from Kruskal-Wallis test with Dunn’s multiple comparisons test 

(B, left) or one-way ANOVA and Tukey’s multiple comparison test (B, right), p<0.0001****. (C) 

Example of scatterplot of the association between a complex 1 subunit (NDUFA10.O95299) and 

mtDNA density. Results from simple linear regression. ROSMAP, N=124-400. 
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Fig. 3. mtDNA and nuclear DNA (nDNA) encoded mitochondrial respiratory chain (RC) 

proteins co-regulation, nuclear-mtDNA crosstalk and transcription factors. (A) Diagram of 

nuclear-mtDNA crosstalk. (B) Average Spearman’s rho (95% CI) between nDNA encoded 

subunits, between mtDNA encoded subunits and for the crosstalk between nDNA and mtDNA 

subunits. (C) Average Spearman’s rho of nuclear-mtDNA crosstalk for RC complexes I, III, IV, V. 

(D) Heatmap and (E) average Spearman’s rho (95% CI) of nuclear-mtDNA crosstalk presented 

by mtDNA encoded subunits’ order of transcription. Note that ND4L is not shown (data not 

available). P-values from Dunn’s multiple comparisons test are shown in Fig. S12, (F) 

Relationship between mtDNA encoded RC protein abundance and nuclear-mtDNA crosstalk. 

Results from simple linear regression. (G) Heatmap and (H) average Spearman’s rho (95% CI) 

of RC subunits protein abundance and transcription factor gene expression (NRF2 corresponds 

to GABPB1 gene). P-values from Dunn’s multiple comparisons test are shown in Fig S13. 

ROSMAP, N =124-400.  P-value from Kruskal-Wallis test with Dunn’s multiple comparisons test, 

p<0.05*, p<0.01**, p<0.001***, p<0.0001****. 

 

Fig. 4. Mitochondrial respiratory chain (RC) complex I proteins co-regulation.  (A) Diagram 

of complex I protein subunits topological location. (B) Heatmap of complex I protein co-regulation 

arranged by modules and example of individual association (results from simple linear 

regression). (C) Complex I subunit abundance (raw values). Average Spearman’s rho (95% CI) 

coefficient for complex I (D) subunits and assembly factors, (E) core and accessory subunits (F) 

nuclear DNA (nDNA) or mtDNA encoded subunits (F) subunits by localization and (G) by module. 

ROSMAP, N=124-400.P-value from unpaired t-test, Mann-Whitney test, or Kruskal-Wallis test 

with Dunn’s multiple comparisons test, p<0.05*, p<0.01**, p<0.001***, p<0.0001****. 

 

Fig. 5. Difference in mitochondrial respiratory chain (RC) proteins abundance according to 

sex and clinical diagnosis. Difference between men and women in proteins abundance shown 
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as fold change for the (A) RC individual subunits and (B) mitochondrial content and RC summary 

scores. (C) violin plot of mito content by sex. P-value from one-way ANCOVA adjusted for 

Alzheimer’s disease (AD) status and age at death. Difference between individuals with no 

cognitive impairment (NCI) and AD at death in RC proteins abundance shown as (D) RC individual 

subunits, (E) mitochondrial content and RC summary scores. (F) violin plot of mito content by AD 

status. P-value from one-way ANCOVA adjusted for sex and age at death (as well as years of 

education for ROSMAP and BLSA). Scores were adjusted for post-mortem interval, age at death, 

study, and batch. *p<0.05, **p<0.01. Detailed results are shown in supplementary table S4. 
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STAR Methods 
 

RESOURCE AVAILABILITY  

RESOURCE SOURCE IDENTIFIER 

Database   

ROSMAP TMT proteomics  (Robins et al., 2019) syn17015098 

ROSMAP SRM proteomics  (Yu et al., 2018) syn10468856 

ROSMAP RNA-seq (Raj et al., 2018) syn3388564 

ROSMAP mtDNAcn from WGS (Klein et al., 2021) syn25618990 

Banner Raw Proteomic Data (Swarup et al., 2020) syn7170616 

BLSA Raw Proteomic Data (Seyfried et al., 2017) syn3606086 

Software and algorithms   

RStudio https://www.rstudio.com/ v1.4 

R https://cran.r-project.org/ v4.0.4 
 

Prism https://www.graphpad.com/ V9.1.1 

 

Lead contact  

Further information and requests for resources should be directed to and will be fulfilled by the 

lead contact, Martin Picard (martin.picard@columbia.edu). 

 

Materials availability 

This study did not generate new unique materials or reagents. 
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Data and code availability 
 
Access to full datasets from the ROS and MAP studies can be requested on the website: 

https://www.radc.rush.edu/. The molecular data used in this study is available through the 

synapse.org AMP-AD Knowledge Portal: www.synapse.org 

 
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
 

We used data from ROSMAP (N=400) (Bennett et al., 2018; Robins et al., 2019; Yu et al., 

2020), BLSA (N=47) (Ferrucci, 2008; Swarup et al., 2020; Wingo et al., 2019), and Banner 

(N=201) (Beach et al., 2015; Swarup et al., 2020; Wingo et al., 2019). These studies have 

measured post-mortem DLPFC protein abundance using untargeted proteomics. Clinical 

characteristics of the study participants included in the analysis are shown in supplementary table 

S1. 

 

ROSMAP 

Participants 

The Rush Memory and Ageing Project (MAP) and the Religious Orders Study (ROS) (A 

Bennett et al., 2012a; A Bennett et al., 2012b; Bennett et al., 2018) are two ongoing cohort studies 

of aging and dementia in older persons. The ROS study enrolls Catholic nuns, priests, and 

brothers, from about 40 groups across the United States. The MAP study enrolls participants 

primarily from about 40 retirement communities throughout northeastern Illinois, with additional 

diverse participants via individual home visits. Participants in both cohorts were free of known 

dementia at study enrollment and agreed to annual evaluations and organ donation on death. 

Both studies were approved by an Institutional Review Board of Rush University Medical Center 

and all participants signed an informed consent, Anatomical Gift Act, and a repository consent to 

share data and biospecimens. 
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The clinical diagnosis of Alzheimer’s Disease (AD) was based on the analysis of the annual 

clinical diagnosis of dementia by the study neurologist blinded to post-mortem data. Post-mortem 

AD pathology was assessed as described previously (Bennett et al., 2006; Bennett et al., 2003), 

and AD classification was defined based on the National Institutes of Ageing-Reagan criteria 

(Hyman and Trojanowski, 1997). Dementia status was coded as no cognitive impairment (NCI), 

mild cognitive impairment (MCI), or Alzheimer’s dementia (AD) from the final clinical diagnosis of 

dementia. Pathologic AD was defined using the NIA-Reagan criteria for the pathologic diagnosis 

of AD (high or intermediate likelihood of AD) (Bennett et al., 2006) and final clinical diagnosis of 

cognitive status (AD and no other cause of cognitive impairment) as described previously (Klein 

et al., 2020). MCI refers to those persons with cognitive impairment but who did not meet criteria 

for dementia. 

 

Additional cohorts: Banner and BLSA 

Banner Participants 

As a first replication sample, we used proteomic data of post-mortem DLPFC brain tissue 

from the Banner Sun Health Research Institute's Brain and Body Donation Program. Data was 

available from 101 cognitively normal (controls) and 100 Alzheimer’s disease (AD) cases (43% 

women). Subjects were enrolled as cognitively unimpaired volunteers from the retirement 

communities (Beach et al., 2015) or as patients by neurologists. The Banner study was approved 

by the Banner Sun Health Research Institute Institutional Review Board-approved. Participants 

in the Banner dataset provided informed consent for clinical assessments during life, brain 

donation after death, and usage of donated biospecimens for approved future research (Beach 

et al., 2015).  

Post-mortem neuropathological evaluation was performed at Banner Sun Health 

Research Institute with the assessment of amyloid plaque distribution according to CERAD 

criteria and the neurofibrillary tangle pathology assessed with Braak staging. Control cases were 
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defined as cognitively healthy within on average 9 months of death when they presented low 

CERAD (0.13 ±0.35) and Braak (2.26 ±0.94) measures of amyloid and tau neuropathology. 

Participants were classified as AD cases when evaluated as demented at the last clinical research 

assessment, and when the brains showed high CERAD (2.9 ±0.31) and Braak (5.4 ±0.82) scores 

(consistent with moderate to severe neuropathological burden).  

 

BLSA Participants 

As a second replication sample, we used proteomic data performed on DLPFC brain 

tissue samples from the National Institute on Aging’s Baltimore Longitudinal Study of Aging. Data 

was available for 13 cognitively healthy individuals, 14 asymptomatic AD and 20 AD cases (36% 

women). The BLSA study was approved by the Institutional Review Board and the National 

Institute on Aging. Human research at the National Institutes of Health (NIH) and the BLSA 

participants provided written informed consent (Ferrucci, 2008). 

Post-mortem neuropathological evaluation was performed at the Johns Hopkins 

Alzheimer’s Disease Research Center with the Uniform Data Set. Assessment included amyloid 

plaque distribution according to the CERAD criteria and neurofibrillary tangle pathology assessed 

with the Braak staging. Control cases were defined as cognitively healthy within on average 9 

months of death when they presented low CERAD (0.13 ±0.35) and Braak (2.26 ±0.94) measures 

of amyloid and tau neuropathology. Participants were classified as AD cases when evaluated as 

demented at the last clinical research assessment, and when the brains showed high CERAD 

(2.9 ±0.31) and Braak (5.4 ±0.82) scores (consistent with moderate to severe neuropathological 

burden). Asymptomatic AD cases were cognitively normal proximate to death, and had high 

CERAD (2.1 ±0.52) and moderate Braak (3.6 ±0.99).  
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METHOD DETAILS 

ROSMAP 

Tandem mass tag (TMT) isobaric labeling mass spectrometry  

Untargeted proteomics was measured from post-mortem DLPFC (Broadman area 9) 

tissue of 400 (70% women) individuals including 168 cognitively normal individuals, 101 MCI, 123 

AD and 8 had other cause of dementia, using tandem mass tag (TMT) isobaric labeling mass 

spectrometry methods for protein identification and quantification as previously described (Robins 

et al., 2019). A total of 12,691 unique proteins (7,901 after quality control) were detected.  

Briefly, tissue homogenization was performed (following the method described in (Ping et 

al., 2018)) before protein digestion. An equal amount of protein from each sample was aliquoted 

and digested in parallel to serve as the global pooled internal standard (GIS) in each TMT batch. 

Samples were randomized by co-variates (age, sex, PMI, diagnosis, etc.) into 50 batches (8 cases 

per batch) before TMT labeling. The samples (N=400) and the pooled global internal standards 

(GIS) (N=100) were labelled using the TMT 10-plex kit (ThermoFisher 90406) as previously 

described in (Johnson et al., 2018; Ping et al., 2018). In each batch, TMT channels 126 and 131 

were used to label GIS standards and the 8 middle TMT channels were used for individual 

samples following randomization. The labelling was followed by high-pH fractionation on an 

Agilent 1100 HPLC system (as described in (Mertins et al., 2018; Robins et al., 2019)). Peptide 

eluents were separated on a self-packed C18 (1.9 μm, Dr. Maisch, Germany) fused silica column 

(25 cm × 75 μM internal diameter (ID); New Objective, Woburn, MA) by a Dionex UltiMate 3000 

RSLCnano liquid chromatography system (ThermoFisher Scientific) and monitored on an 

Orbitrap Fusion mass spectrometer (ThermoFisher Scientific). The RAW files were analyzed 

using the Proteome Discoverer suite (version 2.3, ThermoFisher Scientific). The protein 

abundances were log2 transformed and regressed for age at death, postmortem interval, study 

and batch for downstream analyses. 
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Selection reaction monitoring (SRM) quantitative proteomics  

In addition, a small set of targeted proteins (N=119) was measured from post-mortem 

DLPFC brain tissue of 381 cognitively normal individuals, 286  MCI, 519 AD and 22 with other 

cause of dementia (68% women) using selection reaction monitoring (SRM) quantitative 

proteomics as described previously (Yu et al., 2018).  

RNA-seq 

RNA sequencing was performed from DLPFC (N=1102) using a method that has been 

previously described (Raj et al., 2018). Briefly, samples were extracted using Qiagen's miRNeasy 

mini kit (cat. no. 217004) and the RNase free DNase Set (cat. no. 79254), and quantified by 

Nanodrop and quality was evaluated by Agilent Bioanalyzer. Sequencing was performed on the 

Illumina HiSeq with 101-bp paired-end reads, the mean coverage for the samples to pass quality 

control was 95 million reads (median 90 million reads). Data included in the analysis met quality 

control criteria. For each gene, a normalized expression level was computed by subtracting the 

mean expression for that gene across all samples and dividing by the SD. The expression levels 

were adjusted for batch, library size, percentage of coding bases, percentage of aligned reads, 

percentage of ribosomal bases, percentage of UTR base, median 5 prime to 3 prime base, median 

CV coverage, post-mortem interval (PMI), and study (ROS or MAP). The data is available through 

the synapse.org AMP-AD Knowledge Portal (www.synapse.org; SynapseID: syn3388564). 

 

Deconvolution of cell type proportion 

Proportion of neurons were estimated from DLPFC RNA-seq data by applying the Digital 

Sorting Algorithm (DSA) (Zhong et al., 2013) to genes previously used to deconvolute cortical 

RNA-seq data (Wang et al., 2020). RNA-seq data was TMM normalized and technical variables 

were regressed out. A mean transcription level ³2 cpm was used to include marker genes of 
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neurons (n=90). The median transcription level of all marker genes per cell type was calculated 

as described previously by (Klein et al., 2021); Wang et al. (2020). 

 

Assessment of DLPFC WGS mtDNAcn 
 

WGS libraries were prepared using the KAPA Hyper Library Preparation Kit in accordance 

with the manufacturer’s instructions. Briefly, Covaris LE220 sonicator (adaptive focused 

acoustics) was used to shear 650ng of DNA. Bead-based size selection was performed and 

selected DNA fragments were then end-repaired, adenylated, and ligated to Illumina sequencing 

adapters. Fluorescent-based assays including qPCR with the Universal KAPA Library 

Quantification Kit and Fragment Analyzer (Advanced Analytics) or BioAnalyzer (Agilent 2100) 

were used to evaluate final libraries. Libraries were sequenced on an Illumina HiSeq X sequencer 

(v2.5 chemistry) using 2 x 150bp cycles. 

R/Bioconductor (packages GenomicAlignments and GenomicRanges) was used to 

calculate the median sequence coverages of the autosomal chromosomes and of the 

mitochondrial genome. The intra-contig ambiguity mask from the BSgenome package was used 

to exclude ambiguous regions. The mtDNAcn was defined as (covmt/covnuc) × 2. the mtDNAcn 

was z-standardized and then logarithmized as described previously (Klein et al., 2021).  

 

Banner AND BLSA LC-MS/MS proteomics 

In Banner and BLSA, protein identification and quantification were performed using Liquid 

Chromatography Coupled to Tandem Mass Spectrometry (LC-MS/MS) as described in (Seyfried 

et al., 2017; Swarup et al., 2020). Briefly, tissue homogenization and protein digestion were 

performed. Resulting peptides were desalted with a Sep-Pak C18 column (Waters) and dried 

under vacuum. Peptide mixtures were separated on a self-packed C18 (1.9 um Dr. Maisch, 

Germany) fused silica column (25 cm x 75 μM internal diameter; New Objective, Woburn, MA) by 

a NanoAcquity UHPLC (Waters, Milford, FA) and monitored on a Q-Exactive Plus mass 
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spectrometer (ThermoFisher Scientific, San Jose, CA). MaxQuant (v1.5.2.) with Thermo 

Foundation 2.0 for RAW file reading capability was used to generate label-free quantification. The 

quantitation method only considered razor plus unique peptides for protein level quantitation. The 

protein abundances were log2 transformed and regressed for age at death and postmortem 

interval. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

To assess the extent to which mitochondrial proteins are correlated with each other within RC 

complexes or between RC we used Spearman correlation matrices. Spearman’s r matrixes were 

first computed and averaged to compare between groups of protein subunits. The same method 

was used to assess the cross-talk between nDNA and mtDNA proteins. As well as the overall 

correlation between RC proteins abundance and mito content, mtDNAcn, mtDNA density and 

neuron proportion. Before comparing levels of co-regulation between groups of subunits, we 

tested whether the variables were normally distributed using the Kolmogorov-Smirnov test. For 

the comparison of two groups, we used either the unpaired t-test or the non-parametric Mann-

Whitney test when the variables were not normally distributed. For the comparison of more than 

two groups, we tested equality of variance using the Brown–Forsyathe test, we used one-way 

ANOVA with Tukey’s multiple comparison test or the non-parametric equivalent Kruskal-Wallis 

test with Dunn’s multiple comparisons test when the variables were not normally distributed. 

Multivariate linear models were used to compare group difference in RC abundance by sex 

(adjusted for AD status and age at death) and AD status (adjusted by sex and age at death (and 

years of education in ROSMAP and BLSA)). Effect sizes between groups were computed as 

Hedges’ g (g) to quantify the magnitude of group differences.  Statistical analyses were performed 

with Prism 8 (GraphPad, CA) and RStudio version 1.3.1056. Statistical significance was set at 

p<0.05. 
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Definition of mitochondrial mass and RC content 

Each datapoint was transformed into a z-score (x-mean/sd) before being transformed 

into a t-score with an average of 100 and a standard deviation of 10 ((x*10)+100). 

 

Index of mitochondrial content (mass) 

To build a multivariate index of mitochondrial content, we averaged the t-score protein 

levels of the citrate synthase (CS), the translocator of the outer mitochondrial membrane (TOM20) 

and voltage dependent anion channel (VDAC1). CS is a matrix-located Krebs cycle enzyme 

whose enzymatic activity has been validated has a robust marker of mitochondrial mass in human 

skeletal muscle (Larsen et al., 2012) and has been used as marker of mitochondrial content in 

the brain (e.g. (Scaini et al., 2010)). TOM20 and VDAC1 are integral proteins of the outer and 

inner mitochondrial membranes, respectively, and are widely used as a marker of mitochondrial 

mass (Gouspillou et al., 2014; Narendra et al., 2008; Rehman et al., 2012). 

 

Indices of mitochondrial respiratory chain abundance 

For each RC complex, t-score protein levels were averaged to build a score representing 

the average abundance based on all subunits of RC complex I, II, III, IV and V. The proteins 

included for each complex, and their annotation, are provided in Table S5. 

 

Index of mitochondrial DNA density 

The ratio of mtDNA copies per cell (mtDNAcn derived from WGS) relative to mitochondrial 

content per cell (mito content index) was computed to build a score representing mtDNA density 

per mitochondrion. 
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SUPPLEMENTAL ITEM TITLES 
 
Supplementary figures: 
 
Fig. S1. Study design 
 
Fig. S2. Analytical procedure to compute co-regulation. 
 
Fig. S3. Mitochondrial respiratory chain (RC) complexes proteins co-regulation in ROSMAP 
(TMT). 
 
Fig. S4. Mitochondrial respiratory chain (RC) proteins co-regulation in Banner. 
 
Fig. S5. Mitochondrial respiratory chain (RC) proteins co-regulation in BLSA. 
 
Fig. S6. Mitochondrial respiratory chain (RC) proteins co-regulation in ROSMAP. Data from 
Selected reaction monitoring proteomics (SRM). 
 
Fig. S7. Mitochondrial respiratory chain (RC) transcript co-regulation of the dorsolateral prefrontal 
cortex (DLPFC). 
 
Fig. S8. Mitochondrial respiratory chain (RC) transcript co-regulation of the posterior cingulate 
cortex (PCC). 
 
Fig. S7. Mitochondrial respiratory chain (RC) transcript co-regulation of the dorsolateral prefrontal 
cortex (DLPFC). 
 
Fig. S8. Mitochondrial respiratory chain (RC) transcript co-regulation of the posterior cingulate 
cortex (PCC). 
 
Fig. S9. Mitochondrial respiratory chain (RC) transcript co-regulation of the anterior caudate (AC). 
 
Fig. S10. Mitochondrial respiratory chain (RC) supercomplexes transcript co-regulation (RNA-
seq). 
 
Fig. S11. Mitochondrial respiratory chain (RC) supercomplexes proteins and transcripts co-
regulation. 
 
Fig. S12. Nuclear-mtDNA crosstalk by mtDNA subunits. 
 
Fig. S13. Mitochondrial transcription factors (TFs) gene expression and respiratory chain (RC) 
protein abundance. 
 
Fig. S14. Association between nDNA-encoded mitochondrial respiratory chain (RC) transcript and 
transcription factors (TFs) levels (RNA-seq). 
 
Fig. S15. Correlations between mitochondrial respiratory chain (RC) proteins (TMT) and transcript 
(RNAseq) levels in human dorsolateral prefrontal cortex (DLPFC). 
 
Fig. S16. Mitochondrial respiratory chain (RC) proteins co-regulation according to sex and 
cognitive status. 
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Fig. S17. Difference in mitochondrial respiratory chain (RC) complex I proteins abundance 
according to sex and cognitive status.  
 
 
Supplementary tables: 

Supplementary table 1: Participant descriptive statistics 

Supplementary table 2: Correlation matrices 

Supplementary table 3: Correlation matrices stratified by sex and AD status 

Supplementary table 4: Difference in RC protein abundance by sex and AD status 

Supplementary table 5: Annotated protein list 
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Fig. 1. Mitochondrial respiratory chain (RC) complexes proteins co-regulation. (A) Study design: we assessed co-regulation of 
mitochondrial RC proteins (or subunits) in the human dorsolateral prefrontal cortex (DLPFC) across three independent cohorts: ROSMAP 
(N=400), Banner (N=201) and BLSA (N=47) (for more details see Fig. S1). (B) Heatmap of the association between RC nuclear DNA 
(nDNA) encoded subunits assessed with Spearman rank correlation in ROSMAP, Banner and BLSA. Heatmaps with individual pairs of 
correlations are presented in Fig S3-S5 and correlation matrices are presented in table S2. Average Spearman’s rho (95% CI) for nDNA 
encoded subunits for RC complexes I, III, IV, V. (C) Distribution of correlation results (Spearman’s rho) for RC complexes I, III, IV, V. Co-
regulation of complex II was not studied individually due to its small number of subunits. (D) Average Spearman’s rho (95% CI) for nDNA 
encoded subunits and assembly factors and for (E) core and accessory subunits for all RC complexes. (F) Average Spearman’s rho (95% 
CI) for RC complexes part of the hypothesized supercomplexes (SC, I, III, IV) and other possible pairs of RC complexes. P-values from 
Dunn’s multiple comparisons test are shown in Fig S11A-C. P-values from Mann-Whitney test (D-E) or Kruskal-Wallis test with Dunn’s 
multiple comparisons test (B), p<0.05*, p<0.01**, p<0.001***, p<0.0001****. 
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Fig. 2. Relationship between mitochondrial respiratory chain (RC) protein abundance, mitochondrial mass, mtDNA density, 
mitochondrial DNA copy number (mtDNAcn) and neuron proportion. Association between RC nuclear DNA (nDNA) and mtDNA 
encoded subunits abundance and mitochondrial content (average of the scaled values of CS.O75390, CS.H0YIC4, TOMM20.Q15388, 
VDAC1.P21796), mtDNAcn, mtDNA density (mtDNAcn/mito content) and neuron proportion (neuron %) shown as (A) heatmaps of 
Spearman’s rho (B) and as average Spearman’s rho (95% CI). P-value from Kruskal-Wallis test with Dunn’s multiple comparisons test (B, 
left) or one-way ANOVA and Tukey’s multiple comparison test (B, right), p<0.0001****. (C) Example of scatterplot of the association 
between a complex 1 subunit (NDUFA10.O95299) and mtDNA density. Results from simple linear regression. ROSMAP, N=124-400
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Fig. 3. mtDNA and nuclear DNA (nDNA) encoded mitochondrial respiratory chain (RC) proteins co-regulation, nuclear-mtDNA 
crosstalk and transcription factors. (A) Diagram of nuclear-mtDNA crosstalk. (B) Average Spearman’s rho (95% CI) between nDNA 
encoded subunits, between mtDNA encoded subunits and for the crosstalk between nDNA and mtDNA subunits. (C) Average Spearman’s 
rho of nuclear-mtDNA crosstalk for RC complexes I, III, IV, V. (D) Heatmap and (E) average Spearman’s rho (95% CI) of nuclear-mtDNA 
crosstalk presented by mtDNA encoded subunits’ order of transcription. Note that ND4L is not shown (data not available). P-values from 
Dunn’s multiple comparisons test are shown in Fig. S12, (F) Relationship between mtDNA encoded RC protein abundance and nuclear-
mtDNA crosstalk. Results from simple linear regression. (G) Heatmap and (H) average Spearman’s rho (95% CI) of RC subunits protein 
abundance and transcription factor gene expression (NRF2 corresponds to GABPB1 gene). P-values from Dunn’s multiple comparisons 
test are shown in Fig S13. ROSMAP, N =124-400.  P-value from Kruskal-Wallis test with Dunn’s multiple comparisons test, p<0.05*, 
p<0.01**, p<0.001***, p<0.0001****. 
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Fig. 4. Mitochondrial respiratory chain (RC) complex I proteins co-regulation.  (A) Diagram of complex I protein subunits 
topological location. (B) Heatmap of complex I protein co-regulation arranged by modules and example of individual association (results 
from simple linear regression). (C) Complex I subunit abundance (raw values). Average Spearman’s rho (95% CI) coefficient for 
complex I (D) subunits and assembly factors, (E) core and accessory subunits (F) nuclear DNA (nDNA) or mtDNA encoded subunits (F) 
subunits by localization and (G) by module. ROSMAP, N=124-400.P-value from unpaired t-test, Mann-Whitney test, or Kruskal-Wallis 
test with Dunn’s multiple comparisons test, p<0.05*, p<0.01**, p<0.001***, p<0.0001****. 
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Fig. 5. Difference in mitochondrial respiratory chain (RC) proteins abundance according to sex and clinical diagnosis. Difference 
between men and women in proteins abundance shown as fold change for the (A) RC individual subunits and (B) mitochondrial content 
and RC summary scores. (C) violin plot of mito content by sex. P-value from one-way ANCOVA adjusted for Alzheimer’s disease (AD) 
status and age at death. Difference between individuals with no cognitive impairment (NCI) and AD at death in RC proteins abundance 
shown as (D) RC individual subunits, (E) mitochondrial content and RC summary scores. (F) violin plot of mito content by AD status. P-
value from one-way ANCOVA adjusted for sex and age at death (as well as years of education for ROSMAP and BLSA). Scores were 
adjusted for post-mortem interval, age at death, study, and batch. *p<0.05, **p<0.01. Detailed results are shown in supplementary table 
S4. 
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