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Abstract5

Rhythmic neuronal network activity underlies brain oscillations. To investigate how con-6

nected neuronal networks contribute to the emergence of the α-band and the regulation of Up7

and Down states, we study a model based on synaptic short-term depression-facilitation with8

afterhyperpolarization (AHP). We found that the α-band is generated by the network behavior9

near the attractor of the Up-state. Coupling inhibitory and excitatory networks by recipro-10

cal connections leads to the emergence of a stable α-band during the Up states, as reflected11

in the spectrogram. To better characterize the emergence and stability of thalamocortical12

oscillations containing α and δ rhythms during anesthesia, we model the interaction of two13

excitatory with one inhibitory networks, showing that this minimal network topology leads to14

a persistent α-band in the neuronal voltage characterized by dominant Up over Down states.15

Finally, we show that the emergence of the α-band appears when external inputs are sup-16

pressed, while the fragmentation occurs at small synaptic noise or with increasing inhibitory17

inputs. To conclude, interaction between excitatory neuronal networks with and without AHP18

seems to be a general principle underlying changes in network oscillations that could apply to19

other rhythms.20

Author summary: Brain oscillations recorded from electroencephalograms characterize behaviors21

such as sleep, wakefulness, brain evoked responses, coma or anesthesia. The underlying rhythms22

for these oscillations are associated at a neuronal population level to fluctuations of the membrane23

potential between Up (depolarized) and Down (hyperpolarized) states. During anesthesia with24

propofol, a dominant alpha-band (8-12Hz) can emerge or disappear, but the underlying mecha-25

nisms remain unclear. Using modeling, we report that the alpha-band appears during Up states26

in neuronal populations driven by short-term synaptic plasticity and noise. Moreover, we show27

that three connected networks representing the thalamocortical loop reproduce the dynamics of28

the alpha-band, which emerges following the arrest of excitatory stimulations, but can disappear by29

increasing inhibitory inputs. To conclude, short-term plasticity in well connected neuronal networks30

can explain the emergence and fragmentation of the alpha-band.31

Introduction32

Electroencephalogram (EEG) is used to monitor the brain activity in various conditions such as33

sleep [1,2], coma [3] or meditation [4] and to reveal and quantify the presence of multiple frequency34

oscillations [5] over time [6]. This analysis can be used to asses the level of consciousness or depth35

of unconsciousness of the brain. For example, during general anesthesia under propofol, a dominant36

oscillation is the α-band (8-12Hz) [7,8]. However, the precise mechanisms underlying the emergence37

or disappearance of this α-band remain unknown. Interestingly, when the level of sedation becomes38

too high, the EEG shows that the α-band can get fragmented and even disappear replaced by a39
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different transient motif called burst-suppression, which consists in alternation of periods of high40

frequency activity followed by iso-electric suppression periods where the EEG is almost flat [7]. In41

general, large doses of hypnotic in prolonged anesthesia in rodents alters brain synaptic architec-42

ture [9], confirming the need to avoid over sedation. Burst-suppression is a motif associated with a43

too deep anesthesia and its presence could indicate possible post anesthetic complications, although44

it has been attributed to ATP depletion [10]. Recently, it was shown that the loss of the α-band45

announces the appearance of burst-suppressions [11], however, this causality between α-band sup-46

pression and burst-suppressions remains unexplained.47

The α-band revealed by the EEG signal is associated with the local Up and Down states activ-48

ity [12–14], which corresponds to a depolarized and hyperpolarized membrane voltage of a neu-49

ron [15]. The alternation between Up and Down states generates slow wave oscillations present in50

NREM sleep, as reported in slices electrophysiology [16] as well as using modeling approaches [17,18].51

Similarly, the emergence of the α-band during anesthesia could result from network interactions, as52

proposed by models based on the Hodgkin-Huxley formalism [19–21].53

Since Up and Down states reflect the neuronal activity at the population level [15, 22], we propose54

here to investigate the emergence and fragmentation of the α-band using a modeling approach55

based on synaptic short-term plasticity [23,24], which is often used to obtain estimations for burst56

or interburst durations [25–27]. These models based on facilitation and depression have recently57

been used to evaluate the working memory capacity to remember a sequence of words [28].58

Here, we use a mean-field neuronal model that accounts for both synaptic short-term dynamics and59

afterhyperpolarization (AHP) [29] resulting in a refractory period during which neurons stops firing60

after a burst. As a result, at a population level, AHP can modify the type of oscillations [30], from61

waxing and waning spindle oscillations to slow waves.62

We first study a single, two and then three interacting neuronal networks, a minimal configuration63

revealing the coexistence of α-oscillations and switching between Up and Down states. As we shall64

see, only the neuronal population with AHP can trigger spontaneous switching between Up and65

Down states while the other one, without AHP is at the origin of the α-oscillations in the Up state.66

We also investigate the role of synaptic noise and model the effect of propofol as an excitatory67

current for inhibitory neurons.68

69

1 Results70

1.1 EEG reveals the dynamics of the α-band during general anesthesia71

General anesthesia can be monitored using EEG (fig. 1A) that often reveals a stable α-band which72

persists in time (fig. 1B). The origin of the α-band is not fully understood but it was found to73

result from the dynamics of neuronal populations involving the reciprocal connexions between the74

thalamus and the cortex. During anesthesia involving the propofol agent, the inhibitory neurons75

are activated resulting in the emergence and stability of the α-band. Increase of the anesthetic76

agent can lead to a deeper anesthesia characterized by a transient disapearance of the α-band (fig.77

1C) so that the spectrum is carried by the δ-band. This disappearance can be quantified by two78

parameters, defining a fragmentation level which accounts for the persistence Pα of the α-power79

over a specific period of time and the number of disruptions Dα in the power band (see Methods80

section 2.1). The exact mechanisms leading to the stability and the peak of the α-band frequency81
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remains unclear. In the remaining part of this manuscript we propose to develop mean-field models82

based on synaptic properties to address this question.
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Figure 1: EEG recorded during general anesthesia A. Schematic of EEG electrode setup
on a patient’s head. B. Upper: Time recordings showing the EEG (inset: 5 s). The EEG signal
is composed of multiple bands as shown in the spectrogram (lower panel) composed of two major
bands: the δ-band (0-4Hz) and the α-band (8-12Hz) tracked by its maximum (black curve) revealing
the persistence of the α-band during anesthesia. C. Same as A for a case of fragmented α-band.
Data from the database VitalDB [31].

83

1.2 A single neuronal population can exhibit α-oscillations or slow84

waves through switching between Up and Down states85

1.2.1 The synaptic depression-facilitation model generates locked α-oscillations86

To analyze the change between a persistent α-band and a δ-band we develop a mean-field model87

of neuronal networks based on short term synaptic plasticity (fig. 2A). The first model consists of88

one well connected population of excitatory neurons described by three variables: the mean voltage89

h, the synaptic facilitation x and the depression y, resulting in a stochastic dynamical system (see90

Methods, section 2.2, equations 3) showing bi-stability: one attractor corresponds to the Down91

state (hyperpolarized, low frequency oscillations) and the second one to the Up state (depolarized,92

high frequency oscillations). One fundamental parameter is the level of connectivity J that we shall93

vary (fig. 2B). We found that such a system can generate a dominant oscillatory band where the94

peak value is an increasing function of the connectivity J (fig. 2C). In the present scenario the95

network dynamics is locked into an Up state and the dominant oscillations are generated by the96

imaginary part of the eigenvalues at the Up state attractor. This result shows that the persistent97

oscillations are the consequence of the noise and of the synaptic properties as well as the biophysical98

parameters (Table 1, SI), indeed, changing the synaptic properties can lead to the fragmentation99

and disappearance of the band where most of the energy is now located in the δ-band as quantified100

by the spectral edge frequency at 95% (SEF95, fig. S1). In addition, varying the noise amplitude101

allows to either fragment the band (fig. 2D, σ = 7) or to increase the power and the persistence of102

the band (fig. 2D, σ = 15) but it does not affect the value of the peak of the dominant oscillation103
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(fig. 2E). Indeed, similarly to the EEG analysis (fig. 1), we quantified the fragmentation level for104

different noise amplitudes and found that it varies from (Pα, Dα) = (52%, 34/min) for σ = 5 to105

(86%, 16/min) for σ = 7 and to (100%, 0/min) for σ = 15, which is of the same order of magnitude106

as the fragmentation levels observed in the human EEG data. This fragmentation of the α-band107

results only from the changes in the noise amplitude and can occur even though the population is108

locked into the Up state, suggesting that the loss the α-band could be independent from the switch109

between Up and Down states.110

1.2.2 The synaptic depression-facilitation model with AHP generates Up and Down111

states but no α-oscillations112

The previous model did not allow a dynamical switch between Up and Down states, thus we decided113

to test the effect of AHP in our model to explore a larger range of neuronal dynamics (see Methods).114

The synaptic depression-facilitation model with AHP is constructed by adding the AHP components115

to the mean-field equations (3) presented above (see Methods). The dynamics exhibit a bi-stability116

characterized by Up and Down states (fig. 3A-B). Contrary to the system without AHP, in the117

Up state the dynamics do not exhibit a dominant oscillation band other than δ (fig. S2) due to118

the non imaginary eigenvalues at the Up state attractor. Interestingly, by increasing the network119

connectivity J we can modulate the fraction of time spent in the Up state: for J small (J = 5.6)120

the dynamics spends 37% of the time in the Up state, while for J = 7.6 it represents 79% (fig. 3C-D121

and see also fig. S2A-B). Finally, increasing the noise leads to more frequent switches between Up122

and Down states (fig. S2C-D). To conclude, this model recapitulates the switch between Up and123

Down states but does not generate a stable α-band.124

1.2.3 Adding a stimulation during the Up states cannot change the oscillation rhythm125

between Up and Down states in the stable AHP model126

Adding an additive input current on the mean voltage h during the Up states simulates a situation127

where the observed network projects an excitatory input on a second network that would send a128

positive feedback when activated. The second network would only get activated by such stimuli129

when the first (observed) network is in the Up state. In previous studies with a 2D model (modeling130

only the firing rate and depression) we showed that such stimulus stabilizes the Up state [24]. Here131

we ran simulations for the cases with and without AHP where we added a constant input current132

only when the system was in the Up state (fig. S3). In the case without AHP, the dynamics stays133

locked in the Up state (fig. S3A), even in the case of a negative feedback current (upper) and the134

amplitude of the current IUp does not affect the peak value of the oscillatory band (fig. S3B). In135

the case with AHP the dynamics is not changed either: the dynamics switches between Up and136

Down states (fig. S3C) and the proportion of time spent in either Up or Down state is not affected137

by the value of the current IUp (fig. S3D).138

1.3 Modelling the effect of inhibition on the excitatory short term139

synaptic model with and without AHP140

To explore the range of oscillatory behaviors, we connected an inhibitory neuronal network to the141

excitatory one that could have or not the AHP (see Methods, section 2.3, equations 5). We also142
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Figure 2: Effect of network connectivity J and noise amplitude σ on model (3) without
AHP. A. Schematic of the facilitation-depression model (3). B. Time-series and spectrograms of
h (60s simulations) with peak value of the dominant oscillatory band (black curve) for J = 5.6
(upper) and 7.6 (lower). C. Mean value of the dominant oscillatory frequency for J ∈ [4.8, 7.8]. D.
Time-series and spectrograms of h (60s simulations) peak value of the dominant oscillatory band
(black curve) for σ = 7 (upper) and 15 (lower). E. Mean value of the dominant oscillatory frequency
for σ ∈ [5, 15]. Synaptic plasticity timescales: τ = 0.01s, τr = 0.2s and τf = 0.12s.
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added a constant stimulating current Ii on the inhibitory population (fig. 4A).143

In the case where the excitatory network has AHP the dynamics exhibit switching between Up144

and Down states (fig. 4B). Interestingly, by increasing the current Ii we modulate the fraction of145

time spent in Up state by the excitatory system (fig. 4C-D). However, independently of the value146

of Ii the Up state does not show any persistent α-oscillations (fig. 4E). Finally, modulating the147

current Ii is not sufficient in a dynamics that exhibits the α-band to switch between band frequency148

dominance (fig. 4F).149

1.4 Two excitatory connected to an inhibitory networks leads to the150

coexistence of Up and Down states and α-oscillations151

To define the conditions for which the Up and Down states can coexist with an α-band, we explore152

a model that contains two coupled excitatory components with one inhibitory component (see153

Methods, section 2.4, equations 6). This investigation is driven by the α-oscillation that can be154

generated by the thalamo-cortical loop (fig. 5A). The thalamo-cortical excitatory subsystem is155

decomposed into two components α and U/D connected by reciprocal connections and receives156

an inhibitory input from the inhibitory subsystem NR. The NR component sends reciprocal157

connections to the U/D component and can also be activated by an external stimulation Ii. We focus158

on the sum of the three voltage components because it is the one recorded by EEG. During general159

anesthesia with propofol, increasing the dose leads to a fragmentation and transient disappearance160

of the α-band. To assess under which conditions this phenomenon could be generated, we followed161

the same protocol by first investigating the effect of switching off all external stimuli, followed by162

increasing an injected current to the inhibitory neuronal component to simulate an increase of the163

propofol concentration.164

1.4.1 Suppressing external stimuli into two excitatory coupled to an inhibitory net-165

work leads to the spontaneous emergence of α-oscillations166

External stimuli are switch off during the loss of consciousness at the start of a general anesthesia.167

We modeled here this transition by first adding stimuli modeled as excitatory input current Iext =168

300 + 20ξ (resp. Iext,2 = 100 + 20ξ) where ξ is a Gaussian white noise of mean 0 and variance 1. We169

applied Iext and Iext,2 to the three components of the model (fig. 5A, blue and green) for the first170

40 seconds of the simulation. To model the beginning of anesthesia, we set the external stimuli Iext171

and Iext,2 to zero for the rest of the simulation (fig. 5B). We found that during wakefulness where172

we set Iext > 0 from 0 to 40s, there is no dominant oscillatory band in the spectrogram, but after173

the suppression of the external inputs Iext = 0 from 40 to 120s, the network stabilizes in the Up174

state and a dominant α-band emerges (fig. 5B). Our simulations suggest that the α-band emerges175

as a stable state once the external stimuli are suppressed, due to the dynamics between the three176

networks, which reproduces the specific effect of propofol.177

1.4.2 Constant low input on inhibition modulates the switching between Up and178

Down states179

We first studied the effect of increasing the inhibitory input current Ii (fig. 6A) on the fraction180

of time the system spends in Up and Down states. For Ii = 0, we found that the dynamics is181
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Figure 4: Excitatory-inhibitory network. A. Schematic of connectivity between the excitatory
(E) and inhibitory (I) networks. B. Time series of the excitatory with AHP (left) and inhibitory
(right) networks with the spectrograms of h for JEE = 6.8, JII = 8.5, JIE = 3.4, JEI = 5.1, τ = 0.01s,
τr = 0.5s, τf = 0.3s and Ii = 0. C. Fraction of time spent in the Down state by the excitatory
network with respect to Ii ∈ [0, 100]. D. Distributions of the fraction of time spent in the Down
(purple, resp. Up, red) state by the excitatory network for Ii = 0 (left), 20 (center) and 50 (right).
E. Spectrograms (60s simulations) of hE for for Ii = 0 (left), 20 (center) and 50 (right) with SEF
95 (blue line). F. Time series of the mean voltage h (upper) and spectrograms (lower) for the case
where the excitatory network does not have AHP and with the timescales τ = 0.01s, τr = 0.2s,
τf = 0.12s, showing an α-band.
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Figure 5: Emergence of the α-band following external stimuli suppression. A. Connectivity
matrix between the two excitatory α, U/D and inhibitory (NR) network, with the external inputs
Iext (blue) and Iext,2 (green). B. Time-series for the sum of the three populations voltage hα +
hUD + hR (upper), spectrograms (center) and maximum value of α intensity (red) and inputs Iext
(blue and green, lower). The timescale parameters for U/D are τ = 0.025s, τr = 0.5s, τf = 0.3s; for
NR and α: τ = 0.07s, τr = 0.14s, τf = 0.086s, σUD = σR = 6.25 and σα = 1.5.

characterized by a large proportion of time spent in the Up state (99%) showing persistent α-182

oscillations (fig. 6B). The transition from Up to Down is characterized by a disappearance of the183

α-band, however, the transition from Down to Up is associated with a burst which can either lead184

to the emergence of an α-band or a return to the Down state. By increasing Ii from 0 to 50 and 150185

we found that the fraction of time spent in Up states decreases from 99% to 89% and to 4.5% (fig.186

6C-E). Each network has a different contribution to the EEG. The U/D component (with AHP)187

shows a fragmented and weak α-band while the inhibitory network does not exhibit any particular188

oscillatory band. Finally, the α component (without AHP) exhibits a very strong dominant α-band189

(fig. S4A-B).190

To study the impact of the network connectivity on the emergence of a dominant band, we varied191

together the intrinsic connectivities JUD = Jα of both excitatory networks (fig. 6F-H). We found192

that a small connectivity JUD = Jα = 5 is associated with a large number of Down states (88%)193

and transient bursts rarely lead to a stable α-band (fig. 6F). By increasing JUD = Jα to 5.6 and194

6.5 the fraction of Up states increases to 43% and 99% respectively (fig. 6I) leading to stable Up195

states associated with a persistent α-band.196

1.4.3 Transient responses of the thalamo-cortical model to step and stairs inputs197

To study the possible responses of the thalamo-cortical model to propofol bolus and constant in-198

creasing we consider a step input (protocol 1) and a stairs (protocol 2) as shown in fig. 7A.199

To analyze the response to a step input (protocol 1), we ran simulations for N = 2500 iterations200

lasting T = 2min where we simulated a strong injection by a positive input current Ii = 1000 on201

the inhibitory network (NR) lasting ti = 20s (fig. 7B-C). To quantify the response we collected202

the statistics of two durations: 1) the duration tC after which the α-band disappears after the step203
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Figure 6: Three compartment model exhibiting Up-Down states and α-band in the
Up state. A. Schematic of connectivity between the two excitatory (α, U/D) and inhibitory
(NR) components. B-D. Time-series of the sum of the three populations voltage hα + hUD + hR
(upper) and spectrograms (lower) with position of maximum of the oscillatory band (black) for
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function begins. 2) the duration tU after which the α-band reappears after the end of the step204

function. Interestingly, for some realizations the α-band does not disappear (fig. 7C), we thus205

characterized this effect by the collapse probability pC . We found that pC = 53%, tC = 9.42± 5.36s206

and tU = 4.39 ± 2.58s (fig. 7D). The histogram for tC is characterized by an abrupt decay at 20s207

confirming that the suppression of the α-band can only occur during the stimulation period. How-208

ever, the time tU is dominated by an exponential decay, a classical feature of dynamical systems209

driven by noise over a separatrix.210

Each network has a different contribution to the EEG. The U/D excitatory network with AHP211

shows a weak α-band while the inhibitory network NR only exhibits weak power in the slow δ-wave212

region (≤ 1Hz). Finally, the α excitatory component without AHP exhibits a very strong dominant213

α-band (fig. S5A-B).214

To analyze the effect of a slower increase of the input (stairs function, protocol 2) we ran simula-215

tions for N = 2500 iterations lasting T = 2min where we simulated a stairs increase from Ii = 0216

to 1000 on the inhibitory network (NR) lasting ti = 60s (fig. 7E-F). We collected the statistics217

of the durations tC (disappearance of the α-band) and tU (reemergence of the α-band) as well as218

the probability to collapse pC . We found that the probability to collapse is slightly lower in this219

case pC = 40%, tC = 53.39 ± 4.44s and tU = 4.20 ± 2.43s (fig. 7G). Similarly, the histogram of220

tC is characterized by an abrupt decay at 60s confirming that the suppression of the α-band can221

only occur during the stimulation period, while the histogram of tU is dominated by an exponential222

decay.223

Discussion224

We presented here minimal computational principles based on coarse-grained neuronal network225

models necessary to generate α-oscillations. A single neuronal population driven by synaptic short-226

term plasticity can illicit oscillations at a defined frequency, which directly depends on the value227

of the network connectivity: a higher connectivity generates faster oscillations (fig. 2B-C). Inter-228

estingly, we show here that the α-oscillations results from the combination of network connectivity,229

synaptic and biophysical properties, leading to a focus attractor, around which the stochastic mean230

population voltage oscillates in the phase-space (fig. S7A-B). Moreover, we showed that sponta-231

neous switching between Up and Down states in a single neuronal population is modulated by AHP232

and also that the network connectivity controls the proportion Up vs Down states: a higher con-233

nectivity J results in a dominant percentage of time spent in Up states (fig. 3C-D). The stability of234

the oscillations during Up states for a population without AHP could result from the intrinsic net-235

work regulation: indeed, interactions between hundreds of inhibitory interneurons and hippocampal236

pyramidal excitatory neurons can redistribute the firing load to maintain the oscillation frequency237

even when up to 25% of the synapses are deactivated [32].238

When we added excitatory input current on the inhibitory coupled to excitatory population, the239

proportion of time spent in Up states decreases and, after reaching a threshold value (Ii = 60),240

the network becomes completely silenced, characterized by Down states only (fig. 4C-D). When241

coupling two excitatory and one inhibitory neuronal population (fig. 5A), α-oscillations, generated242

by the excitatory component without AHP, co-existed with spontaneous switching between Up and243

Down states induced by the excitatory population with AHP, as summarized in fig. 8. Stimulating244

the inhibitory population induces the fragmentation of the α-band by modulating directly the pro-245

portion of Up vs Down states (fig. 6B-E).246

Finally, we suggest that synaptic noise has two main roles on the network properties: 1) increasing247
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Figure 7: Cases of collapse of the α-band. A. Schematic of connectivity between the two
excitatory (α and U/D) and inhibitory (NR) networks. B-C. Time-series of the sum of the three
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the noise intensity stabilizes the α-band (fig. 2D) and 2) when an external stimulation is applied248

to the inhibitory system in a step or stairs input, the network can react with opposite behavior:249

either the network activity collapses, leading to a suppression of all oscillatory bands in the EEG250

or a stable persistent α-band emerges during the entire stimulation (fig. 7). Finally, we propose251

that three connected neuronal populations are sufficient to generate an α-oscillation that could be252

fragmented by increasing the inhibitory pathway, as suggested during general anesthesia [7]. The253

present model could be generalized to study the emergence and disappearance of other oscillations254

such as the θ-oscillations occurring during REM sleep [2, 33,34].255

Modeling the dynamics of the α-band256

The origin of the α-band [14] remains unclear. Early modeling efforts using the Hodgkin-Huxley257

framework [30] suggested a key role of ionic currents such as sodium, potassium currents, low258

threshold calcium, AHP and synaptic currents (GABAs, AMPA) that could reproduce various259

patterns of oscillations [19] as well as initiation, propagation and termination of oscillations (see260

also [35]). By varying the GABA conductances similar models could reproduce the dominant α-261

oscillation observed in propofol anesthesia [20, 21]. Indeed the GABA conductance regulates the262

firing frequencies and the synchronization of pyramidal neurons [36]. In contrast with models based263

on ionic conductances, in the present model, based on short-term synaptic plasticity driven by noise,264

the α-band is generated only when the mean voltage is in the Up state, suggesting that the ionic265

mechanisms are not necessary to generate the α-band, but contributes to the termination of the266

Up states. Furthermore, adding an input current to the inhibitory population allows to generate267

transitions between Up and Down states (fig. 4C-D and 6B-E). In addition, we found that the268

α-band can be stabilized by increasing the noise amplitude, while the peak frequency of the α-band269

was unchanged (fig. 2D-E). Thus, we propose that the synaptic noise could be responsible for270

the stabilization of the α-band, as quantified by our fragmentation analysis (fig. 2D-E). Finally, we271

reported a second mechanism responsible for an α-band fragmentation associated with the transition272

between Up and Down states (fig. 6).273

Interestingly, the α-band is persistent in young subjects and becomes sparser with age [37]. Possibly,274

a higher neuronal activity (in younger subjects) leads to higher extracellular potassium which,275

in turn, increases the synaptic noise [38]. Another possible mechanism for fragmenting the α-276

band could involve the metabolic pathway, when the ATP coupled to the sodium concentration is277

decreased: during a burst, a high sodium concentration depletes ATP that deregulates the potassium278

current and thus leads to a phase of iso-electric suppression [10].279

Relation between Up and Down states and the α-band280

Neuronal networks exhibit collective transitions from Up to Down states [15, 16, 22]. We reported281

here that the α-oscillations is only generated when the neuronal ensemble is in the Up state. Inter-282

estingly, we could not generate, in a single neuronal population, at the same time this α-oscillation283

and the Up-Down states transitions. Rather we needed a minimum of two coupled excitatory neu-284

ronal populations. We reported here that the fraction of time spent in Up and Down states depends285

on the level of synaptic connectivity (fig. 3C-D and 6F-I). However, by adding an inhibitory net-286

work, we were able to modulate the proportion of time spent in Up vs Down states by changing the287

input stimulation current (fig. 4C-D and 6B-E) on this inhibitory population without varying the288

connectivity. The mechanism is feasible because the inhibitory input on both excitatory populations289
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allows to destabilize the Up state and thus increase the transitions to Down state modulating the290

overall fraction of time spent in the Up states. To conclude, in the extreme case where the Down291

states are dominant, the overall voltage dynamics resemble iso-electric suppressions without the292

need to account for a metabolic stress [39,40].293

Predictions and limitations of the model to interpret the α-band during294

general anesthesia295

The physiological mechanisms leading to the emergence of the α-band shortly after propofol injection296

during general anesthesia remains unclear [7, 41]. Possibly, during wakefulness, the amount of297

external stimuli suppresses the emergence of α-oscillations [2]. When the external stimuli ceases298

with propofol injection, the α-oscillation could become dominant (fig. 5B). The present model299

suggests that the initial state represents an already anesthetized brain where the neuronal networks300

do not receive any external stimuli, leading to the spontaneous emergence of the α-band.301

General anesthesia needs to be sustained over the whole course of a surgery and thus controlling302

optimally the anesthetic injection to prevent cortical awareness or a too deep anesthesia remains303

a difficult problem [37]. Population models such as the one presented here could be used to test304

different activation pathways of anesthetic drugs. The present model accounts for the appearance305

an iso-electric suppression [42] in the EEG of the order of a few seconds (fig. 7B,E) induced by306

increasing transiently the hypnotic. We predicted here that the fragmentation of the α-band results307

from a shift between Up and Down states dominance that could be tested with in vivo experiments.308

It would be interesting to further account for longer term consequences of an anesthetic input309

(several minutes). Indeed, the causality between α-suppressions and burst-suppressions [11] remains310

unexplained, suggesting that this relation could involve other mechanisms than the ones we modeled311

here based on synaptic plasticity, AHP and network connectivity.312

2 Methods313

2.1 Fragmentation level of an oscillatory band314

The emergence of the α-rhythm is characterized by a continuous band in the range [8-12]Hz in the315

spectrogram of the EEG. We define here a measure for the persistence in time of this band. Once316

we detected the peak spectral value Sα(t) of the spectrogram as the highest power value in the317

extended range αmin = 4 − αmax = 16 Hz when the condition Sα(t) > Tα, then we consider that318

the band is present and attribute a value xpr(t) = 1, otherwise xpr(t) = 0. When the time interval319

between 0 and T is divided into N bins at times tk, the presence of the α band is defined by320

Pα =
1

N

N∑
k=1

xpr(tk). (1)

The persistence level Pα measures the proportion of time where the α-band is present.321

To further quantify the fragmentation level, we introduce the disruption number Dα that counts322

the number of time per minute the peak spectral value Sα(t) goes under the threshold Tα.323

Dα =
1

T

N−1∑
k=1

xpr(tk)(1− xpr(tk+1)). (2)
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We call the fragmentation level the pair Fα = (Pα, Dα) (fig S6). For the human EEG data (fig. 1),324

we used a bin size w = 0.5s and a threshold value Tα = 1.5dB. For the simulated data, we use the325

same bin size and Tα = 10.326

2.2 Modeling a single neuronal population based on synaptic depression-327

facilitation dynamics328

For a sufficiently well connected ensemble of neurons, we use a mean-field system of equations329

to study bursting dynamics, AHP and the emergence of Up and Down states. This stochastic330

dynamical system consists of three equations [23,26,29] for the mean-field variable h, the depression331

y, and the synaptic facilitation x:332

τ0ḣ =−(h− T0) + Jxy(h− T0)+ +
√
τ0σω̇

ẋ =
X − x
τf

+K(1− x)(h− T0)+

ẏ =
1− y
τr
− Lxy(h− T0)+,

(3)

where h+ = max(h, 0) is the population mean firing rate [24]. The term Jxy reflects the combined333

synaptic short-term dynamics with the network activity. The second equation describes facilita-334

tion, and the third one depression. The parameter J accounts for the mean number of synaptic335

connections per neuron [23, 43]. We previously distinguished [26] the parameters K and L which336

describe how the firing rate is transformed into synaptic events that are changing the duration337

and probability of vesicular release respectively. The time scales τf and τr define the recovery of a338

synapse from the network activity. We account for AHP with two features: 1) a new equilibrium339

state representing hyperpolarization after the peak response of the burst 2) two timescales for the340

medium and slow recovery to the resting membrane potential to describe the slow transient to the341

steady state. Finally, ω̇ is an additive Gaussian noise and σ its amplitude, representing fluctuations342

in the mean voltage.343

In the case of a neuronal network that does not exhibit AHP the resting membrane potential is344

constant T0 = 0 and τ0 = cst ∈ [0.005, 0.025]s. However, for a population showing AHP after the345

bursts, the resting membrane potential T0 and the recovery time constant τ0 of the voltage h are346

defined piece-wise as follows:347

- τ0 = τ and T0 = 0 in the subspace Ωfast = {y > YAHP and h ≥ HAHP}, which represents348

the fluctuations around the resting membrane potential during the down state and the burst349

dynamics.350

- τ0 = τmAHP and T0 = TAHP < 0 in the subspace ΩmAHP = {y <
1

1 + Lx(h− T0)
(⇐⇒ ẏ > 0)351

and y < Yh}. This part of the phase-space defines the moment when the hyperpolarizing352

currents at the end of the burst become dominant and force the voltage to hyperpolarize.353

- τ0 = τsAHP and T0 = 0 in the subspace ΩsAHP = {y <
1

1 + Lx(h− T0)
and (YAHP < y or354

h < HAHP )}, which represents the slow recovery to resting membrane potential.355
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The threshold parameters defining the three phases are Yh = 0.5, YAHP = 0.85 and HAHP = −7.5.356

In this study, we varied the network connectivity parameter J ∈ [5.6, 8.6] and all other parameters357

are described in Table 1, SI.358

To convert the mean-field variable h into a mean voltage h̃ in mV, we use the following conversion359

h̃ =
h− hmin

hmax − hmin
Amax + Vrest, (4)

where Vrest = −70 mV. We identified hmin = −100 and hmax = 1200 based on numerical simulations360

and chose Amax = 200mV according to the classical amplitude of intracellular recordings.361

2.3 Two-populations model of the thalamo-cortical loop362

To model the interactions between one excitatory E and inhibitory I neuronal network, we coupled363

two systems of equations (3)) as follows:364

τ0ḣE = −(hE − T0) + JEExEyE(hE − T0)+ − JIE
τ0

τ
xIyI(hI − T )+ +

√
τ0σEω̇E

ẋE =
X − xE
τf

+K(1− xE)(hE − T0)+

ẏE =
1− yE
τr

− LxEyE(hE − T0)+,

τ ḣI = −(hI − T )− JIIxIyI(hI − T )+ + JEI
τ

τ0
xEyE(hE − T0)+ +

√
τσI ω̇I + Ii

ẋI =
X − xI
τf

+K(1− xI)(hI − T )+

ẏI =
1− yI
τr
− LxIyI(hI − T )+,

(5)

where τ0 and T0 for the excitatory population can either be constant, in the absence of AHP365

or defined piece-wise when it is present, as already discussed in subsection 2.2. The inhibitory366

population is always modeled without AHP and thus τ is constant and T = 0. All other parameters367

are described in the central columns called “2 populations” of Table 1, SI.368

2.4 Three connected neuronal populations to model the thalamo-cortical369

loop370

To model the thalamo-cortical loop, we connected three neuronal networks. One excitatory network371

driven by AHP generates the Up-Down state dynamics (referred to as U/D in figs. 5, 6 and 7).372

The second excitatory network is not driven by AHP and is referred as α in figs. 5, 6 and 7. Both373

networks are coupled with an inhibitory one (called NR), which does not exhibit any AHP. The374

equations extend the case of two neuronal networks presented in subsection 2.3 and the connectivity375
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matrix with 9 elements is presented in Table 1, SI. The overall system of equation is376

τ0 ˙hUD =−(hUD − T0) + JUDxUDyUD(hUD − T0)+ + Jα−UD
τ0

τ
xαyα(hα − T )+

−JR−UD
τ0

τ
xRyR(hR − T )+ +

√
τ0σUDω̇UD

˙xUD =
X − xUD

τf
+K(1− xUD)(hUD − T0)+

˙yUD =
1− yUD

τr
− LxUDyUD(hUD − T0)+,

τ ḣα =−(hα − T ) + Jαxαyα(hα − T )+ + JUD−α
τ

τ0
xUDyUD(hUD − T0)+

−JR−αxRyR(hR − T )+ +
√
τσαω̇α

ẋα =
X − xα
τf

+K(1− xα)(hα − T )+

ẏα =
1− yα
τr
− Lxαyα(hα − T )+,

τ ḣR =−(hR − T )− JRxRyR(hR − T )+ + JUD−R
τ

τ0
xUDyUD(hUD − T0)+

+Jα−Rxαyα(hα − T )+ +
√
τσRω̇R + Ii

ẋR =
X − xR
τf

+K(1− xR)(hR − T )+

ẏR =
1− yR
τr

− LxRyR(hR − T )+,

(6)

where τ0 and T0 for the first excitatory population U/D are defined piece-wise in part 2.2 and all377

other parameters are given in Table 1, SI (right columns: “3 populations”).378

2.5 Origin of oscillations in the Up state379

We study here the origin of the oscillations observed in the spectrograms of h in relation with the380

Up and Down states.381

2.5.1 Oscillations around the Up state attractor for a neuronal population without382

AHP383

In the absence of AHP, the focus attractor AUp has two complex conjugated eigenvalues. Thus the384

deterministic dynamics oscillates around the point AUp at a frequency385

2πωUp = Im(λ
AUp

2 ) ⇐⇒ ωUp ∈ [5.85, 8.26]Hz. (7)

which corresponds to the dominant spectral band observed in fig. 2. The oscillation eigenfrequency
ωUp further depends on the network connectivity J (fig. 2A-B), but not on the noise amplitude
(fig. 2C-D). Note that the noise allows to generate persistent oscillation compared to the case of
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the pure deterministic system. Finally, increasing the noise amplitude stabilizes the α-band (fig.
2C-D).
Note that if we take τ = 0.025s, τr = 0.5s and τf = 0.3s, then the eigenvalues of AUp become
λ1AUp

∈ [−22.28,−31.76] and the complex-conjugate eigenvalues

λ2,3AUp
∈ [−2.46,−5.89]± i[14.71, 20.75]

leading to an eigenfrequency ωUp ∈ [2.34, 3.30]Hz (fig. S1) which explains the disappearance of the386

dominant α-band in this case (see also fig. S7C).387

Finally, since |λ1AUp
| � |Re(λ2AUp

)| the dynamics is very anisotropic and the oscillations are confined388

in a 2D manifold (fig. S7A.1-A.3, light red trajectories).389

2.5.2 The Up state stability is due to multiple re-entries in its basin of attraction390

To explain the locking in the Up state, we recall that the stochastic trajectories starting inside the391

basin of attraction of the Up state can cross the separatrix Γ and fall into the Down state. However,392

because the deterministic vector field of system (3) is very shallow near Γ, the additive noise on the393

h variable can push the trajectories back into the Up state, where the field is stronger, and thus394

the trajectory is brought in a neighborhood of AUp and continues oscillating, as shown in fig. S7B395

(see inset).396

To explain the other frequencies (than the eigenfrequency ωUp) observed in the spectrum of h (fig.397

S7C), we note that when a trajectory falls back in the Up state, it can produce a longer or shorter398

loop depending on its initial distance to the attractor AUp. These oscillations between the two399

basins of attraction define stochastic oscillations that contribute to the spectrogram of h.400

2.5.3 Oscillations between Up and Down state in a neuronal population containing401

an AHP component402

For a neuronal network with an AHP component, the Up state has only real negative eigenvalues403

(fig. S8C), thus no oscillations are expected near the attractor. However, the presence of a slow404

AHP component (fig. S8A-B pink) can push the dynamics into the Down state, as opposed to the405

case without AHP. Finally, in the Down state, the trajectories fluctuate with the noise until they406

escape. Once trajectories cross the separatrix Γ, they follow an almost deterministic path close to407

that of the unstable manifold of S fig. S8A-B grey) showing a long excursion in the phase-space408

before falling back near the attractor AUp. This dynamics explains the recurrent switches between409

Up and Down states.410
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