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Abstract

Dendrodendritic interactions between excitatory mitral cells and inhibitory granule cells
in the olfactory bulb create a dense interaction network, reorganizing sensory
representations of odors and, consequently, perception. Large-scale computational
models are needed for revealing how the collective behavior of this network emerges
from its global architecture. We propose an approach where we summarize anatomical
information through dendritic geometry and density distributions which we use to
calculate the probability of synapse between mitral and granule cells, while capturing
activity patterns of each cell type in the neural dynamical systems theory of Izhikevich.
In this way, we generate an efficient, anatomically and physiologically realistic
large-scale model of the olfactory bulb network. Our model reproduces known
connectivity between sister vs. non-sister mitral cells; measured patterns of lateral
inhibition; and theta, beta, and gamma oscillations. It in turn predicts testable
relations between network structure, lateral inhibition, and odor pattern decorrelation;
between the density of granule cell activity and LFP oscillation frequency; how cortical
feedback to granule cells affects mitral cell activity; and how cortical feedback to mitral
cells is modulated by the network embedding. Additionally, the methodology we
describe here provides a tractable tool for other researchers.

Author summary

The function of the olfactory bulb (OB) critically depends on connectivity patterns 1

between its excitatory and inhibitory cells. Here, we develop an anatomically grounded 2

algorithm for efficiently determining the probability of synapses between mitral cells 3

and granule cells in the OB. We use this algorithm to generate a large-scale network 4

model of the OB with characteristic connectivity distributions between cell types, as 5

well as between sister mitral cells. We simulate the network using the dynamical 6

systems approach of Izhikevich for describing neurons, and show how network structure 7

affects GC-mediated processes, including LFP oscillation frequency, lateral inhibition, 8

odor decorrelation, and cortical feedback. Our results suggest how alterations to the OB 9

network through processes like neurogenesis, or via injury or disease, can have 10

significant effects on function. 11
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Introduction 12

The olfactory bulb (OB), an important waystation along the olfactory pathway, 13

synthesizes odor input with feedback from higher cortical structures via its complex 14

internal circuitry. This synthesis occurs through interactions between two principal 15

components of the bulb, excitatory mitral cells (MCs) and inhibitory granule cells 16

(GCs), which create a network that reshapes odor information as it passes to cortex. 17

Computational studies are necessary for understanding how this odor information is 18

reshaped, since we lack experimental methods for interrogating this network’s 19

structure-function dependency. However, the sheer number of neurons, encompassing 20

tens of thousands of excitatory cells and millions of inhibitory cells [1]; intricate network 21

architecture [2–4]; and complex spiking dynamics [5–9] make detailed biophysical 22

simulation impractical at large scale. Thus, many studies use random connections or 23

simple distance-dependent functions to establish MC-GC connectivity [10–22] and often 24

study smaller networks on the order of hundreds or even tens of 25

neurons [10,11,13,14,19,22–24], allowing for highly complex, conductance-based 26

neuronal frameworks [7]. Other approaches use rate-based or population 27

equations [12,21,25] thereby facilitating models with larger numbers of neurons. 28

Together, these studies have shed light on important OB phenomena, such as beta and 29

gamma oscillations [11,13–15,17,20] and effects associated with olfactory discrimination 30

and perceptual learning [12,19,21,26–28]. 31

However, OB function depends heavily on connectivity: particular arrangements of GCs 32

around MCs can dramatically affect its output [8, 29–38]. Likewise, the characteristic 33

spiking dynamics of GCs and MCs can change overall network behavior, e.g., affecting 34

the nature of oscillations that may play an important role in olfactory coding and 35

perception [14,39]. With this in mind, we have leveraged diverse anatomical and 36

physiological data to build on earlier models and craft an algorithm for generating 37

large-scale, realistic networks of MCs and GC that facilitate studies of emergent OB 38

network behavior. 39

In short, we inferred the average distribution of dendrites for each cell type from 40

data [8, 40,41] and modeled the results geometrically. By calculating the intersection 41

between the dendritic distributions of a given MC and GC, we could extrapolate the 42

average number of synapses for the cell pair and in turn calculate a probability of 43

synapsing. After constructing spatial distributions of MCs and GCs in the OB, we 44

sampled the synapse probability for each MC-GC pair to build a large-scale network 45

constrained by the anatomy and featuring a realistic ratio of GCs to MCs [1]. We 46

modeled each cell using the dynamical systems theory developed by Izhikevich, thus 47

reproducing realistic cellular spiking patterns [8, 9, 42,43]. The resulting network was 48

tractable: a network with nearly 20,000 units could be simulated for tens of thousands of 49

steps (several seconds of real time) in a few hours on a conventional laptop; parallelizing 50

on a server will divide simulation time by roughly the number of processors used. 51

Our model reproduced important empirical features of the OB, including differential 52

connectivity patterns among sister and non-sister MCs, decorrelation over short 53

timescales, as well as theta, beta and gamma oscillations in the local field potential 54

(LFP). The model makes the surprising, and testable, prediction that cortical feedback 55

inhibition of MCs via GCs is a network property largely independent of which GCs are 56

targeted, an observation with consequences for our understanding of how context 57

modulates odor representations [28, 44–53], and for theories of the functional purpose of 58

granule cell neurogenesis [12,21,26,36]. The model also predicts that beta and gamma 59

oscillations, which are implicated in numerous theories of odor coding and 60

decoding [54–57], are network properties intrinsic to the bulb that can be modified, 61
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suppressed, or enhanced by the density of granule cell activity [14,23,39]. 62

Results 63

Deriving the probability of synapse 64

To establish the probability that a particular mitral cell (MC) and granule cell (GC) 65

form a synapse, we first determined the average number of synapses between that pair. 66

Unlike most neurons, MCs and GCs of the olfactory bulb (OB) form synapses between 67

dendrites, specifically between MC lateral dendrites, which extend out from the soma 68

along the contour of the bulb, and GC dendritic spines, small ellipsoid protuberances off 69

the GC dendrite [58, 59]. The dendritic trees of these cells have stereotypical shapes, so 70

we approximated the OB as a flat 3-dimensional space, and used simple geometric forms 71

to represent the mean spatial distributions of these trees (Fig. 1A). The lateral 72

dendrites of MCs extend radially, roughly in a disk when viewed from above [9, 40,41], 73

so we defined the MC dendritic tree as a radially-symmetric distribution on a flat disk, 74

with each disk oriented parallel to the faces of the OB space. Camera lucida images 75

from [40] and [41], showed that the density (in µm of lateral dendrite per µm2 area) at 76

a given radial distance r from the soma was well fit by the function (Fig. 1C): 77

ρm(r) =
αk/2πr

1 + (kr − tan(m))2
(1)

where α, k, and m are constants, and ρm lies between 0 and some maximum radius 78

rmax (derivation in Methods Sec. 0.1). 79

GC dendrites pass roughly orthogonally to MC lateral dendrites, with the effective 80

radius of the dendritic tree increasing along the height of the tree [8, 9, 40,41]. We 81

therefore defined the GC dendritic tree over an inverted oblique circular cone, with face 82

parallel to the faces of the OB space. The volumetric spine density (number of spines 83

per µm3) at a given height z on the cone is calculated from dividing the vertical spine 84

density Ns (defined as the number of spines per µm height) by the cross-sectional area 85

of the cone at z (Eq 33): 86

ρg(z) =
Ns(z)

πr(z)2
(2)

where ρg is defined over a range between some minimum and maximum heights z0 and 87

zmax marking the bottom and top of the cone respectively. Since the vertical spine 88

density of GCs tends to have an overall concave shape [8, 40], we modeled our vertical 89

spine density as a simple parabola following [8, 40]. ρg(z) can then be expressed 90

as: 91

ρg(z) =
−6S

πr2max(zmax − z0)

(
z − zmax

z − z0

)
(3)

where rmax is the maximum cone radius and S is the total number of available spines on 92

the GC (derivation in Methods Sec. 0.2). 93

We defined the average number of synapses between a MC-GC pair as the average 94

number of GC spines within sufficient proximity to the lateral dendrites of an MC to 95

establish synapses. Using the above distributions, we first calculated the length L of 96

MC lateral dendrites present in the overlap between the MC and GC dendritic trees by 97

integrating the MC dendritic density over the area of intersection between the two trees 98

(Eq 39): 99
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Fig 1. Schematic of the model. (A) Our model olfactory bulb (OB) has three
layers: the external plexiform layer (EPL), mitral cell layer (MCL), and internal
plexiform layer (IPL), each with a specified thickness. We modeled mitral cells (MCs)
as flat disks with radius rm (indicated in red), placed at at a height zm in the EPL. We
modeled granule cells (GCs) as inverted oblique circular cones (indicated in green), with
bottom vertex at z0 in the MCL or IPL, and top face at zmax in the top half of the
EPL; the radius of the top face was rmax. By integrating the MC lateral dendrite
density ρm(r) over the area of intersection A(zm) between the MC disk and GC cone,
we calculated the length of MC lateral dendrite contained in the overlap. (B) By
treating the lateral dendrites as cylinders, we calculated the potential volume of
interaction between MC lateral dendrite and GC spines around the length of MC lateral
dendrite in the overlap. Presuming that GC spines are roughly evenly distributed at
any given height along the cone, such that the spine density ρg depends only on z, and
that this density is roughly constant, the expected number of spines in the interaction
volume (which we treat as equivalent to the expected number of synapses) was ρg(z)
multiplied by the volume. (C) We utilized camera lucida images of MCs to calculate the
total amount of dendrite within circles of increasing radii and found that this quantity
was well fit by an equation α tan−1(kr + β) + C (mock MC shown). The equation for
the density of lateral dendrites ρm(r) was derived from this. For example, a cell image
from [41] was well fit by the function with α = 66, 270, k = 0.002609, β = −1.159, and
C = 55, 010 (r2 value = 0.9998). (D) Sample probability curves for different MC/GC
pairs, using the expected number of synapses as the mean of a Poisson distribution.
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L =

∫
A(zm)

ρm(r)dA =

∫∫
A(zm)

αk/2πr

1 + (kr − tan(m))2
rdrdθ (4)

Here A(zm) is the area of intersection between the MC disk and the GC cone at the 100

disk’s height zm. The integrals for the different cases, which depend on the relative 101

position and sizes of the MC and GC, are shown in Methods, Section 0.3. 102

In order to account for the 3-dimensional nature of potential interactions between MC 103

and GC, we converted the overlap dendritic length L into an equivalent volume by 104

assuming the lateral dendrites to be cylinders of radius around 0.63 µm [9]. We then 105

defined the volume of interest to be the cylindrical sheath of thickness dshell 106

surrounding the lateral dendrite, with dshell = 1.02 µm, the effective diameter of a 107

spine [59] (Fig 1B). The volume of this sheath was then: 108

V = π((dshell + rdendrite)
2 − r2dendrite)L = qπL (5)

with q = 2.32 µm2. 109

The density of GC spines in this volume was ρg(zm), under the simplifying assumption 110

that it was constant throughout the sheath volume. Thus, the expected number of 111

spines in this volume, and by our definition synapses, was just: 112

λ = ρg(zm)V = qπρg(zm)L (6)

Because most MC-GC pairs make only one synapse [59], we used a Poisson distribution 113

to calculate the probability of synapse from the expected number of synapses. If 114

multiple synapses formed, they were treated as a single effective synapse. Thus, the 115

probability of synapse was: 116

P (synapse) = P (Nsynapse 6= 0) = 1− exp (−λ) (7)

Cell placement 117

To spatially distribute MCs and GCs, we modeled the OB as a thin circular cylinder 118

with area A and thickness θ subdivided into parallel layers based on OB anatomy [60]. 119

MC disks were distributed in the topmost layer of our model, the equivalent of the 120

external plexiform layer (EPL), where interactions between GCs and MCs occur [2]. 121

The number and location of these MCs was determined by their glomeruli, which are 122

conglomerations of the apical dendrites of MCs. These glomeruli existed in the 123

eponymous glomerular layer (not modeled) above the EPL, and we assumed that 124

projections of these glomeruli onto the EPL were distributed randomly in the x-y plane, 125

an easily relaxed assumption if future connectomic studies provide finer information. 126

We calculated from data the overall area density of glomeruli in the OB (Methods, Sec. 127

0.3), so the number of glomeruli for a given OB space was just this density multiplied 128

by the area A. Each glomerulus was randomly assigned between 15 to 25 MCs, whose 129

disk centers were randomly scattered in the x-y plane around that glomerulus’s 130

projection, with distance from the glomerular projection drawn from a truncated 131

logistic distribution fit to data from [4] (Fig. S1). MCs were also divided into type I 132

and type II subgroups (2:1 ratio), which differ in where in the EPL their lateral 133

dendrites ramify [2,40,41]; thus the z-position of each MC in our model depended on its 134

type assignation. The radius of an MC disk was drawn from a uniform distribution 135

between 75 and 800 µm, based on measurements of MC images from [9]. 136

Once we placed the MCs, we added GCs. GCs can be divided into two major types 137

based on where in the EPL their trees principally spread: the aptly named superficial 138
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and deep GCs, which are thought to interact primarily with tufted cels (TCs) and MCs, 139

respectively [8, 61]. Since our excitatory population consisted of MCs, we only included 140

deep GCs, although superficial GCs and TCs could easily be modeled too (see 141

Discussion). 142

The vertices of the previously described GC cones were distributed uniformly randomly 143

in the x-y plane of the OB space. We used images of GCs from [8] to roughly determine 144

the bounds of GCs in the z-direction. The bottom vertex of the cone either inhabited 145

the mitral cell layer (MCL), which lies directly below the EPL, or the internal plexiform 146

layer (IPL), which is below the MCL and constituted the bottom-most layer of our 147

model. Meanwhile, the top face of the cone was confined to the top half of the EPL, 148

and the xy-position of its center was located a random distance away from the 149

xy-position of the bottom vertex (i.e. potentially making the cone oblique). 150

For simplicity, we drew the total number of spines S for a particular GC from a uniform 151

distribution determined by the cone’s volume. However, because only spines in the EPL 152

are relevant for forming synapses with MCs, we limited the number of possible synapses 153

each GC could make (Savailable) to the total number of spines present in the EPL, which 154

could be found by integrating Ns(z) from the bottom of the EPL to the maximum 155

height of the cone: 156

Savailable =

∫ zmax

θIPL+θMCL

Ns(z)dz (8)

Network generation 157

To generate the network, we added GCs individually and compared with each MC to 158

determine, via the equations above, whether a synapse would exist between that pair. 159

To account for preexisting synapses that an MC might already have (since spines 160

corresponding to those synapses occupy space in the interaction volume surrounding the 161

MC lateral dendrites), we weighted the calculated volume V = qπL for that MC-GC 162

pair by the ratio of the volume of unoccupied interaction space to the volume of total 163

interaction space on that MC, assuming for simplicity that the preexisting synapses are 164

distributed evenly along the length of the dendrites: 165

Veff = V

(
1− NpsVspine

Vtot

)
(9)

Here Nps is the number of preexisting synapses, Vtot is the total volume of interaction 166

space on the MC, and Vspine = 0.58 µm3 is the average volume of a spine [59]. We used 167

Veff in Eq. 6 to determine the average number of spines and in turn the probability of 168

synapse. We repeated this for each MC (whose order is shuffled for each new GC to 169

avoid bias) until every MC in range has been tested. If the number of connections 170

exceeded the maximum number of synapses allowed for that GC, we retained a random 171

subset of those connections with size equal to the number of available synapses, and 172

removed the remnant. Since the network generation was probabilistic, it was unlikely 173

but not impossible that a GC would be disconnected from all mitral cells and thereby 174

not contribute to the network. Thus, we generated GCs individually, discarding those 175

that were disconnected from all mitral cells, until we reached a target number of GCs, 176

which we calculate to be 15 deep GCs per MC based on current estimates of cell 177

numbers in the OB [1]. Thus, we generated a model OB of radius 600 µm (area 1.13 178

mm2) containing a network of 3,550 MCs and 53,250 GCs. 179
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Variable Mitral cell Granule cell
k (nS(mV)−1) 2.5 0.067
a (ms−1) 0.02 0.01
b (nS) 12 -0.133
c (mV) -70 -75
d (pA) 13 2
vr (mV) -58 -71
vt (mV) -49 -39
vc (mV) 30 25
C (pF) 191 48

Table 1. Parameters for single cell internal dynamics

Single cell dynamics 180

To explore network function we modeled individual MCs and GCs as dynamical systems
described by the Izhikevich equations [42,43]:

C
dv

dt
= k(v − vr)(v − vt)− u+ I (10)

du

dt
= a(b(v − vr)− u) (11)

with spike reset: 181

If v ≥ vc, then

{
v ← c

u← u+ d

where v is the membrane potential; u is a recovery current; vr is the resting potential; 182

vt is a threshold; vc is a cutoff; I is an external current; and a, b, c, d, and k are free 183

parameters. 184

We selected parameters to model class II behavior of MCs [62] and to establish realistic
f − I curves [9] (Fig. 2C). Following conductance based models [5, 7], we took GCs to
be integrators [42,43]. Other work suggests that some GCs may display resonator
properties, including subthreshold membrane potential oscillations [63, 64], but the very
low oscillation frequency may make them irrelevant to excitability classification [43],
especially since some GCs appear to be entirely non-resonant [63]. So, b < a in the
Izhikevich model; additionally, by assuming b to be negative, we could take advantage of
the following equations to calculate b and k [43]:

b =
vr − vt + 4Rρ

4R2ρ
(12)

k =
1

4R2ρ
(13)

where R is input resistance and ρ is the rheobase (minimum DC current to produce 185

spikes). We chose the remaining parameters to match a realistic f − I curve from [8] 186

(Fig. 2D). The parameter values are given in Table 1. We drew parameters from a 187

normal distribution with standard deviations equal to 1/10 of each mean, except for b 188

and k for GCs, which we drew from normal distributions with standard deviations equal 189

to 2/3 of the mean to satisfy the constraint that b < 0 while achieving a range of 190

rheobases between 10 and 70 pA, and input resistances between 0.25 and 1.5 GΩ. 191
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Fig 2. Cell dynamics modeling. (A) Sample voltage trace of an MC. Input was 200
pA direct current. (B) Sample voltage trace of a GC. Input was 45 pA direct current
(C) Frequency-current (f-I) curve for an MC. (D) f-I curve for a GC. Each cell in (C)
and (D) was simulated with the given parameters in Table 1, receiving direct current for
1 second of in-simulation time per current intensity. (E) When an MC spikes (MC with
blue ring), gating variables of GC AMPA and NMDA receptors increase at synapses
between that MC and all connected GCs. In turn, gating variables of MC GABA
receptors increase by a smaller amount at synapses between connected GCs and their
subsequent connected MCs (F) When a GC spikes (GC with blue ring), gating variables
of MC GABA receptors increase at synapses between that GC and all connected MCs.
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Synaptic dynamics 192

We modeled dendrodendritic synapses for MC-GC pairs as NMDA and AMPA receptors 193

on GCs, and GABA receptors on MCs. The synaptic AMPA current was 194

IAMPA(t) = s(t) gAMPA (V (t)− Ee) (14)

where gAMPA is the conductance, s(t) is a gating variable representing the fraction of 195

open channels, V (t) is the voltage of the recipient cell, and Ee = 0 mV is the excitatory 196

reversal potential. For GABA receptors, we also noted that inhibitory signals from the 197

cell periphery degrade as they propagate to the soma [65], which we described as an 198

exponential decay. Including this decay, we modeled the GABA current as 199

IGABA(t) = s(t) gGABA (V (t)− Ei) exp(−L
λ

) , (15)

where Ei = −70 mV is the inhibitory reversal potential, L is the distance between the 200

MC center and the synapse, λ is a length constant, and other parameters were as for 201

AMPA. The network generation did not identify MC-GC synapsse locations, so we 202

chose points sampled randomly from the overlap between each MC and GC. 203

For NMDA receptors, we used [66]: 204

INMDA(t) = s(t)
gNMDA (V (t)− Ee)

1 + [Mg2+] exp (−0.062V (t))
3.57

(16)

where the additional term in the denominator describes the magnesium block, with 205

[Mg2+] assumed to be 1 mM [67]. 206

The AMPA and GABA gating variables evolved as [68]:

dsX
dt

=
−sX
τX

, (17)

where X = GABA or AMPA. The NMDA dynamics followed 207

dsNMDA

dt
=

−sNMDA

τNMDAdecay

+ αn(1− sNMDA) ,

dn

dt
=

−n
τNMDArise

. (18)

MC activation at reciprocal MC-GC synapses causes excitatory glutamate release onto 208

NMDA and AMPA receptors on GCs, while GC activation causes inhibitory GABA 209

release onto GABA receptors on MCs [69,70]. Thus, when an MC spiked, the gating 210

variables of GC NMDA and AMPA receptors at its synapses were updated as (Fig. 2E, 211

center GC): 212

sAMPA ← sAMPA +W (1− sAMPA)

n ← n+W (1− n) , (19)

where W = 0.5. To account for network-driven GC activity [6], GABA gating variables
of MCs indirectly connected to a spiking MC via shared GCs were also updated:
(Fig. 2E, right):

sGABA ← sGABA + κW (1− sGABA)

where 0 < κ < 1. When a GC spiked, the gating variables of MC GABA receptors at its
synapses were updated as (Fig. 2F):

sGABA ← sGABA +W (1− sGABA)
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Parameter Value
gAMPA (nS) 0.73
gNMDA (nS) 0.84
gGABA (nS) 0.13
κ 0.006
τAMPA (ms) 5.5
τNMDArise

(ms) 10
τNMDAdecay

(ms) 80
τGABA (ms) 18
λ (µm) 675
α (ms−1) 0.1

Table 2. Synaptic parameters

For each cell, the synaptic input at any time was the sum of the currents for its 213

receptors at all synapses (NMDA and AMPA for GCs, GABA for MCs). We derived 214

time constants τ and α from data [69], and tuned conductances and κ to reproduce 215

lateral inhibition results from [71] as faithfully as possible. We calculated the length 216

constant λ from the formula in [65] for the diameter of dendrite used in the connectivity 217

algorithm (d = 1.26 µm). Parameters are in Table 2. 218

Sister mitral cells are weakly correlated in the network 219

We asked what our local connection rules predicted for global network features such as 220

MC to GC connectivity and vice versa. The distribution of MC connectivity to GCs 221

was well fit by an exponential (Fig. 3A, top), as were individual type I and type II 222

distributions (Fig. 3A, bottom). However, type I MCs connected to more GCs than 223

their type II counterparts, likely because type II MC dendrites ramify higher in the EPL 224

and thus overlap less with deep GC dendritic baskets. The distribution of GC 225

connectivity to MCs was well fit by a skewed normal distribution (Fig. 3B; see Methods). 226

These structural predictions can be tested as bulb connectomes become available. We 227

also found that sister MCs, i.e., MCs connected to the same glomerulus, connected to 228

more of the same GCs than non-sister MCs, but, surprisingly, this overlap was low 229

(mean = 0.13) (Fig. 3C). This predicts that sister MCs, despite originating in the same 230

glomerulus, will have distinct lateral dendrite synaptic patterns consistent with [4], and 231

will encode odors non-redundantly, perhaps explaining findings in [3, 72]. 232

Network oscillations and granule cell inhibition 233

There are prominent local field potential (LFP) oscillations in the OB, with different 234

frequencies associated to specific aspects of olfaction, e.g., fine odor discrimination and 235

associative learning [55]. Thus, we tested whether respiratory baseline and odor input 236

produced oscillations and in what range. MCs received Poisson inputs with 237

time-varying rates [73] from olfactory sensory neurons (OSNs) activating 100 synapses 238

per MC, each with an NMDA and AMPA receptor modeled as Eqs. (17-18), albeit with 239

conductances and time constants based on [74] (Table 3). For each synapse, a spike 240

input caused the NMDA and AMPA gating variables to increase as in (19). 241

To simulate respiratory baseline, we modeled the Poisson rate r(t) for the external 242

inputs as 243

r(t) =
rmax

3
+
rmax

3
(sin (2πft− φ) + 1) (20)

with f = 2 Hz, representing respiratory rate. To determine rmax we drew xg uniformly 244

from 0 to 0.25 Hz for each glomerulus; then for each sister MC of this glomerulus, we 245
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Fig 3. Network connectivity.(A) Top: Distribution of MCs by number of connected
GCs, black line = exponential fit (mean 1225.8; χ2 = 124.52, p < 10−14). Bottom:
Distribution of type I (left) and II (right) MCs by number of connected GCS. Black line
for type I MCs = exponential fit (mean 1426.0; χ2 = 139.1, p < 10−22). Black line for
type II MCs = exponential fit (mean 818.7; χ2 = 39.9, p = 0.022). (B) Distribution of
GCs by number of connected MCs. Black line = skewed normal fit (parameters
α = 15.2, ξ = 13.0, ω = 85.5; χ2 = 501.1, p < 10−83; see Methods for definition of
skewed normal) (C) Distribution of fraction of connected GCs shared with another MC
for non-sister (top) and sister (bottom) MCs.

July 19, 2021 11/34

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2021.07.19.452784doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.452784
http://creativecommons.org/licenses/by/4.0/


Parameter Value
gAMPA (nS) 6.7
gNMDA (nS) 12
τAMPA (ms) 14.3
τNMDArise (ms) 13
τNMDAdecay

(ms) 70
α (ms−1) 0.03

Table 3. External input parameters

drew rmax from a Gaussian (mean xg, standard deviation xg/10). Similarly, to 246

determine the phase φ, we first drew pg uniformly from 0 to 2π for each glomerulus 247

since phases of non-sister MCs are highly uncorrelated [72]. Then for each MC in a 248

glomerulus we drew φ from a Gaussian (mean pg, standard deviation π/4) reflecting 249

variability among sister MCs [72]. 250

To simulate odor input, we increased respiratory rate to 6 Hz to represent sniffing and 251

normalized r(t) to be stronger: 252

r(t) =
rmax

2
+
rmax

4
(sin (2πft− φ) + 1) . (21)

We selected 0.2 of the glomeruli to receive odor input and resampled rmax for all MCs, 253

except that for odor-receiving glomeruli, xg was drawn uniformly between 2 and 3 Hz, 254

while for non-odor-receiving glomeruli, xg was drawn uniformly between 0 and 0.25 Hz; 255

φ was resampled as before. 256

We used [75,76] to calculate LFPs: 257

φ(re, t) =
S∑
s=1

Is,AMPA(t) + Is,NMDA(t) + Is,GABA(t)

4πσ|re − rs|
(22)

where for each synapse s, rs is the location, Is,X(t) is the current through a receptor 258

type, and σ is extracellular conductivity (1/300 Ω−1 cm−1). Here, re is the “electrode” 259

location at the xy-center and halfway up the EPL. After filtering and selecting the 260

region of interest, we acquired the LFP power spectrum averaged across 10 trials 261

(Methods; Fig. 4). 262

During baseline respiration, the LFP oscillated at 7 Hz, in the theta range, consistent 263

with data showing theta oscillations coupled to resting respiration [55] (Fig. 4A, top). 264

During odor input, the LFP oscillated at 6 Hz, corresponding to sniff rate, and at 15 Hz, 265

in the beta range (Fig. 4A, bottom). This was surprising, since odor presentation is 266

thought to produce gamma oscillations (35-100 Hz) due to activity at the MC-GC 267

synapse, while beta oscillations are more commonly associated with cortical feedback to 268

the OB [14,55]. However, given that a major role of cortical feedback is to activate 269

GCs [77], and that without such feedback, large segments of GCs are tonically 270

inactivated [1, 38,78], we hypothesized that reducing the number of active GCs to 271

approximate tonic inhibition might produce gamma oscillations, especially since other 272

computational studies demonstrating gamma have utilized lower GC:MC ratios [11, 14]. 273

Therefore we repeated the experiment with a GC:MC ratio set to 1
3 that of the full 274

network. Indeed, odor presentation led to LFP oscillations peaking around 40–55 Hz, in 275

the gamma range (Fig. 4B). This suggests that overall activity of the GC network, 276

determined by a balance between tonic inhibition and excitatory feedback, is a major 277

determinant of whether the OB oscillates in the beta or gamma ranges during odor 278

presentation [79,80]. This is in line with studies demonstrating the importance of GC 279

excitability to LFP oscillation frequency [14,23,39]. 280
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Fig 4. Oscillatory dynamics. (A) A network with a 15:1 GC:MC ratio and
respiratory input exhibited LFP oscillations at 7 Hz in the theta range (2-12 Hz) (Top).
Odor input to a subset of glomeruli, caused oscillations at ∼15 Hz, in the lower beta
range (15-40 Hz), in addition to activity at 6 Hz, corresponding to respiration (Bottom).
(B) A network simulating tonically inhibited GCs, and hence a lower 5:1 active GC:MC
ratio. Respiratory input exhibited LFP oscillations at 7 Hz in the theta range (Top).
Odor input additionally caused oscillations with a broad frequency peak around 40-55
Hz, in the gamma range (35-100 Hz) (Bottom). Curves averaged from 10 trials; bars
indicate standard error.
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Lateral inhibition follows network architecture 281

It is believed that lateral inhibition by granule cells may be involved in gain control, 282

synchronization of MC output, and decorrelation of odor representations [34,71,81–86]. 283

To ask how recurrent interaction between MCs and GCs varied with distance, we first 284

measured the number of GCs shared between pairs of MCs at around the same height in 285

the EPL, and connected individually to similar number of GCs. This shared number 286

decreased with distance following a relation of the form a exp(−bxn) (Fig. 5A), with 287

n ∼ 1.5 intermediate between an exponential and a Gaussian, leading us to anticipate 288

that lateral inhibition between pairs should be of similarly short range. To test, we 289

selected MC pairs as above, and mimicked the experimental methodology of [71], where 290

we measured the firing rate of one MC when (a) it alone was excited with direct current 291

and (b) when the other MC of the pair was also excited. We found that the decrease in 292

firing rate of the first cell in conditions (a) vs. (b) declined with separation between the 293

pair and had a similar short-range form to the relationship between MC separation and 294

number of shared GCs (Fig. 5B). For comparison, we built a second network with the 295

same number of cells and average MC-GC connectivity but with constant, 296

distance-independent probability of connection for each MC-GC pair. In this second 297

network, both the number of shared GCs and magnitude of lateral inhibition were 298

constant and independent of distance (Fig. S2). This suggests that the assumption of 299

random connectivity used for simplicity in many studies [10,20,21,23] leads to 300

fundamentally different inhibitory effects in the feedforward olfactory pathway. 301

Given that the magnitude of the decrease in firing rate for an MC produced through 302

lateral inhibition was relatively low (Fig. 5B) compared to the firing rate produced 303

through direct current stimulation of the MC alone (∼70 Hz), we were curious whether 304

the GC network in our model could effectively decorrelate odor patterns. To answer this 305

question, we generated a set of 6 odors, with odor 1 targeting glomeruli 1 through 30, 306

odor 2 targeting 6 through 35, and so on, leading to an average overlap between odors 307

of ∼18 glomeruli; we then simulated our system receiving each of these odors. We 308

ensured that odor inputs for the overlapping glomeruli were delivered at the same phase 309

and strength, because input phase differences can already decorrelate responses, and we 310

were primarily interested in the specific role played by the GC network. We measured 311

the Pearson correlation of the MC firing rates induced by each odor within sliding time 312

windows of fixed duration. Afterward, we repeated the same experiment, except with 313

the GC network disabled by setting the GABA conductances on MCs to zero (Fig. 5C). 314

Then, for each condition we time-averaged the correlation after the first sniff (by which 315

point the system had equilibriated). Finally, we calculated the difference between the 316

odor-response correlations measured with and without the granule cell network, and 317

treated this as the amount of decorrelation induced by the GC network. Without 318

granule cells (black and grey lines in Fig. 5C), we found that the MC output correlation 319

reflected the number of overlapping glomeruli when measured over long time windows, 320

but was less correlated over short windows because of variations in spike timing for 321

individual MCs determined by the dynamics. At short timescales, we observed that the 322

GC network had a small but significant decorrelating effect, especially when the 323

response correlation was measured in windows of <20 ms (Fig. 5C,D). This is consistent 324

with experiments showing that GCs primarily operate along such timescales and produce 325

decorrelation through alteration of spike timing rather than gain control [87]. 326

Network architecture shapes cortical feedback 327

GCs and MCs receive extensive cortical feedback, which plays a major role in shaping 328

odor representation as information is conveyed through the OB to cortex [28, 77, 88–92]. 329

We thus asked how the arrangement of GCs in the network determined the expression of 330
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Fig 5. Network connectivity, lateral inhibition, and decorrelation. (A) The
number of shared GCs between pairs of MCs (n = 1436). MC pairs were partitioned
based on inter-cell distance into 12 bins each representing a 100 µm span. Each point
represents the average number of shared GCs of all MC pairs in a given bin and was
placed halfway along the bin width, with the bar representing standard error. The red
curve is a fit of the form a exp(−bxn), with x in microns, a = 229.2, b = 1.721e-04 and
n = 1.545. (B) Lateral inhibition strength decreases with distance between MCs. MC
pairs (n = 1436) were simulated with one and then both cells receiving current input,
and the resulting decrease in firing rate for the first cell was measured. MC pairs were
again partitioned based on inter-cell distance into 12 bins each representing a 100 µm
span. Each point represents the average decrease in firing rate of all MC pairs in a given
bin and was placed halfway along the bin width, with the bar representing standard
error. The blue curve represents a fit of the form a exp(−bxn), with a = 11.08,
b = 9.375e-06 and n = 1.976. (C) Example of evolution of Pearson correlation between
model OB responses to two odors, each targeting 30 of 178 glomeruli (25 overlapping)
over time, in the presence and absence of GC activity. Dark red/grey: GCs
enabled/disabled for 100 ms time window. Bright red/black: GCs enabled/disabled for
10 ms time window. (D) The decrease in Pearson correlation was maximal for shorter
timescales. We measured mean correlation over the period after the first sniff (1

6 of a
second) for networks with and without GCs, and then calculated the difference of the
two. The magnitude of decorrelation increased as the window size decreased below 20
ms. Data averaged over n = 15 odor pairs, each odor activating 30 glomeruli, and with
varying overlap ranging from 5 to 25 glomeruli (average overlap = 18). Error bars =
standard error of the mean.
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this feedback in the OB. We first examined the effect of external activation of the GC 331

network on odor-receiving MC output, and how this effect varied with the spatial 332

pattern of GC activation. Thus, we targeted excitatory feedback randomly to between 333

0.1%-20% of all GCs during presentation of an odor, and then compared to simulations 334

where no feedback was present. The first two trials used the same network but targeted 335

non-overlapping sets of GCs, in order to ascertain whether the effect of feedback could 336

be attributed to which set of GCs was targeted. In the third trial, we performed the 337

same experiment but in a different network which had the same arrangement of MCs 338

but a different configuration of GCs. We calculated the change in odor-receiving MC 339

firing rates with feedback for each trial and then computed the correlation of these 340

changes over time between the first and second trials (same GC network) and between 341

the first and third trials (different GC networks) using a sliding window of length 10 ms 342

and 50% overlap between windows. 343

To our surprise, the particular arrangement of the feedback in terms of which GCs were 344

selected had little effect on which MCs were ultimately affected, since the average 345

correlation between trials in the same GC network (Fig. 6A, purple) was relatively high 346

even for small amounts of targeted GCs. Moreover, the average correlation values 347

between trials in different GC networks was significantly lower in comparison (Fig. 6A, 348

blue). Thus, our results suggest that a primary determinant of the effect of cortical 349

feedback on the bulb output is the network architecture of GCs, as opposed to which of 350

these cells are specifically targeted. This implies that theories of feedback and 351

neurogenesis in the bulb that rely on specific targeting of GCs and MCs [12,28,93] may 352

require additional components beyond the basic MC-GC network to be feasible. 353

We also examined how changes in MC firing rate due to direct positive feedback 354

depended on the arrangement of GCs in the OB [94,95], by first presenting the OB with 355

an odor, and then presenting the same odor with excicatory feedback current to a 356

randomly selected set of MCs. Repeating this experiment for different odors, we found 357

that cells whose firing rates increased the most with feedback were connected to the 358

least number of GCs, both for odor-receiving (Fig. 6B, red) and non-odor-receiving MCs 359

(Fig. 6B, dark red). Thus, just as with GC feedback, the effect of direct MC feedback 360

also appears to depend on the particular architecture of the GC network around 361

MCs. 362

This model also supports findings on feedback-driven odor discrimination and 363

generalization from a statistical model presented in [53]. 364

Discussion 365

The functions of the olfactory bulb, which reshape odor representations before they are 366

sent to cortex, emerge from the complex dynamics of a structured network of granule 367

cells, mitral cells and other cell types. Computational models are necessary for 368

determining these collective dynamics, but are challenging to manipulate because of the 369

size and complexity of the network. Many models navigate this challenge by building 370

networks with a reduced number of neurons or GC:MC ratio [10,11,13,14,19,22,23] and 371

either random connectivity or simple distance-dependent functions to generate 372

connectivity [10–22]. These works have replicated several experimentally observed 373

phenomena, such as LFP oscillations [11, 13–15,17,20, 23], odor decorrelation [21,26, 83] 374

and generalization [93], and even odor discrimination in complicated environments [12]; 375

moreover, they have offered potential mechanisms for the relationship between cortex 376

and OB via processes such as feedback and neurogenesis [12,25,26,28,47,93]. 377

However, the functional consequences of the anatomical constraints imposed by the 378
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Fig 6. Network architecture and effects of external feedback to the OB. (A)
The effects of randomly distributed, excitatory feedback to GCs depend on the OB
network’s inherent connectivity and are relatively invariant to the specific GCs targeted.
We presented an odor to the network without and then with external feedback to GCs,
and measured the change in MC firing rate. For each feedback level, we ran three trials;
the first two took place in the same MC-GC network, but targeted non-overlapping sets
of targeted GCs. The third trial took place in a second network with the same MCs but
a different spatial configuration of GCs. We computed the Pearson correlation for
successive time windows of length 10 ms between the vector of feedback-driven changes
in odor-receiving MC firing rates for the first two trials, in the same network (purple),
and the first and third trial, in different networks (blue). We found that even for small
numbers of targeted GCs, the mean correlation over time was high for the same-network
trials despite targeting different sets of GCs, but was lower for the different-network
trials. (B) MCs which connect to the least GCs are most affected by direct excitatory
feedback. We randomly distributed excitatory feedback to 20% of MCs during odor
presentation and recorded the resulting change in firing rate. MCs with larger firing
rate increases tended to connect to a smaller number of GCs for both odor-receiving
(red) and non-odor-receiving (dark red) MCs. Vertical lines indicate standard error.
Data compiled from n = 5 trials.
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OB’s cellular morphology remain unclear. Thus, we developed a modeling approach 379

that employed geometry and dynamical systems theory to integrate realistic details of 380

single cell anatomy [2,8, 9, 40,41,61] and physiology [8, 9, 62,71], along with empirical 381

information about synaptic architecture [59], into a tractable, yet realistic, 382

computational model of the OB network. The model simulates the activity of tens of 383

thousands of cells on a standard laptop, and can be parallelized for greater speed. A key 384

advantage of the model is its extensibility: additional cells and their connections could 385

be added as shown here for MCs and GCs. This ease of making alterations to the 386

network may be of use, for example, in the study of GC neurogenesis, which is known to 387

play a crucial role in olfactory learning [35,36,96–99]. 388

One study attending to anatomy in large-scale OB modeling is [100], whose authors 389

simulated individual lateral dendrites for each MC along a curved model of the OB, a 390

level of detail limiting the number of MCs to an order of magnitude fewer than in our 391

model. Their connectivity distributions for MCs to GCs and vice versa were Gaussian, 392

while ours are heavily skewed, with a low peak and a long tail (Fig. 3). We considered 393

that this difference may arise because MCs residing near the edges of our flat OB have 394

curtailed lateral dendritic fields and hence presumably form fewer connections with 395

GCs, while the curved OB of [100] has a smaller edge for a given surface area, leading to 396

less skew. However, we found that periodic boundary conditions, which lead to no 397

curtailed dendritic fields, are still far from having Gaussian connectivity (Fig. S3). The 398

key difference is likely that [100] assumed fixed MC-GC synapse density per length 399

along the MC lateral dendrites. The normal distribution of the MC dendritic field 400

in [100] then implies normally distributed connectivity. Our model includes an 401

additional spatial constraint: MCs “compete” for GCs since GCs each have a limited 402

number of spines. Thus MCs with the most favorable lateral dendritic distributions for 403

a given GC configuration form the most synapses, leading to the exponential 404

distribution for MC connectivity. Indeed, if we counter-factually assumed a fixed 405

distance-independent probability of MC-GC synapses, our model also produced normal 406

connectivity distributions (Fig. S2). 407

Functionally, these differences manifest in the effects of lateral inhibition. Our results 408

show that, statistically, lateral inhibition is more likely to be stronger over shorter 409

distances as a consequence of the shape of the network’s distance-dependent 410

connectivity. In contrast, Migliore et al specifically demonstrate an example where MCs 411

which are far apart have a significant influence on each other’s firing. The appearance 412

of such long-range inhibition is unlikely in our anatomically grounded model which uses 413

a lower GC:MC ratio of 15:1 (unlike ratios between 20:1 and 100:1 in [100]), and 414

realistic statistics of dendritic connection (unlike fully connected dendrites in [100]). It 415

is conceivable that the prior synaptic tuning performed in [100] to simulate odor 416

learning may allow the sparser inhibitory connections in our model to have a stronger 417

long-range effect. Since we perform no such tuning and presume all synaptic strengths 418

to be of roughly equal magnitude, the network’s natural, distance-dependent 419

architecture determines lateral inhibition. Thus, network remodeling, whether through 420

synaptic plasticity [27] or neurogenesis [36] may be key to overriding the anatomical 421

constraints which would otherwise disfavor long-range interactions. This explanation 422

may also contribute to resolving conflicting reports of the extent of lateral inhibition in 423

the mammalian OB, with some experimental studies reporting that interactions are at 424

least partially short-range [101–104] consistent with our findings, and others reporting 425

distance-independent inhibition [105–107]. 426

Our model predicts that with a realistic OB network topology and single cell response 427

physiology, gamma oscillations, classically associated with feedback-independent OB 428

activity after odor input [55], only appear with a lower active GC:MC cell ratio than 429
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the anatomical proportion. At the full ratio, we see beta oscillations, more commonly 430

associated with activation of cortical feedback to the bulb during odor input [55], an 431

effect that we did not explicitly model. Our results are consistent with previous 432

experiments and models [14, 23, 39] which suggest that gamma oscillations appear when 433

GC activity is reduced due to a lower baseline excitability than suggested by single cell 434

neurophysiology, perhaps due to the influence of centrifugal [108] or deep short-axon cell 435

inhibition [109]. Alternatively, the absence of gamma at high active GC:MC ratio could 436

reflect the possibility that GC activation generally produces oscillations predominantly 437

in the beta range, with other types of EPL interneurons being responsible for gamma 438

oscillations [1]. Additionally, GCs have local and spike-independent processes [6] which 439

may play a role in gamma oscillations [14, 20]; our model utilizes point neurons in order 440

to facilitate large-scale simulation and does not fully capture such processes. Future 441

experimental and theoretical work can separate these possibilities 442

Our model also suggests that cortical feedback to the bulb will be heavily guided by the 443

existing network structure. Specifically, we found that the MCs affected by feedback to 444

GCs were largely determined by the network configuration, rather than by the GCs 445

targeted. Likewise, the local connectivity to GCs determined which MCs responded 446

most to direct cortical excitation. Similarly, we found that sister MCs originating in the 447

same glomerulus exhibited highly non-overlapping connectivity patterns (Fig. 1C). This 448

prediction is consistent with previous experimental studies [3, 4], but differs from many 449

models, which, for simplicity, treat all MCs associated to a glomerulus as 450

equivalent [15,18,21,84,110–113]. Thus, our results suggest the importance of 451

accurately including network structure for determining the function of individual cells in 452

the OB and their collective behavior, as well as the power of our model in providing a 453

way to probe this relationship. 454

In the future, it will be interesting to extend our model by introducing other OB cell 455

types, notably tufted cells (TCs) and their corresponding superficial granule cells. TCs 456

form the second major population of excitatory neurons in the OB and have different 457

anatomical and electrophysiological properties from MCs [2,9, 40,41]. Moreover, they 458

may have significantly different functionality from MCs in odor processing [88,114–116]. 459

For their part, superficial GCs also have anatomical and electrophysiological properties 460

which separate them from deep GCs [8, 40, 61]. Indeed, based upon their location in the 461

EPL, they likely form connections with type II MCs in addition to TCs, and, in our 462

model, their absence may potentially explain the relatively lower number of GCs 463

connected to type II MCs as compared to type I MCs. Thus, the addition of such cell 464

types to our model will facilitate exploration of the differences between MCs and TCs 465

as well as between the two MC types. Perhaps such studies will shed light on a classic 466

question: why do neural circuits like the OB need so many different cell types with 467

different properties to carry out their functions, rather than simply having more 468

complex circuitry connecting fewer functional types as in silicon hardware [117]? 469

Methods 470

All values were derived, where possible, from measurements of the murine olfactory 471

bulb [4, 8, 9, 33,118], the chief exception being the derivation of MC lateral dendritic 472

density, which was based on images from study of rabbit [40] and rat [41]. 473

0.1 Mitral cell lateral dendritic density 474

Analyzing camera lucida drawings of mitral cells from [40] and [41], we fit a function of 475

the following form for the total dendritic length contained within a circle of radius 476
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r: 477

f(r) = α tan−1(kr + β) + C (23)

Then by default: 478

f(0) = α tan−1(β) + C = 0

and: 479

β = tan(−C/α)

So Eq 23 becomes: 480

f(r) = α tan−1(kr − tan(
C

α
)) + C (24)

where r ∈ [0, rmax] and C
α ∈ [0, π2 ). Replacing for convenience C with mα, Eq 24 then 481

becomes: 482

f(r) = α tan−1(kr − tan(m)) +mα (25)

with m ∈ [0, π2 ) 483

Now for an annulus of thickness ε, the ratio of the additional length of dendrite 484

encapsulated in the annulus to the area of the whole annulus is: 485

ρm(r) =
f(r + ε)− f(r)

ε(2πr + πε)

In the limit as ε goes to zero, we see that this equation simply becomes: 486

ρm(r) =
1

2πr

df

dr

Plugging in f(r), Eq 25 for the dendritic density finally becomes Eq 1: 487

ρm(r) =
αk/2πr

1 + (kr − tan(m))2
(26)

α, k, and m are defined in terms of the variables γ, ξ, and the maximum radius rmax. 488

γ v Uniform(0.2, 0.3) describes the fraction of rmax where the maximum of df
dr occurs. 489

ξ v Uniform(1/3, 4/5) represents the fraction of the maximum value of df
dr at r = 0. 490

Additionally, we assume that the total length of dendrite L for a given MC is 491

proportional to the area of that MC’s dendritic field, such that: 492

L = wπr2max (27)

where we set w v Uniform(0.00255, 0.00510) for each MC. Then, since the maximum
value of df

dr is αk and occurs at r = tan(m)/k, it follows that:

γ =
tan(m)

krmax
(28)

ξ =
1

1 + tan(m)2
(29)

and the values of m, k, and α can be re-expressed as: 493

m = tan−1(

√
1

ξ
− 1) (30)

k =
tan(m)

γrmax
(31)

α =
L

tan−1(krmax − tan(m)) +m
(32)
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0.2 Granule cell spine density 494

The equation of spine density (in spines per unit volume) as defined in Eq 2 was: 495

ρg(z) =
Ns(z)

πr(z)2
(33)

For z ∈ (z0, zmax], where zmax and z0 are the maximum height and bottom of the 496

dendritic tree respectively. r(z), the radius as a function of height, was simply 497

determined using similar triangles: 498

r(z) =
rmax

zmax − z0
(z − z0) (34)

Ns(z), which describes the linear spine density as a function of height, was assumed a 499

parabola as an approximation of the linear spine densities found in [8] and [40]: 500

Ns(z) = −a(z − z0)(z − zmax) (35)

Where a is a constant to be determined as follows. Since Ns(z) is subject to the 501

constraint: 502∫ zmax

z0

Ns(z)dz = S

where S is the total number of spines on the cone, then: 503

a =
6S

(zmax − z0)3
(36)

And Eq 35 thus becomes: 504

Ns(z) =
−6S

(zmax − z0)3
(z − z0)(z − zmax) (37)

Ultimately, substituting in Eq 34 for r(z), Eq 37 finally becomes 3: 505

ρg(z) =
−6S

πr2max(zmax − z0)

(
z − zmax

z − z0

)
(38)

0.3 Calculating the overlap dendritic length 506

From Eq 26, L, the total length of dendrite contained in the overlap between an MC 507

and GC, is: 508

L =

∫
A(zm)

ρm(r)dA =

∫∫
A(zm)

αk/2πr

1 + (kr − tan(m))2
rdrdθ (39)

Calculating this integral is dependent on s, the distance between the center of the MC 509

field and the GC field, as well as on rm, the radius of the MC, and rg, the radius of the 510

GC at zm, the MC height and thus the height of the intersection. Below we detail how 511

the integral changes as the two fields are drawn closer together. 512

For all cases, if s ≥ rg + rm, or if zm is out of range of the GC cone (i.e. the MC and 513

GC do not overlap), then by default: 514

L = 0 (40)
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Again for all cases, if
√
r2g + r2m ≤ s < (rg + rm), then 515

L = 2

∫ µ

0

∫ rm

g(θ)

ρm(r)rdrdθ (41)

where:

µ = cos−1(
r2m + s2 − r2g

2rms
(42)

g(θ) = s cos(θ)−
√
r2g − s2 sin2(θ) (43)

the latter of which is just the equation in polar coordinates for a circle a distance s from 516

the origin. Since the problem is symmetric, we multiplied the integral by 2 and 517

integrated from 0 rather than integrate from −µ to µ. Note that we adopted this 518

strategy for all integrals except the case where the GC field overlapped the center of the 519

MC field, in which case we integrated over all θ (see below). 520

Moving forward, the integrals depended on the relative sizes of rg and rm, so below we
consider the relevant cases separately. Before continuing, we must define two further
quantities:

γ = sin−1(rg/s) (44)

g′(θ) = s cos(θ) +
√
r2g − s2 sin2(θ) (45)

where the latter is again the equation in polar coordinates for a circle a distance s from 521

the origin, but integrated in the opposite direction from g(θ). 522

523

Case 1: rm > 2rg 524

525

If rm − rg ≤ s <
√
r2g + r2m 526

L = 2

(∫ µ

0

∫ rm

g(θ)

ρm(r)rdrdθ +

∫ γ

µ

∫ g′(θ)

g(θ)

ρm(r)rdrdθ

)
(46)

If rg ≤ s < rm − rg 527

L = 2

∫ γ

0

∫ g′(θ)

g(θ)

ρm(r)rdrdθ (47)

If 0 ≤ s < rg 528

L =

∫ 2π

0

∫ g′(θ)

0

ρm(r)rdrdθ (48)

Case 2: 2rg > rm > rg 529

530

If rg ≤ s <
√
r2g + r2m 531

L = 2

(∫ µ

0

∫ rm

g(θ)

ρm(r)rdrdθ +

∫ γ

µ

∫ g′(θ)

g(θ)

ρm(r)rdrdθ

)
(49)
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If rm − rg ≤ s < rg 532

L = 2

(∫ π

µ

∫ g′(θ)

0

ρm(r)rdrdθ +

∫ µ

0

∫ rm

0

ρm(r)rdrdθ

)
(50)

If 0 ≤ s < rm − rg 533

L =

∫ 2π

0

∫ g′(θ)

0

ρm(r)rdrdθ (51)

Case 3: rg > rm 534

535

If rg ≤ s <
√
r2g + r2m 536

L = 2

(∫ µ

0

∫ rm

g(θ)

ρm(r)rdrdθ +

∫ γ

µ

∫ g′(θ)

g(θ)

ρm(r)rdrdθ

)
(52)

If rg − rm ≤ s < rg: 537

L = 2

(∫ π

µ

∫ g′(θ)

0

ρm(r)rdrdθ +

∫ µ

0

∫ rm

0

ρm(r)rdrdθ

)
(53)

If 0 ≤ s < rg − rm: 538

L =

∫ 2π

0

∫ rm

0

ρm(r)rdrdθ (54)

Layers of the OB space 539

We measured the average thickness of the external plexiform layer (EPL), mitral cell 540

layer (MCL), and internal plexiform layer (IPL) from camera lucida images in 541

supplementary material from [8] and [9]: 542

543

Layer Thickness (in µm)
EPL (θEPL) 131
MCL (θMCL) 36
IPL (θIPL) 27
Total (θ) 194

544

Glomerular density and distribution 545

For the purpose of calculating the area density of the glomerular projections (henceforth 546

referred to as simply ’glomeruli’) on the EPL, we assumed the EPL to be a flat (with 547

thus no difference in the surface areas of the top and bottom surfaces), 3-dimensional 548

space with a volume of around 1.5 mm3 [119]. We also assumed the thickness of the 549

EPL to be uniform (although in general there is considerable variation in thickness over 550

the bulb), and so by dividing this volume by θEPL, we arrived at an area of 1.145 x 107 551

µm2. We assumed 1800 glomeruli per olfactory bulb [118,120], leading to an area 552

density ρglom of 157 glomeruli/mm2. Thus, for the network, ρglomπr
2
c glomeruli were 553

placed uniformly randomly in the x-y plane within a radius of rc. 554
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Mitral cell distribution 555

A number of MCs drawn from Uniform(15, 25) was placed around each glomerulus. For 556

a glomerulus located at (xglom, yglom), the location of one of these MCs in the x-y plane 557

was (xglom + r cos θ, yglom + r sin θ), where r (in µm) v Logistic(µ = 78.4, s = 23.1) for 558

r ∈ [0, 300] [4], and θ v Uniform(0, 2π). The radius of each MC was drawn from 559

Uniform(75, 800). 560

MCs were either assigned as type I with 2
3 probability or type II with 1

3 probability [2]. 561

The z-positions for each cell type were drawn from the following distributions: 562

563

Type I Type II

Z-position
θIPL + θMCL+
Uniform(0, 12θEPL)

θIPL + θMCL+
Uniform( 2

5θEPL,
4
5θEPL)

564

Granule cell distribution 565

We specifically modeled deep granule cells, which preferentially interact with mitral 566

cells [8]. GCs were distributed randomly in the xy-plane such that the x and y positions 567

of their bottom vertices were distributed uniformly randomly. The maximum radius, 568

top and bottom z-positions, and xy-distance of the center of the top face from the 569

bottom vertex were drawn from the following distributions (in µm): 570

571

Maximum radius (rmax)
Normal(83, 28)
for r ∈ [30, 160]

Bottom z-position (vertex) Uniform(0, θIPL + θMCL)

Top z-position (face)
θIPL + θMCL+
Uniform( 1

2θEPL, θEPL)
Vertex to face-center projection distance Uniform(0, 50)

572

573

Finally, the number of spines S was drawn from a uniform distribution with bounds 574

determined by the volume of the cone. The equation of the bounds was of the 575

form: 576

a tan−1(bV ) (55)

where V is the volume. For the lower bound, a = 39.31 and b = 1.043 ∗ 10−5, while for 577

the upper bound, a = 357.7 and b = 2.653 ∗ 10−6. 578

0.4 Experimental procedures 579

Skewed normal distribution 580

A skewed normal distribution has a PDF described by the following equation: 581

f(x) =
2

ω
√

2π
e−

(x−ξ)2

2ω2

∫ α( x−ξω )

−∞

1√
2π
e−

t2

2 dt (56)

where ω is the scale parameter, α is the shape parameter, and ξ describes the shift of 582

the distribution. 583

Local field potential oscillations 584

After the LFP signal was calculated, we it through a 6th-order low-pass Butterworth 585

filter with cutoff of 200 Hz and then detrended the signal. We removed the first 200 ms 586

of each of the two periods to roughly isolate the signal’s steady-state for each period. 587
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We then used Welch’s power spectral density estimate to calculate the power spectrum, 588

utilizing a window size of 400 ms with 50% overlap between windows. 589

Lateral inhibition 590

MC pairs (here denoted cells A and B) were selected from then network that had a 591

number of connected GCs within 75 of the average for all MCs and whose z-positions 592

lay within 5 µm of each other. During the first simulation, cell A was fed 700 pA of 593

direct current for 1 s (with 100 ms of unrecorded padding time at the beginning of the 594

simulation to allow the cell to activate from rest), and the consequent firing rate for cell 595

A was measured. During the second simulation, cell A was fed 700 pA of direct current 596

while cell B was fed 750 pA of direct current, and the firing rate for cell A was 597

measured again. This process was repeated for 1,436 different pairs of MCs to cover a 598

wide range of inter-cell distances. 599

Decorrelation 600

For simulation of a given odor, each MC in each glomerulus received input current of 601

the form: 602

I(t) =
I0
2

+
I0
4

(sin (2πft− φ) + 1) (57)

For the MCs belonging to each glomerulus, I0 was drawn from N (Imean, Imean/5) pA. If 603

the glomerulus was one which was designated to receive odor, Imean was drawn from a 604

uniform distribution between 400 and 600 pA, while for all other glomeruli, Imean was 605

drawn from a uniform distribution between 0 and 150 pA; the phase φ was drawn as for 606

the LFP experiments. 607

Six odors were generated which each targeted 30 glomeruli and which had varying 608

degrees of glomerular overlap (between 5 and 25 shared glomeruli, mean = 18), such 609

that the strength and phase of the input for odor-receiving glomeruli were identical; 610

meanwhile, strength and phase for the different glomeruli and for all other 611

non-odor-receiving glomeruli were different. Odor presentation was simulated for 6 612

sniffs at 6 Hz (i.e. 1 second of in-simulation time) for each odor individually. Then, the 613

spike time series for each odor was divided into windows of time length T , with 50% 614

overlap between windows, and the Pearson correlation was computed between 615

corresponding intervals for each pair of two odors (n = 15). The value of T was varied 616

to examine how the correlation time course depended on the timescale. 617

Cortical feedback to GCs 618

In each experiment, an odor was generated which targeted 35 glomeruli. Odor currents 619

were simulated as in the decorrelation experiment, for a total of 2 sniffs (1/3 of a second 620

real-time). For baseline, odor input alone was presented. For the first condition, 621

excitatory feedback was added to a subset GCs in the form of 50 pA of constant current, 622

with the subset of GCs being either 0.1%, 1%, 5%, 10%, 15%, or 20% of all GCs 623

depending on the experiment. For the second condition, feedback was again presented 624

but to a set of GCs non-overlapping with the first set. We examined only the second 625

sniff (since network dynamics appear to stabilize after one sniff) and calculated the 626

change in firing rate that occurred with feedback compared to baseline for each 627

odor-receiving MC for each condition. We computed the Pearson correlation of these 628

changes in firing rates over 10 ms windows, with 50% overlap between successive time 629

windows, between the first and second conditions, and then found the mean correlation. 630

For the third condition, a new arrangement of GCs was generated around the same MCs 631
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and the experiment was repeated, with the correlation of the changes in firing rates 632

being computed between the results of the first condition and this new condition. 633

Cortical feedback to MCs 634

These experiments were conducted similarly to the previous feedback experiments. 635

During the feedback condition, instead of feedback current to the GCs, constant 636

excitatory feedback current was delivered to 0.2 of all MCs, with the strength of the 637

current for each MC being drawn from Normal(200, 20) pA. Data in the figure was 638

compiled from n = 5 trials, each with a different odor and feedback pattern. 639

0.5 Simulation 640

All simulations were done in MATLAB versions R2017, R2018, or R2019 via a forward 641

Euler method with time step = 0.1 ms. 642

Supporting Information 643

Fig. S1 Distribution of sister MC somata with relation to glomerulus 644

Distribution of sister MC somata with relation to their parent glomerulus from [4]. This 645

distribution was well fit by a logistic function of the form 646

1/(1 + exp (−(x−m)
s )) + 1/(1 + exp (ms )), with m = 78.4 and s = 23.1 (r2 value = 0.998), 647

and the constant term forcing the function through the origin, since we assume that no 648

MCs are encapsulated by a circle of radius 0. 649

Fig. S2 Lateral inhibition and connectivity in the distance-independent 650

network. (A) When the probability of connectivity is independent of distance, the 651

number of shared GCs (A) and strength of lateral inhibition (B) are also both 652

independent of distance. Distributions of connectivity are Gaussian for both (C) MCs 653

and (D) GCs. 654

Fig. S3 Connectivity in the periodic network Distributions of (A) MC and (B) 655

GC connectivity are right-shifted compared to those of the bounded network. 656
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