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Abstract  

Gathering information is crucial for maximizing fitness, but requires diverting resources from searching 

directly for primary rewards to actively exploring the environment. Optimal decision-making thus 

maximizes information while reducing effort costs, but little is known about the neural implementation 

of these tradeoffs. We present a Reinforcement Meta-Learning (RML) computational mechanism that 

solves the trade-offs between the value and costs of gathering information.  We implement the RML in 

a biologically plausible architecture that links catecholaminergic neuromodulators, the medial prefrontal 

cortex and topographically organized visual maps and show that it accounts for neural and behavioral 

findings on information demand motivated by instrumental incentives and intrinsic utility. Moreover, the 

utility function used by the RML, encoded by dopamine, is an approximation of free-energy. Thus, the 

RML presents a biologically plausible mechanism through which coordinated motivational, executive 

and sensory systems generate visual information gathering policies that minimize free energy.  

Keywords: information seeking, Reinforcement Learning, dopamine, norepinephrine, MPFC, effort, 

attention, free-energy 
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Introduction 

Reducing uncertainty about the state of the world is a fundamental imperative for biological 

organisms. To efficiently meet this imperative, animals must balance the benefits of taking actions that 

obtain information (reduce uncertainty) against the costs that these actions entail. Converging evidence 

suggests that core processes serving information gathering are attention and active sensing behaviors that 

sample rich sensory streams. Computational and behavioral studies in humans and monkeys show that 

visual active sensing using rapid eye movements (saccades) partly conform with optimal information 

gathering including the minimization of “free-energy”1-3. However, we lack a neurocomputational 

account of how this process emerges in a biologically plausible attention control architecture.   

Theories of executive function propose that the allocation of cognitive resources relies on the 

interaction between a “monitoring” process implemented in the medial prefrontal cortex (MPFC), and 

“regulatory” mechanisms implemented in posterior and lateral areas4-6.  The MPFC circuit estimates the 

utility of a task and the effort to invest in the task, while regulatory networks implement the selected 

cognitive policy.  

We recently proposed a computational model of the monitoring role of the MPFC using a 

reinforcement metal learner (RML) mechanism7. The RML is a bio-inspired autonomous agent that 

maximizes long-term rewards while minimizing costs8.  In the service of reward maximization, the RML 

optimizes not only overt motor behavior but also internal neural dynamics that indirectly influence 

behavior. The optimization of internal dynamics is referred to as “meta-learning” and modulates 

cognitive functions in pursuit of a goal9,10. In our RML model, the MPFC receives reward information 

through dopaminergic (DA) afferents from the ventral tegmental area (VTA) and calls for a boost of 

norepinephrine from the LC. The NE boost controls internal dynamics to enhance relevant information 

processing, but it registers as a cost and is thus limited by the extent to which it enhances utility. In a 
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recent report we showed that this general-purpose optimization mechanism accounts for neural and 

behavioral findings in independent domains including adjustments of learning rates, physical effort, 

working memory, and higher order conditioning7.  

Here we show that the same architecture accounts for neural and behavioral findings on 

attentional information gathering. We simulate instrumental information demand, in which agents gather 

visual information for guiding an incentivized choice, and non-instrumental information demand, in 

which they seek information for its own sake. We show that, when connected with a topographic visual 

map, the RML reproduces the distinct responses to expected information gains and expected reward gains 

that have been described in the lateral intraparietal area (LIP)11 and support a new interpretation of 

attentional priority as a cognitive state that is optimized for reducing uncertainty. We next show that, 

without an increase in model complexity, the RML reproduces distinct informational drives related to 

the intrinsic desire to reduce uncertainty versus the desire to anticipate positive outcomes2. Importantly, 

we show that these operations implement the free-energy principle12 and are thus a biologically plausible 

theory on how the brain generates uncertainty reduction policies in response to external incentives and 

intrinsic utility. 

Results 

The Reinforcement Meta-Learner (RML) 

The RML7 is a bio-inspired autonomous agent that optimizes long-term rewards using four 

interacting modules (Fig. 1A). Two modules are subcortical and represent the VTA and LC (Fig. 1A, 

red and orange). The VTA module simulates the release of DA that signals extrinsic and intrinsic rewards 

(see below). The LC module simulates release of NE and signals cognitive or physical effort13,14 (see 

Discussion for further justification of this choice). Two additional cortical modules - the MPFCAct and 

MPFCBoost – represent the MPFC (Fig. 1A, blue and green). These modules use reward and effort 
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information from the VTA and LC along with state information from the external environment to update 

state-action values and select appropriate actions. The MPFCAct module selects motor actions – i.e., 

makes decisions that act on the external space. The MPFCBoost module makes decisions oriented toward 

the internal space by generating control signals that call for boosts of NE15-17.  Boosting NE promotes 

effortful actions (e.g., by modulating the motor decisions made by the MPFCact) and enhances 

information processing in other brain structures, as we explain next.  The boost, however, is registered 

as a cost, and the MPFCboost module implements meta-learning by dynamically optimizing the trade-off 

between this cost and the rewards associated with boosting (see Methods, eq. 5, 6, 8b).  

Figure 1. Overview of the RML with mapping on brain structures. A) The RML consists of two modules 
conveying information about rewards from the ventral tegmental area (VTA) and effort from the locus 
ceruleus (LC) that target the two modules of the medial prefrontal cortex (MPFC). The MFPC modules 
perform action-outcome comparison to optimize state-action selection involving motor actions that affect 
the external environment (MPFCAct) and internal actions that modulate the activity of VTA and LC 
(MPFCBoost). B) The hybrid attention-RML (aRML) connects the core RML in A to a map of visual space 
simulating topographically organized visual areas. The visual map is implemented as a linear attractor 
basis function network integrating retinal position and current eye position18 and is connected to the RML 
through an efferent copy of the LC output that enhances visual response gains (orange arrow). 
Information about saccade target selection is directed toward the MPFCAct module, improving decision-
making to obtain rewards (blue arrow). Panel A is modified with permission from 7.  
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We previously showed that the RML is a general-purpose optimizer that can use LC-dependent 

boost signals to regulate the activity of computational modules implementing memory, learning rates, or 

cognitive effort7,19-21.  In the following sections, we describe how the RML acts when connected with 

systems of saccade and attention in tasks of information demand.  

Optimizing visual priority for instrumental information  

The selection of targets for saccades and attention is mediated by a network of retinotopically 

organized structures that include mid-level visual areas, fronto-parietal areas and the superior 

colliculus22. We recently showed that activity in one of these areas – area LIP - depends on expected 

information gains during a task of instrumental information demand11. To understand the neuro-

computational mechanisms of these findings, we connected the RML to a neural network for visual space 

representation, creating a hybrid model we refer to as the attention-RML (aRML, Fig. 1B).  

Consistent with neurophysiological studies, the visual network has spatially tuned visual 

receptive fields (RF) and maintains spatial constancy across shifts of gaze (modeled through basis 

function coordinate transformation18.  In the aRML, the visual map receives LC/NE output from the 

MPFC-VTA-LC circuit, which enhances sensory gains and improves performance for saccades and 

attention23,24 (Fig. 1B, orange arrow).  Topographic visual information is then redirected to the MPFCAct 

and used to make a decision (Fig. 1B, blue arrow; see Methods for a detailed description of the aRML).   

To investigate how the visual map responds during information demand, we administered the 

same task to the aRML that we used in the non-human primates. The task required the agent (monkey or 

aRML) to make an instrumental decision, choosing one of two targets to obtain a reward (Fig. 2A, “Final 

Decision”). Before making this choice, the agent directed gaze to a cue (Fig. 2A, “Cue”) which triggered 

relevant information consisting of visual motion toward the correct decision alternative (Fig. 2A, “Final 

Decision”). We examined how the visual responses to the informative cue changed in response to the 
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information gains and reward gains the cue was expected to bring, which we orthogonally manipulated 

(Fig. 2A, right). We manipulated information gains using two contexts (trial blocks) that differed in their 

ex ante decision uncertainty. In the “Informative” context, the two decision alternatives had equal prior 

probability of being correct and the agent could expect that the motion would resolve this uncertainty by 

indicating the correct alternative on that trial. In the “Uninformative” context, the correct decision 

alternative was fixed across trials; thus, the agent had no prior uncertainty and could expect that the 

motion information, while valid, would be redundant with their prior expectation. We manipulated 

reward gains by randomly interleaving, in both Informative and Uninformative blocks, trials that 

delivered a small or large reward for a correct choice, signaling reward size at the start of each trial. This 

created a 2 x 2 task design that orthogonally manipulated the reward and information gains that the agent 

could expect to experience after making a saccade to obtain the Cue’s information (Fig. 2A, right).  

We implemented the RML using the standard parameter values7 without fitting to empirical 

observations. For each condition we simulated a number of iterations comparable to the size of empirical 

data sets, avoiding artificially inflating p-values by increasing the number of iterations7 (see Methods). 

The aRML simulations replicated empirical findings (Fig. 2B). The aRML produced lower 

decision accuracy on informative versus uninformative trials, showing that gathering information is more 

challenging than acting merely on one’s priors (Fig. 2B, top left; F(1,29) = 212.9, p < 0.0001), consistent 

with behavioral findings (Fig. 2B, top right; cf11).  Critically, the aRML simulated the uncertainty-related 

enhancement of the visual map, with higher visual responses in informative relative to uninformative 

trials (Figure 2B, bottom left; main effect of informativeness, F(1,29)=89.91, p < 0.0001, n = 30 

simulations), replicating the uncertainty-related enhancement in LIP cells (Fig. 2B, bottom right).   
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Figure 2. Instrumental Information Sampling 
Task. A) The agent (aRML or monkey) was exposed 
to a display with two targets (white squares) and an 
information source (cloud of dots; “Cue”). To obtain 
a reward, the aRML had to generate a saccade to the 
cue, trigger motion information and, based on the 
information, make a  correct final choice (choose the 
target that was congruent with the motion direction). 
This design was presented in 4 conditions that 
crossed 2 levels of information gains and 2 reward 
magnitudes. In informative trial blocks, either target 
had equal prior probability of being correct and the 
motion resolved the uncertainty. In uninformative 
blocks, a single trial was correct on all trials, making 
the motion information redundant. A correct 
response in either block could deliver a small or 
large reward (signaled at the start of each trial). No 
reward was delivered if the aRML chose the wrong 
target or chose not to engage in a trial (“break 
fixation”).  B) aRML-monkey comparison. 
Percentage of correct choices (top row) and visual 
activity (lower row), as a function of reward 
magnitude in the informative (red) and 
uninformative (blue) blocks. Points show mean ± 
s.e.m. over model simulations (left column) or 
empirical data from11 (right column). In the bottom 
row, the left plot shows visual activation in the 
aRML in arbitrary units and the right plot shows LIP 
activity (z-scored firing rates) from11.  C) Reward 
modulations predicted by the aRML. The y axis 
shows the difference in activity between large 
reward and small reward trials as a function of the 
total reward size and  task difficulty (precision of 
LIP information coding, measured as Fisher 

Information (I)). For small average rewards and low difficulty, activity is higher for small relative to 
large rewards, as found in11. Inset) The aRML has a lower completion rate (higher probability of aborting 
a trial) for when smaller rewards are at stake for both informative (red) and uninformative (blue) blocks 
as found for monkeys in11. 
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It is important to note that the aRML generated uncertainty-related enhancement without 

including uncertainty reduction in the utility function.  In its attempt to maximize reward gains, the model 

finds that a boost of NE enhances reward rates by enhancing attentional priority, which in turn improves 

discrimination accuracy and, ultimately, decision accuracy. Because the model registers the NE boost as 

a cost, it deploys it selectively, only in informative trials when the information enhances reward 

expectations. Thus, in instrumental conditions, uncertainty-related enhancement can emerge strictly as a 

consequence of reward maximization; however, in the following section, we show that this process can 

be enhanced by an explicit drive for reducing uncertainty.  

A striking empirical finding was that LIP cells responded to reward magnitudes with a negative 

modulation – showing stronger responses when a smaller rather than larger reward was at stake (Fig. 2B, 

bottom right).  The aRML replicated this finding (Fig. 2B, bottom left) and suggested that it was a 

compensatory mechanism triggered at specific combinations of reward size and difficulty. This was 

shown by simulating the task at a wider range of reward magnitudes and visual discrimination difficulty 

(Fig. 2C). For most of the range shown in Fig. 2C, the aRML produced a higher boost of NE and, 

consequently, higher visual activity when a larger reward was at stake consistent with the typically 

observed positive reward modulations of the visual map (Fig. 2C, red).  However, this trend reversed for 

a set of conditions similar to those used by Horan et al11, which had low discrimination difficulty (high 

motion coherence) and low trial-by-trial rewards (Fig. 2C, bottom left corner, white showing negative 

values). This was due to the fact that the aRML could choose to disengage from the task and did so more 

frequently when the rewards were low, similar to behavioral findings in monkeys11 (Fig. 2C, inset; rate 

of trial completion increases with expected reward; F(1,29) = 14.1, p < 0.0001).  To counteract the loss 

of reward due to incomplete trials, the aRML generated an additional boost of NE.  This prevented the 

rate of trial completion from becoming too low but produced the counterintuitive enhancement at small 

relative to large reward sizes.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.18.452793doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452793
http://creativecommons.org/licenses/by-nc-nd/4.0/


In sum, the aRML reproduces both the uncertainty and reward modulations found in visual maps 

during instrumental information demand as adaptations of internal dynamics that optimize reward rates 

given the constraints of a task.  

Intrinsically motivated information seeking in non-instrumental tasks 

The aRML described in the previous section generates information demand as a consequence of 

maximizing instrumental rewards, but humans and monkeys also seek information as a good in itself, 

independently of external incentives25. In this section we show that, without introducing new parameters, 

the RML reproduces distinct components of non-instrumental information demand related to uncertainty 

reduction versus gathering positive observations.  

 The original RML estimated uncertainty as expected surprisal (to produce volatility-based 

adjustment of learning rates (7; and Methods, eq. 7d), and here we simply included this term in the 

function defining DA activity. The utility function that is conveyed by DA in this modified model (which 

we call the RML-C, for RML-Curiosity; eq. 11) is written below in a simplified form:  

𝐷𝐴# = 𝑏 &𝑅 + 𝜌max
-
.𝑣#(𝑠2, 𝑎)67 − 𝛿:(𝑜)    (1) 

The left-hand side term in this equation is the one used by the original RML and is governed by 

the current extrinsic reward, R, combined with the value of expected future states, v (s’,a) weighted by 

r, the temporal discount factor. The right-hand side term, 𝛿:(𝑜), is the expected surprisal - unsigned 

prediction error of the outcome over trials – a measure of uncertainty correlated with entropy26,27. As we 

explain in the Discussion, introducing this term in the loss function represents an implementation of the 

free-energy principle12 in the framework of meta-RL. 

We next used both the original RML and the RML-C to simulate behavior in tasks of non-

instrumental information demand.  We simulated the conditions used in 2 in which monkeys could seek 
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information under different prior probabilities of delivering rewards (Fig. 3A). Uncovering information 

was effortful, as before, but it had no instrumental incentives, as the rewards were delivered non-

contingently – i.e., were identical whether or not the agent obtained the information (Fig. 3Ai).  

The original RML lacking the uncertainty minimization term in the VTA function sought information in 

proportion to reward probability (Fig. 3Aii, pink). The willingness to perform in the absence of 

instrumental incentives is explained by the first term of eq. 1, which promotes effortful actions in 

proportion to extrinsic instrumental or non-instrumental rewards (R). However, only the RML-C 

produced the enhanced sampling at 50% relative to 100% probability (Fig. 3Aii, black) indicating the 

distinct sensitivity to uncertainty shown by humans and monkeys (Fig. 3Aiii).  The sampling patterns of 

the RML and RML-C were significantly different (F contrast aRML vs aRML-C: F(1,58) = 19.25, p < 

0.001), with the RML-C producing higher sampling at the uncertain (50%) prior relative to the RML 

(post-hoc test, t(58) = 20.99, p < 0.0001) and relative to the certain (100%) prior  within the RML-C 

(50% > 100%: t(29) = 3.96, p = 0.0004). These patterns closely reflected the NE boost, which peaked on 

high uncertainty trials in the RML-C but was exclusively dependent on conditioned cue value in the RML 

(F contrast RML vs RML-C: F(1,58) = 4.27, p < 0.05; post-hoc t-contrast RML vs RML-C for Cue1 

50%: t(58) = 13.72, p < 0.0001; t-contrast within RML-C, Cue1 50% > Cue1 100%: t(29) = 4.54, p < 

0.0001; Fig. 3Aii, right). This suggests that the intrinsic desire to reduce uncertainty depends on a distinct 

component in the utility function that can be signaled by NE.   

To analyze whether utility based on expected surprisal could affect sampling in instrumental 

conditions, we implemented eq. 1 in the aRML model and tested this modified model (the aRML-C) in 

the informative condition in the task of instrumental information demand described in the previous 

section (Fig. 2A). The aRML-C generated similar qualitative results as the aRML but showed better 

performance, including a higher fraction of correct responses (Fig. 3B, left: aRML-C vs. aRML: F(1,58) 
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= 6.9, p = 0.01), higher visual gain modulation (Fig. 3B, center; F(1,58) = 23.62, p < 0.0001), and higher 

rate of trial completion (Fig. 3B, right: aRML-C vs. aRML: F(1,58) = 8.52, p < 0.01). Thus, even when 

a task is governed by extrinsic rewards, performance benefits from an intrinsic drive to reduce 

uncertainty.  

Figure 3. A. Non-
Instrumental Sampling 
Task. i) Trial structure. After 
viewing the prior reward 
probability (Cue 1), the RML 
receives a visual mask and 
can choose to exert effort to 
remove the mask and uncover 
Cue 2 or just wait for reward 
delivery. After a fixed time 
delay, a reward is delivered 
based on the cue-reward 
associations, regardless the 
decision about uncovering 
Cue 2. Cue 1 could signal 0%, 
50% or 100% prior reward 
probability. Cue 2 provided 
perfect information about 
presence or absence of 
reward, which was redundant 
if it followed a 0% and 100% 
Cue 1 and resolved 
uncertainty after a 50% Cue 1.  
Aii) Probability of revealing 
cue 2 (left) and NE boost 
(right) from the aRML and 
RML-C as a function of Cue 1 
probability. Each point shows 
mean± s.e.m. over a set of 

iterations. Aiii) Probability of revealing Cue 2 shown by monkeys in2. B) Non-Instrumental Sampling 
Task. Predictions of the aRML and aRML-C regarding %correct, LIP activity and completion rate for 
the informative condition in the Instrumental Information Sampling Task (Fig. 2A). Same conventions 
as in A.  
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Discussion 

We propose a novel RML-based framework for understanding information demand in terms of 

cost-benefit tradeoffs implemented in a biologically plausible architecture. We show that this framework, 

previously found to capture regulation of physical effort, learning rates and working memory7, also 

naturally reproduces findings on instrumental and non-instrumental information demand without data 

fitting or additional parameter tuning. The results bring new insights into the computational basis of 

attentional enhancement in visual maps, the mechanisms of intrinsically motivated information demand, 

and the biological basis of algorithms that compute free energy. We discuss each in turn.  

The selection of stimuli for saccades and attention has long been associated with a network of 

topographically organized visual and oculomotor areas that includes portions of the frontal and parietal 

lobes22. While abundant evidence shows that these visual areas provide selective representations that 

prioritize behaviorally relevant stimuli, the computational meaning of this prioritization is under debate. 

Our model supports the idea that prioritization emerges from interactions between the visual maps and 

an MPFC-centered circuit that estimates the costs and benefits of gathering information.  Response 

enhancement in visual maps thus reflects a cognitive action – a boost initiated by the MPFC that 

facilitates the selection of relevant information and its linkage with actions - that entails a cognitive cost 

and is deployed selectively according to the increase in rewards it is expected to bring. This mechanism 

reproduces reward and uncertainty effects in LIP cells, suggesting that these effects index adaptations of 

visual processing optimized for obtaining a behavioral goal.  

Our results shed new light on reward modulations in visual areas, particularly the longstanding 

controversy about their significance in area LIP28,29.  Specifically, the results argue that, rather than 

representing the economic values of alternative actions as traditionally assumed30, the neurons reflect 

adjustments of cognitive states necessary to obtain a desirable outcome.  One example of this dissociation 
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is the fact that the aRML, like LIP cells, had enhanced visual responses for decisions that have prior 

uncertainty and require of new information relative to those that have a strong prior, even though the 

latter have higher overall value – i.e., are completed faster with higher rates of success (Fig. 2B, top vs 

bottom). A second example is the fact that the aRML, like LIP cells, generate higher responses for smaller 

relative to larger rewards if a boost of control is needed to keep the system engaged in the task (Fig. 2C). 

Both results clearly illustrate that, rather than encoding value per se, visual enhancement depends 

critically on the cognitive (attentional) effort entailed in obtaining a goal. This view may account for 

previous findings that are inconsistent with an action-value interpretation, including that LIP neurons 

have enhanced responses to stimuli that command a more difficult anti-saccade rather than a habitual 

(and more rewarding) pro-saccade31, stimuli that command a change in motor plan32, and those that 

indicate low-value alternatives that are avoided by a behavioral choice33.  

 We note that, consistent with available evidence14 and appropriate for reducing model 

complexity, the RML draws a sharp distinction between a role for in NE in cognitive and physical effort 

and the role for DA in reward-driven motivation and learning7. However, very little is known about the 

cellular basis of cognitive effort in information demand, and new evidence may well reveal the 

involvement of additional neuromodulators (such as modulations of visual areas by acetylcholine and/or 

directly by DA in addition to NE34,35).   

A second critical question addressed by our findings concerns the intrinsic utility that animals 

assign to non-instrumental information, which is based on both the extrinsic rewards and epistemic value 

of various states. We showed that the RML accounts for these findings by postulating that the utility 

function has two distinct components. A reward-based component is signaled through DA responses to 

reward expectation36,37 and can energize behavior even without instrumental training7, accounting for the 

desire to reveal signals associated with positive outcomes. A second epistemic component is based on 
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expected surprisal, which had been estimated in the original RML and incorporated in the utility function 

in the RML-C. With this modification, the RML reproduced empirical observations (2; Fig. 3A) and 

provides three specific advances. First, the result generalizes and provides a biological implementation 

for earlier two-factor mathematical models proposed by2,38. Second, it more closely captures empirical 

findings relative to a recent model based on the utility of anticipation39. According to the model of Iigaya 

et al., the utility of anticipation depends on reward prediction errors (RPE), such that information that is 

expected to produce positive RPEs is sought because it engenders a pleasant state of anticipation 

(“savoring”), while information producing negative RPEs is avoided as it generates an unpleasant 

(“dread”) state).  Unlike the RML, this model does not explain why information demand in monkeys2 

and humans40 increases and remains high even at a 100% prior reward probability – i.e., when new 

information is expected to have no RPE (Fig. 3Aiii). A third contribution of our results is showing that 

a sensitivity to expected surprisal can supplement the boost provided by instrumental rewards (Fig. 3B). 

Thus, individuals who are more motivated by uncertainty in non-instrumental conditions may show 

enhanced efficiency of information gathering in instrumental conditions – a possible new link between 

instrumental and non-instrumental information demand that can be investigated in future research.   

A final contribution of our results is to provide a novel computational and biological 

interpretation of the free-energy principle, which has been discussed in a vast theoretical literature and 

describes exploration decisions aimed at minimizing expected free-energy41. The equation we propose 

for the utility function of the RML-C (Equation 1) approximates the equation expressing (negative) free-

energy (-F)42: 

−𝐹 = ln	(𝑃(𝑜A))−𝐷BC[𝑄(𝑥)||𝑃(𝑥|𝑜A)] (2) 

The first term in the free-energy equation indicates the log-evidence of the agent’s generative 

model about preferred outcomes (õ) and corresponds to the extrinsic value term in our Equation 1: 𝑅 +
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𝜌max
-
.𝑣#(𝑠2, 𝑎)6. The second term in the free-energy equation is the Kullback-Leibler divergence 

between estimated (Q(x)) and true posterior (P(x|õ)) probability that the hidden cause x determines the 

outcome õ, and is analogous to the second term in Equation 1, where information content is approximated 

by the expected unsigned prediction error: 𝛿:(𝑜). Thus, the RML-C performs approximate free-energy 

minimization, expressing free energy in terms of biologically plausible control theory rather than 

probability density functions.  

This in turn leads to two significant advances. First, by implementing the free-energy principle 

in RL algorithms, it can spur the development of a new class of algorithms in which agents optimize 

free-energy, accounting for higher order types of utility that are not directly predicated on extrinsic 

rewards.  Second, by implementing the free-energy principle in a biologically plausible architecture, the 

model provides a powerful tool for testing hypotheses on how motivational, executive and sensory 

systems are coordinated to seek information and reduce free energy.  
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Methods 

All the results shown in the text are based on 30 simulations of 360 trials each. These numbers 

are in the range of sessions and trials tested in experimental paradigms and prevent artificially inflating 

p-values by increasing the number of simulations. The results are not based on fitting the model to 

empirical data. Instead, we simulate new tasks using the same the parameters as in Silvetti et al.7; Table 

1.   

RML model 

Here we introduce the equations governing the RML function. The software used for the 

simulations in this article can be downloaded from the RML GitHub repository: 

https://github.com/AL458/RML.  

 

Table 1. RML parameters list and values for discrete model. 

  

Parameter Value Meaning Equation 

r 0.2 TD-learning signal 

decay 

8a 

m 0.1 DA dynamics 8a 

t 0.6 Softmax temperature 4,6,10 

a 0.3 Learning rate hyper-

parameter 

7c-d 
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b 0.2 Learning rate lower 

bound 

7a 

w 0.15 Boosting cost 8b 

 

MPFCAct. The central equation in this module governs state/action value updates: 

Δ𝑣(𝑠, 𝑎) = 𝜆#.𝐷𝐴# − 𝑣#KL(𝑠, 𝑎)6     (3) 

where v(s,a) indicates the value (outcome prediction) of a specific action a given a state s, and DA is the 

environmental outcome, here interpreted as dopamine signal afferent from VTA (Equation 8). The 

learning rate parameter l, governing the flexibility of value update, is computed by Equation 7a. 

The probability of selecting action a, conditioned to state s, is given by a softmax function s , 

whose arguments are the state/action values v discounted by state/action costs C and temperature t 

𝑝(𝑎|𝑠) = σ &𝑣(𝑠, 𝑎) − P(Q,-)
RS

, 𝜏7    (4) 

Matrix C assigns a cost to each state/action couple, for example energy depletion consequent to 

climbing an obstacle. C is discounted by norepinephrine afferents from LC (NE), which is itself 

controlled by the MPFCBoost module, via parameter b (Equation 6). 

MPFCBoost This module controls the parameters for cost and reward signals in equations 3-4 

(MPFCAct), via modulation of VTA and LC activity (boosting catecholamines). This is implemented by 

selecting the modulatory signal b (boost signal), by RL-based decision-making. The MPFCBoost updates 

the boost values vB(s, b), via the equation: 
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∆𝑣V,#(𝑠, 𝑏) = 𝜆V,# &𝐷𝐴V,# − 𝑣V,#KL(𝑠, 𝑏)7    (5) 

Equation 5 represents the value update of boosting level b in the environmental state s. The MPFCBoost 

submodule selects boosting actions probabilistically, based on expected values vB and temperature t: 

𝑝(𝑏|𝑠) = σ(𝑣V(𝑠, 𝑏), 𝜏)     (6) 

Here, we imposed 𝑵𝑬 = 𝒃, for all the equations involving the norepinephrine output for effort 

implementation. 

Control over learning rate. The learning rate parameters in the two MPFC modules (l and lB) 

are optimized online (i.e. while the model interacts with the environment) as a function of both 

uncertainty and volatility. Optimization of l and lB solves the trade-off between stability and plasticity, 

increasing learning when the environment changes and lowering it when the environment is simply noisy. 

l and lB are computed as the ratio between the estimated variance of state/action-value (Var\ (𝑣)) over 

the estimated squared prediction error (𝛿:]) (Kalman gain approximation43; for simplicity we here indicate 

only l) 

  	

𝜆# =
Var\ ^(_)
à^b

      (7a) 

With  (b is a free parameter indicating the minimal l value), to ensure numerical 

stability. The process variance is given by:     

Var\ #(𝑣) = (𝑣# − 𝑣c#KL)]     (7b) 

where 𝑣c  is the estimate of v, obtained by low-pass filtering tuned by the hyperparameter a : 

𝑣c# = 𝑣c#KL + 𝛼(𝑣# − 𝑣c#KL)      (7c) 
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The same low-pass filter is applied to the prediction error signal (d) to obtain a running estimation of 

total variance , which corresponds to the squared estimate of unsigned prediction error: 

𝛿:# = 𝛿:#KL + 𝛼.|𝛿#| − 𝛿:#KL6     (7d) 

Equations 7a-d are implemented independently for each of the two MPFC modules, so that each module 

has its own learning rate parameter (l or lB).  

VTA The VTA module provides outcome-related signal DA to both MPFC modules, either for 

action selection directed toward the environment (by MPFCAct) or for boosting-level selection (by 

MPFCBoost) directed to the brainstem catecholamine nuclei. Equation 8a below defines the DA signal to 

the MPFCAct: 

𝐷𝐴# = 𝑟#(𝑅# + 𝜇𝑏) + 𝑏(1 − 𝜇)𝜌max- .𝑣#(𝑠2, 𝑎)6   (8a) 

Where, r is a binary variable indicating the presence of reward signal, and R is a real number variable 

indicating reward magnitude. Parameter r is the TD discount factor, while parameter µ is a scaling factor 

distributing the modulation b between primary (first term of the equation) and non-primary (second term) 

reward. 

 The VTA signal afferent to the MPFCBoost is described by the following equation: 

𝐷𝐴V,# = 𝑟#𝑅# + maxh .𝑣#(𝑠2, 𝑏)6 − 𝜔𝑏    (8b) 

where w is a parameter defining the cost of catecholamine boosting. 

The aRML hybrid model 

We used a recurrent basis function network with continuous attractor dynamics18 to simulate LIP neurons 

(Figure 1b). The LIP network consisted of three noisy input layers that were also the output ones 
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(recurrent dynamics): a layer coding visual information in the eye-centered frame of reference, a layer 

coding for the horizontal position of the eye in the orbit and a layer coding for the visual information in 

horizontal head-centered frame of reference. All the layers were connected, with symmetric weights, to 

a hidden 2-dimensional layer (basis function layer) representing a 2D map that integrated information 

from different frames of reference and encoding the direction of the future saccadic movement (shown 

in Figure 1c). At the beginning of each trial, gaze was on fixation point and the cue appeared either in 

the left or in the right hemifield. The 2D map of LIP neurons encoded the direction of the future saccade 

toward the cue. A full simulation of visual processing would have required representing both LIP (for 

saccade planning) and MT (for motion discrimination). Because such a complexity level was unnecessary 

to test our model, here we linked directly the cue decoding to the precision of saccadic movements 

(Equation 14), without explicitly simulating the MT area for motion decoding. In order to do so, we 

assigned the meaning of motion direction to the eye-centered dimension, i.e. the eye-centered visual 

information “up” or “down” indicates movement direction (respectively “up” or “down”). Equations and 

parameters of the LIP network are reported in the supplementary material of the original article where 

the network was described18, here we did not introduce any modification.  

Interface RML-LIP. The RML modulated the output of the LIP hidden layer by means of NE signal. 

Given that the LIP hidden layer is a 2D map (A), each neural units is indexed by a couple (l,m), where l 

indexes the influence of the eye position, while m of the visual information. If we define the activity of 

the unit (l,m) as 𝐴jk, the RML modulated this activity by the following equation: 

𝑍jk = 𝑁𝐸 ∙ 𝐴jk      (13) 

Where NE is the norepinephrine output from the RML (scalar). Then, the state-action value updated by 

the information provided by Z is: 

𝑣#∗(𝑠, 𝑎) = 𝑣#(𝑠, 𝑎) + 𝛾 ∑ 𝑊-jk ∙ 𝑍jkjk     (14) 
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Where 𝑣∗ is the biased state-action value and W is a weight matrix for the linear transformation from Z 

map to state-action value map (𝑎 ∈ [1,2]) and	𝛾 = 10Kw is a scaling parameter; 𝑣∗ is then passed as an 

argument to Equation 4 for action selection. The weights matrix W is defined as follows: 

      (15) 

This guarantees opponent coding of cue direction by the upper and the lower half of the basis function 

layer Zlm. 

To study the effect of task difficulty in the Instrumental Information Sampling Task (Figure 3C), 

we increased difficulty by decreasing the g parameter (10Kw ≤ 𝛾 ≤ 6 ∙ 10Kz) to make progressively 

weaker the choice bias evoked by the cue (Equation 14). Fisher information ℐ provided to the RML by 

the bias term in Equation 14 was computed as a function of g : 

𝑝(𝑎|𝛾) = 𝜎(𝛾 ∑ 𝑊-jk ∙ 𝐴jkjk , 𝜏)     (16) 

ℐ(𝛾) = 1/ &𝑝(𝑎|𝛾).1 − 𝑝(𝑎|𝛾)67     (17) 

Where s is the softmax function providing the probability p(a) that the cue alone (without NE 

modulation) could bias the action toward the correct action a. 

Equations relative to Non-Instrumental Sampling Task 

Analogously to expected free-energy in Active Inference algorithms42, decision-making was aimed at 

maximizing DA input expected alongside the path integral of the decision tree relative to each possible 

policy. The value V	 relative to policy p was computed by the following path integral: 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.18.452793doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452793
http://creativecommons.org/licenses/by-nc-nd/4.0/


𝑉(𝜋) = ∑ 𝑣�(𝑠, 𝑎)# − 𝐶�(𝑠, 𝑎)# ∙ 𝑁𝐸(𝜋)KL#     (9) 

 

Where 𝑣�(𝑠, 𝑎)# and 𝐶�(𝑠, 𝑎)# represent respectively the sequence of state-action values (Equation 3) 

and state-action costs encountered by following the policy p. 𝑁𝐸(𝜋) is the norepinephrine level selected 

for the policy p.  

The best policy was then selected probabilistically, by means of a softmax function s, with temperature 

t: 

𝑝(𝜋) = σ(𝑉(𝜋), 𝜏)     (10) 

 

DA signal (substituting Equation 8a) was computed as: 

𝐷𝐴# = 𝑟#(𝑅� + 𝜇𝑏) + 𝑏(1 − 𝜇)𝜌max- .𝑣#(𝑠2, 𝑎)6 − tanh &𝛿:#(𝑜)7  (11) 

Where 𝛿:#(𝑜) is the expected surprisal expressed as the expected unsigned prediction error for outcome 

o, computed by Equation 7d. The hyperbolic tangent function guarantees the information surprise term 

belongs to the interval [0,1]. Equation 11 has been represented in a simplified version (Equation 1) in the 

Results section.  

Finally, DAB (substituting Equation 8b) included the information surprise component, becoming 

expressed by the following equation: 

𝐷𝐴V,# = 𝑟#𝑅# − 𝜔𝑏 − tanh &𝛿:#(𝑜)7     (12) 

Where 𝛿:#(𝑜) is defined for Equation 11. 
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