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Abstract

The costs of maintaining exabytes of data produced by sequencing experiments every year has become
a major issue in today's genomics. In spite of the increasing popularity of the third generation sequencing,
the existing algorithms for compressing long reads exhibit minor advantage over general purpose gzip. We
present CoLoRd, an algorithm able to reduce 3rd generation sequencing data by an order of magnitude
without a�ecting the accuracy of downstream analyzes.

In the last few years, we have seen a rapid development of the third generation sequencing. The abil-
ity to produce very long reads makes Oxford Nanopore and PacBio technologies indispensable in genome
assembly [6] or identi�cation of long structural variants [18]. Maintaining gigantic collections of sequencing
reads, which often reach hundreds of gigabytes per experiment, has become a major challenge and motivated
intense research on compression techniques. Due to memory constraints, which prevented from maintaining
the entire read collection in main memory, the early algorithms [7, 1, 16] were only slightly better than
general-purpose compressors. The more recent methods [5, 17, 11, 2] successfully tackled this issue by clus-
tering reads originating from close genome positions. All these approaches, though, were designed for short,
high-quality Illumina reads and are unsuitable for reads from 3rd generation instruments which are orders
of magnitude longer and have di�erent error pro�le. Among few algorithms able to compress ONT/PacBio
FASTQ �les, like SPRING [2], ENANO [3], or LFQC [13], none takes advantage of the data redundancy
in the overlapping reads. This, together with the lossless compression of the quality stream, which is built
over signi�cantly greater alphabet than DNA (94 instead of 4 symbols) and exhibits larger noise, limits
advantages over, de facto standard, gzip on 3rd generation data to tens of percent.

In the paper, we present CoLoRd, a compression algorithm for ONT and PacBio sequencing data. Its
main contributions are (i) novel method for compressing the DNA component of FASTQ �les and (ii) lossy
processing of the quality stream. The idea of the former is based on the overlap graphs [12] often employed
by long-read assemblers [9, 8]. As CoLoRd does not aim at �nding true overlaps (which are critical for
genome reconstruction), but those convenient for di�erential compression of reads, the throughput of the
overlap detection can be increased at the cost of the accuracy. The algorithm determines k-mer similarities
between the reads and use them for identifying closest neighbours�potential references in the di�erential
compression. The compression itself is based on anchors, i.e., exact sequence matches. The between-anchor
areas are further scanned for similar fragments. As a result, the algorithm translates a read to an edit
script describing di�erences w.r.t. similar reads (Figure 1a), which is then entropy-encoded. The presence of
priority modes, i.e., memory (default), balanced, and ratio which di�er mainly by the fraction of reads used
as references, allows suiting the algorithm to particular needs.
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The encoding of the quality stream is done with a use of the context-based approach inspired by ENANO,
complemented with the knowledge of read overlaps. In agreement with the �ndings on Illumina data [17],
we show that the resolution of quality scores can be reduced without a�ecting the accuracy of downstream
analyses. Therefore, quality levels are by default subject to the lossy compression. CoLoRd uses 4-level
quality binning for Nanopore data with a scheme of [Q0, Q6], [Q7, Q13], [Q14, Q25] and [Q26, Q93]. For
HiFi data, Q93 value is stored in a separate bin. CoLoRd calculates a representative quality in each bin such
that the average read quality is preserved. The lossless mode, together with other variants, are also provided.
The functionality of our algorithm is complemented by the presence of reference-based compression, which
further improves ratios. CoLoRd was implemented in the C++ programming language and takes advantage
of multiple computing threads (Figure 1b).

The advantage of CoLoRd over general-purpose (gzip, 7zip) and specialized (ENANO, SPRING) com-
pressors was con�rmed on 24 read sets representing di�erent technologies (ONT, PacBio) with sizes ranging
from 2 to 786GB (Methods). As presented in Figure 2a, our algorithm revealed its potential on the latest
ONT Bonito-base-called and PacBio HiFi data sets. By e�ciently �nding overlaps in the high �delity reads,
CoLoRd reduced the size of the DNA stream by two orders of magnitude. This, accompanied by the quan-
tization of quality levels, allowed squeezing FASTQ �les to the 1/25 of their original size, which translated
to 4-fold (ONT Bonito) and 10-fold (HiFi) advantage over lossless gzip compression. For instance, HiFi
HG002 30× data set was compressed from 219 to 10 gigabytes. With further accuracy improvements in 3rd

generation sequencing on the horizon, even better results could be achieved. Contrarily, the high error rate
of Nanopore reads produced by the older base callers, bounded the advantage of CoLoRd to lower, though,
still signi�cant levels. For experimental integrity, we additionally simulated lossy compression in gzip, 7zip,
ENANO, and SPRING by binning quality levels in the input �les. In this scheme, our algorithm was ahead
of the rest with 2�4-fold improvement over gzip. In the reference-based mode, CoLoRd o�ered even bet-
ter compression ratios and was superior to other algorithms using reference genomes like RENANO [4] or
CRAM [1] (Supplementary Table 1).

An essential property of CoLoRd is that with increasing coverage, the number of overlaps, thus the e�-
ciency of di�erential compression, grows as well. As the analysis of two selected data sets shows (Figure 2b),
when taking 0.01% of reads, all investigated algorithms compressed the DNA stream to approximately 1/4 of
its initial size. For the entire read set, however, CoLoRd o�ered 20-fold (Bonito Zymo with Q20 chemistry)
and 100-fold (HiFi Drosophila) reduction of the DNA component, while the competitors exhibited minor or
no improvements in the compression ratio.

Importantly, superior compression results of the presented algorithm came at competitive running times.
The lossy compression/decompression speeds at 24 threads were way above 50 MB/s, which is the throughput
of PromethION�the fastest among 3rd generation instruments. Memory requirements were also reasonable
with 16 GB for the aforementioned HG002 data set.

Detailed results including all CoLoRd priority modes and CLR data sets are presented in Supplementary
Worksheet.

We evaluated consensus and variant calling accuracy to see how much lossy quality compression may
a�ect downstream analyses. We mapped CHM13 HiFi reads to the CHM13 telomere-to-telomere (T2T)
assembly v1.1 [14], generated the consensus with Racon v1.4.20 [19], aligned the consensus to the assembly
with minimap2 v2.20 [10] and counted consensus di�erences (Figure 2c-d). The T2T assembly was derived
from multiple data types including HiFi, Nanopore and Illumina reads. Our HiFi-only Racon consensus from
raw reads di�ers from the T2T assembly at a rate of one di�erence per 81kb. Interestingly, lossy quality
compression slightly improves the consensus accuracy to one di�erence per 88kb, suggesting Racon might be
more compatible with our lossy scheme. We also applied the same procedure to Nanopore reads and observed
that lossy quality compression does not reduce the Racon consensus accuracy, either (one di�erence per 1.1kb
for both lossless and lossy compression). To evaluate variant calling accuracy, we mapped HG002 HiFi reads
to the human reference genome GRCh38 and called small variants with DeepVariant v1.1.0 [15]. When
compared against the Genome-In-A-Bottle v4.2.1 truth [20], variant calls from lossy quality compression are
as accurate as calls from raw reads (Figure 2e). With these experiments, also given the fact that most long-
read assemblers ignore base quality at the assembly step, we conclude that lossy quality compression does
not a�ect the accuracy of most downstream analyses. Detailed investigation of di�erent quality compression
modes is presented in Supplementary Table 2.

Here, we introduce CoLoRd, a comprehensive package for compressing Oxford Nanopore/PacBio sequenc-
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Figure 1: CoLoRd operation principles. a Encoding a query read w.r.t. to the reference reads. The
edit script was generated while compressing a read from Zymo dataset. The colours indicate anchors (blue),
matches (green), mismatches (purple), insertions (orange), deletions (red), and unmatched areas (gray). b
Processing scheme of DNA (purple), quality (green), and identi�ers (red) streams. Lightnings represent
computing threads.
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(c) Racon consensus: CHM13 ONT (d) Racon consensus: CHM13 HiFi

(e) DeepVariant variant calling: HG002 HiFi

Quality SNP indel

mode prec. recall F1 prec. recall F1

Lossless 99.92 99.87 99.90 98.95 98.75 98.85

Lossy 99.92 99.87 99.89 98.87 98.85 98.86

Figure 2: Analysis of lossless and lossy compression. a Average performance of the algorithms with
lossless (large crosses) and lossy (bars) quality compression (hatched areas represent contribution of the
quality stream). The results on the individual data sets are presented as small crosses (lossless) and circles
(lossy). The lossy archives for pigz, 7zip, SPRING, and ENANO were generated by binning quality scores
in the input �les. ENANO failed to process the largest of the ONT datasets. b Relative size of the DNA
archive as a function of sequencing coverage evaluated on the selected ONT and HiFi data sets. The
corresponding compression ratio in bits per base is presented on the right vertical axis. c, d Results of
the Racon consensus generation expressed by the number of substitutions, insertions, and deletions w.r.t.
reference genome. e Accuracy of variant calling with DeepVariant.
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ing data. Equipped with an overlap-based algorithm for compressing the DNA stream and a lossy processing
of the quality information, it allows even tenfold space reduction compared to gzip, without a�ecting down-
stream analyses like variant calling or consensus generation. This opens new opportunities in the �eld of
long read sequencing, where maintaining gigantic data volumes has become one of the major contributor to
the overall costs.
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Methods

CoLoRd overview

CoLoRd compressor handles reads in FASTA or FASTQ format. In the former case, the input consists of
two independently compressed streams: DNA data, which contribute predominantly to the �le size, and
sequence headers. In FASTQ �les there is an additional base quality stream of the same size as DNA data.

The main contribution of the CoLoRd is the DNA compression algorithm. DNA sequences of reads
are built upon 5-element alphabet (A, C, G, T, N) and are highly redundant due to: (i) same genome
fragments being covered by multiple reads and (ii) similarity between di�erent genome regions. CoLoRd is
the �rst method which takes advantage of the characteristics of Oxford Nanopore and PacBio data when
compressing DNA stream. The algorithm processes reads one by one determining their k-mer similarity
to already analyzed reads. The resulting similarity graph is then used to identify closest neighbours which
are references for di�erential compression of the current read. The procedure is based on anchors�exact
sequence matches determined with a use of m-mers (m ≤ k). The between-anchor areas are further scanned
for similar fragments. As a result, the algorithm translates a read to an edit script describing di�erences w.r.t.
similar reads. Finally, the script is entropy-encoded. This multi-step approach renders superior compression
ratios of DNA data.

Quality stream consumes same number of bytes in FASTQ �le as DNA data (there is one quality symbol
per base). However, base quality in 3rd generation sequencing is expressed by one of 94 values and is non-
redundant, by nature. Therefore, the quality data can be compressed losslessly to much less extent than
DNA. CoLoRd employs a context-based approach inspired by ENANO [3] for this purpose. However, in
many analyses base quality can be discretized to fewer values or even discarded at all. In particular, the
common practice is to threshold scores at assumed level distinguishing only between �high� and �low� quality.
Therefore, a lossy compression mode for quality was introduced in CoLoRd allowing signi�cant reduction of
this stream.

Since sequence headers contribute marginally to the sizes of FASTA/FASTQ �les, they are compressed
with well-established token-based method analogously as in FQSqueezer [23] or ENANO.

In the following subsections a detailed description of selected compression aspects is presented.

Similarity graph construction

The initial algorithm step is �ltering k-mers of the input reads. For this purpose KMC package [28] is
executed with k automatically adjusted to the data set. K-mers with less than L = 4∗ (possibly, sequencing
errors), or more than 80 occurrences (non-informative) in the entire read set are discarded. Finally, to
reduce the representation, we select subset U of k-mers, such that U = {u : h(u) mod f = 0} with h being
a Murmur3 hash function and f equals to 12 (ONT) or 40 (HiFi). Parameter f balances the sensitivity and
the memory footprint of the procedure.

As a next step, a graph G is constructed with reads being the vertices and edges representing k-mer
similarities. A weight of an edge is a number of common k-mers in reads representation. An edge is directed
from a read analyzed later towards one analyzed earlier. For memory e�ciency, each vertex has at most
max_candidates = 8 outgoing edges to the most similar reads.

The graph is built with a use of kmers2reads association table which maps k-mers to lists of read
identi�ers they are contained in. The structure is initially empty. The algorithm processes reads one by one
according to the following procedure:

1. Extract all unique k-mers from a current read r.

2. Create an association table M indexed by read identi�ers to store number of common k-mers between
r and other reads.

3. For each k-mer u ∈ r ∩ U :

(a) Get list Lid of read identi�ers containing u (if any): Lid ← kmers2reads[u] .

∗The parameters di�er across priority modes (memory/balanced/ratio) and technologies (ONT/HiFi/CLR). For simplicity,
we give the values in a default priority mode (memory) for ONT and, optionally, HiFi, when it di�ers signi�cantly.
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(b) For each identi�er id ∈ Lid update M table: M [id]←M [id] + 1

(c) Indicate in kmers2reads that u was contained in r: Lid ← (Lid, id(r)).

4. Sort table M in a descending order w.r.t. the number of common k-mers.

5. Add to the graph G a new vertex representing read r.

6. Add directed edges from the new vertex to max_candidates reads with most k-kmers in common (use
the number of k-mers as a weight).

Anchor-based DNA encoding

The compression algorithm checks if consecutive reads contain neighbours in the similarity graph G. If not,
a current read r is compressed in a plain mode. Otherwise, a di�erential compression between the read and
the neighbours is performed with a use of anchors, i.e., exact matches between sequences. The anchors are
determined as follows:

1. Establish all m-mers of r (m is automatically adjusted to the data set).

2. If r contains less then |r|/2 unique m-mers (|r| being the read length), consider it as highly repetitive
and encode in the plain mode.

3. Otherwise, determine m-mers of all reads in the neighbourhood of r in the graph G.

4. Establish intersections of m-mers from r and each of its neighbours. An intersection is represented
as a list of common m-mers and two lists of their positions in r and its neighbour s. The reverse
complements of the neighbours are also investigated.

5. Using common m-mers as alphabet symbols, determine the longest common subsequence (LCS) of r
and s.

6. Join overlapping m-mers from LCS to obtain anchors between r and s.

As a next step, r is encoded with respect to its neighbour sbest with the largest sum of anchor lengths.
The algorithm alternately process non-anchor and anchor fragments of r and sbest. Anchors are encoded as
lengths and positions in sbest. For non-anchor fragments, an edit script is determined with a use of Edlib
library [31]. Then, based on the entropy estimation, the decision is made whether the edit script is used for
representing the analyzed read fragment. If not, two scenarios are possible. (i) If the fragment is at least 64
symbols long, it is treated as a temporary read r′ and an attempt is made to encode it with respect to an
alternative candidate s′best with the largest total anchor length w.r.t. r′. (ii) If the fragment is shorter than
64 or no alternative candidates for r′ have been found, it is encoded in the plain mode. Up to 3 levels of
recurrence are allowed by the procedure.

Entropy encoding of DNA data

The edit script from the previous step is a sequence of the tuples of the types: start_edit_script, start_plain,
start_plain_with_Ns, anchor, match, insertion, deletion, substitution, skip, alternative_ref, main_ref, plain,
end_of_read. The �rst three of them can start the edit script and we entropy encode the starting tuple type
taking as a context 4 previous read-starting-tuple types.

When we notice start_plain or start_plain_with_Ns, we store also the read length. Then, we have to
encode the symbols A, C, G, T, or additionally N (in the later case). We store them using an entropy coder
taking as a context 8 (in case of plain read) or 4 (in case of plain read with Ns) previous symbols.

The processing of truly-edit-script-described reads is more complex. First of all we store the main
reference read id and information whether the reference read is taken as it is or it is reverse complemented.
Then, for each successive tuple we entropy encode its type. The context is formed of 3 previous tuple types,
2 preceding symbols in the current read and the information whether recently we have (w.r.t. reference read):
medium-size insertion (from 2 to 100 symbols), long insertion, medium-size deletion, long deletion, nothing
of above. The remaining of the tuple is encoded depending of the type:
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• alternative_ref � it can happen that the same alternative reference read id will appear more than once
in the edit script for the current read. Therefore, �rst we encode the information whether this read id
has already been seen in the current edit script. If so, we store just its short �local� id (small number).
Otherwise, we store its read id and the information whether it should be reverse complemented (just
to serve as a reference for the current read) or not,

• anchor � the anchor length is entropy encoded,

• match � nothing needs to be encoded here,

• insertion � the inserted symbol is entropy encoded. The context is formed of: the symbol at the
corresponding position in the reference read and 4 previous symbols,

• deletion � nothing needs to be encoded here since this tuple denotes just a single-symbol deletion
w.r.t. a reference read,

• substitution � the symbol is entropy encoded. The context is formed of: corresponding symbol in the
reference read, 3 previous symbols in the current read. Additionally, in the ratio priority, the context
is extended by an information whether the 3rd and 4th previous symbols in the current read are same,

• skip � this tuple type denotes that the current position in the reference read should be changed by
more than 16 positions. We entropy encode the skip length,

• main_ref � nothing needs to be encoded here since this tuple type denotes that switch from an
alternative reference read to the main reference read,

• end_of_read � nothing needs to be encoded.

Quality scores

Lossless compression

In the lossless mode, the qualities are compressed as they are. The context is formed of several parts. First,
we take two previous quantized quality values. The quantization is made to reduce the alphabet from 94
possible values to 11 values. Then, we extend the context by 4 DNA symbols from the read from: the
corresponding position, two previous positions, following position. This strategy is similar to the one used
in ENANO. We, however, do not gather similar contexts. Moreover, we use information from the analysis of
the DNA part of the read. In balanced and ratio modes we extend the context by an information, whether
the DNA symbol was encoded as: a match, an anchor, something else.

Lossy compression

The lossy quality compression must take into consideration two major concerns. The �rst one is the ability
to reconstruct with some resolution the information about quality of individual base calls, which may be
useful in the applications like variant calling. At the same time, it is important to preserve as accurately as
possible the average read quality in a case it is employed for read �ltering. As a result, it was decided to
map original levels into bins representing poor, moderate, good, and very good bases. The default boundaries
of the bins and values representing them were established experimentally as [Q0, Q6] → Q3, [Q7,Q13] →
Q10, [Q14,Q25] → Q18, [Q26,Q93] → Q35 (for HiFi data, Q93 value is stored separately due to its special
meaning in some applications). The context is formed of 6 previous, quantized, quality values. It is also
extended by 4 DNA symbols and information about encoding, similarly as in the lossless processing. The
aforementioned lossy compression modes are referred to as 4-�xed (ONT) and 5-�xed (HiFi).

In Figure 3 we present on selected data sets how the binning a�ects average read quality. In the case
of Zymo2 and Zymo2 R10 samples, the average read qualities were upper-bounded by Q15, thus the error
introduced by binning was small on the entire range of reported Q levels. In particular, the average read
qualities were mostly underestimated by less then 0.75 (Zymo2) and 0.5 (Zymo2 R10). The di�erent situation
was in the case of lun and NA12878 data sets, where the range of Q was larger (up to Q35 and Q50,
respectively). The underestimation of average quality clearly increased with rising Q, which was expected
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Figure 3: Distribution of read quality errors e(q) after binning w.r.t. average read quality q. Each read is
represented as a point. The color of a point (q, e(q)) is calculated by taking all points from [q − 0.5, q + 0.5]
neighbourhood, sorting them w.r.t. e(q), and taking its relative position in the resulting sequence.

as the wide range of high quality calls [Q26,Q93] is represented by a single value Q35. Importantly, at the
level Q20, which is often considered as a threshold for good calls (1% error probability), the average quality
was underestimated slightly (between 0.5 and 3 in the vast majority of reads). This, however, may still be
unacceptable when read �ltering based on the average quality is applied. Therefore, an additional 4-avg/5-
avg modes were proposed in which value representing a bin is the average of all read base calls falling into
that bin stored. During decompression, a �oor and ceiling of this value are outputted in the appropriate
proportion in order to accurately reconstruct the average read quality. As this feature renders only slightly
larger archives compared to the �xed bin representation, it is used by default in CoLoRd.

To understand how 4-avg mode works, let us assume that the quality part of a read is:

"##"%##&',,+&$*.+)%((*('*,((+*.$+(0$,.,0/(63*%'''+-#)(/+&$$"%&$$$$$###%*0,**9;-)65-*8-(/.3+B.*>51,(2

In compression, we calculate averages of symbols in ranges [Q0, Q6], [Q7, Q13], [Q14, Q25], [Q26, Q93].
Let us denote them as a7, a14, a26, a93. They are stored with precision 1/256. During decompression we
load the stored values, which for the given example are: a7 ≈ 3.3984375, a14 ≈ 9.6484375, a26 ≈ 17.8125,
a93 ≈ 29.33203125. Then we decode bin numbers one by one are output quality score baxc or daxe to
minimize the di�erence between the already decoded quality scores for a bin and the stored average score.
In this way we obtain the scores:

$$%$$%$%$*+*$%++*+$+*++%*++*++*$+*2$++*33+33+%$%$*+$+*2+%$%$$%$%$$%$%$$+3*++3>*+33*+2+*3+3+>*+>33+*3

The additional quality modes in CoLoRd are:

• 2-�xed : [Q0, Q6] → Q1, [Q7, Q93] → Q13,

• 2-avg : as above, but with averages as bin representatives,

• none: all Q values mapped to Q0,

• avg : all Q values mapped to the average read quality.

The bin boundaries and representatives in all modes can be rede�ned by the user according to his needs.
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Reducing execution time and memory requirements

By default, all reads without N symbols are used as potential references. This requires storing them in
the memory which, in spite of packing four symbols per byte, results in excessive memory requirements for
large sets of reads (e.g., human genome sequencing experiments). Therefore, we introduced a mechanism
which decreases the probability of using a read as a potential reference as the compression proceeds. Let
R indicate the reference genome length (which is estimated from k-mers). The idea is that after processing
gR, 2gR, 3gR, . . . bases of the input �le, with g being some parameter, the probability of adding current
read to the collection of potential compression references decreases as 1, 1/2, 1/3, . . ., The memory saving
concerns also kmers2reads structure, which does not have to store non-reference reads.

In order to maximize the utilization of available computational resources, CoLoRd is multi-threaded.
The algorithm work�ow is divided into independent blocks which exchange data using synchronized queues.
In order to minimize synchronization overheads, the reads are processed in larger packs. The core of the
processing consists of a thread pool whose elements, depending on the current workload, perform (i) similarity
graph construction and (ii) anchor-based compression. Additionally, there are four threads responsible for
entropy encoding of DNA, quality, and header streams as well as loading reads from FASTA/FASTQ �les.

Reference-based compression

The reference-based compression is based on the pseudo-reads generated by sliding the window over the
reference genome with some overlap. The length of the window is 20 times greater than the average read
length estimated during k-mers counting. The pseudo-reads are used as an initial set of reference reads
in the previously described di�erential compression. By default, the reference genome is stored in the
archive, making it self-contained. Alternatively, the genome �le has to be speci�ed explicitly during the
decompression. In this case, an MD5 signature of the reference is stored in the archive to make sure that
the proper reference is given.

Datsets

The datasets used in the experiments are characterized in Table 1.
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Table 1: Characteristics of the data sets used in the study.

Dataset Sample Instrument & #bases #reads read len.[kb] size Ref.
chemistry [G] [M] avg max [GB]

N
a
n
o
p
o
re

M. bovis M. Bovis 1 MinION R9.4.1 1.0 0.18 5.2 65.2 1.9 [30]
M. bovis Bonito M. Bovis 1 MinION R9.4.1 0.9 0.17 5.1 61.6 1.7 [30]
vir HSV-1 RNA MinION R9.4 2.3 1.78 1.3 199.1 4.8 [24]
lun Human lung metagen. MinION R9.4/9.5 8.1 3.01 2.7 219.4 16.4 [22]
Sorghum S. bicolor Tx430 MinION R9.4/9.5 66.5 6.53 10.2 767.9 133.5 [25]
Zymo2 Zymo Even rev2 GridION R9.4.1C 14.0 3.49 4.0 108.0 28.5 URL
Zymo2 R10 Zymo Even rev2 GridION R10 12.6 3.25 3.9 922.8 25.7 URL
Zymo2 Bonito Zymo Even rev2 GridION R10 18.0 5.43 3.3 290.1 36.2 URL
Zymo2 PromethION Zymo Even rev2 PromethION R9.4 146.3 36.53 4.0 595.7 298.4 URL
NA12878 NA12878 rel6 MinION R9.4.1 132.9 15.67 8.5 2974.1 268.3 [6]
CHM13 CHM13 rel6 MiniION, PromethION 390.5 29.47 13.3 7213.9 786.1 URL
CHM13 Bonito CHM13 rel7 MiniION, PromethION 371.0 29.47 12.6 1549.6 744.3 URL

H
iF
i

Mosquito A. gambiae Sequel II 13.4 1.59 8.4 48.5 26.9 URL
Drosophila D. melanogaster RS II P5-C3 25.6 2.30 11.1 26.5 51.4 [27]
Strawberry F. × ananassa Sequel II Chem. 2.0 29.7 1.37 21.7 50.3 59.5 [26]
ATCC WGS ATCC MSA-1003 Sequel II 40.0 4.78 8.4 21.5 80.2 URL
Mouse M. musculus C57BL/6 J Sequel II Chem. 2.0 66.5 4.06 16.4 44.2 133.3 [26]
HG002 HiFi HG002 (CCS-20kb) Sequel II Chem. 2.0 109.2 7.31 14.9 46.6 219.0 [21]

su
b
re
a
d
s/
C
L
R Yeast S. cerevisiae W303 RS II P5-C3 1.4 0.23 6.0 30.2 2.8 URL

Arabidopsis A. thaliana Ler-0 RS II P5-C3 18.5 2.26 8.2 47.4 37.2 URL
Macadamia M. jansenii Sequel I Chem. 6.0.0 65.2 3.17 20.6 128.2 130.7 [29]
48 plex 15 isolates from ATCC Sequel II Chem. 2.0 91.4 9.39 9.7 158.5 183.2 URL
CHM1 CHM1 RS II P5-C3 168.0 22.57 7.4 42.8 338.2 URL
HG002 CLR HG002 CLR Sequel 113.9 10.26 11.1 127.5 228.7 [32]
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Data availability

Oxford Nanopore data sets:
M. bovis: ERR4179765; M. bovis Bonito: ERR4179766; vir: ERR2708427�ERR2708436; lun: PRJEB30781;
Sorghum: SRX4104135�SRX4104138; Zymo2: https://nanopore.s3.climb.ac.uk/Zymo-GridION-EVEN-BB-
SN.fq.gz; Zymo2 R10 https://s3.climb.ac.uk/nanopore/Zymo-GridION-EVEN-BB-SN-PCR-R10HC-�ip�op.fq.gz;
Zymo2 Bonito ERR5396170; Zymo2 PromethION https://nanopore.s3.climb.ac.uk/Zymo-PromethION-EVEN-
BB-SN.fq.gz; NA12878: http://s3.amazonaws.com/nanopore-human-wgs/rel6/rel_6.fastq.gz; CHM13: https://s3-
us-west-2.amazonaws.com/human-pangenomics/T2T/CHM13/nanopore/rel6/rel6.fastq.gz; CHM13 Bonito:
https://s3-us-west-2.amazonaws.com/human-pangenomics/T2T/CHM13/nanopore/rel7/rel7.fastq.gz

PacBio HiFi datasets:
Mosquito: SRX8642991, SRX8642992; Drosophila SRX499318; Strawberry: SRR11606867; ATCC WGS:
PRJNA546278; Mouse SRR11606870; HG002 HiFi: SRR10382244, SRR10382245, SRR10382248, SRR10382249

PacBio CLR datasets:
Yeast: http://gembox.cbcb.umd.edu/mhap/raw/yeast_�ltered.fastq.gz;
Arabidopsis: http://gembox.cbcb.umd.edu/mhap/raw/athal_�ltered.fastq.gz; Macadamia: SRR11191909;
48 plex: https://downloads.pacbcloud.com/public/dataset/MicrobialMultiplexing_48plex/48-plex_sequences/;
CHM1: http://datasets.pacb.com/2014/Human54x/fastq.html; HG002 CLR: SRX5590586

Other:
CHM13 T2T assembly v1.1: GCA_009914755.3;
GRCh38 assembly: GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz; Genome-In-A-Bottle v4.2.1
HG002 reference variants:
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1/GRCh38/

Code availability

The source code of CoLoRd is available at https://github.com/refresh-bio/CoLoRd.
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