
Finding Overlapping Rmaps via
Gaussian Mixture Model Clustering

Kingshuk Mukherjee
kingdgp@ufl.edu

Department of Computer and
Information Science and

Engineering,
University of Florida

Gainesville, FL

Massimiliano Rossi
rossi.m@ufl.edu

Department of Computer and
Information Science and

Engineering,
University of Florida

Gainesville, FL

Daniel Dole-Muinos
Department of Computer and

Information Science and
Engineering,

University of Florida
Gainesville, FL

Ayomide Ajayi
Department of Computer Science,

Morgan State University
Baltimore, MD

Mattia Prosperi
m.prosperi@ufl.edu

Department of Epidemiology,
University of Florida

Gainesville, FL

Christina Boucher
christinaboucher@ufl.edu

Department of Computer and
Information Science and

Engineering,
University of Florida

Gainesville, FL

ABSTRACT
Optical mapping is a method for creating high resolution re-
striction maps of an entire genome. Optical mapping has been
largely automated, and first produces single molecule restric-
tion maps, called Rmaps, which are assembled to generate
genome wide optical maps. Since the location and orientation
of each Rmap is unknown, the first problem in the analysis
of this data is finding related Rmaps, i.e., pairs of Rmaps that
share the same orientation and have significant overlap in
their genomic location. Although heuristics for identifying
related Rmaps exist, they all require quantization of the data
which leads to a loss in the precision. In this paper, we pro-
pose a Gaussian mixture modelling clustering based method,
which we refer to as OMclust, that finds overlapping Rmaps
without quantization. Using both simulated and real datasets,
we show that OMclust substantially improves the precision
(from 48.3% to 73.3%) over the state-of-the art methods while
also reducing CPU time and memory consumption. Further,
we integrated OMclust into the error correction methods
(Elmeri and cOMet) to demonstrate the increase in the per-
formance of these methods. When OMclust was combined
with cOMet to error correct Rmap data generated from hu-
man DNA, it was able to error correct close to 3x more Rmaps,
and reduced the CPU time by more than 35x. Our software is
written in C++ and is publicly available under GNU General
Public License at https://github.com/kingufl/OMclust

CCS CONCEPTS
• Applied computing → Bioinformatics; • Information
systems → Clustering and classification.

1 INTRODUCTION
A restriction map is defined as a map that records the lo-
cations of one or more specific short nucleotide sequences
called restriction sites, across a DNA sequence. Restriction
maps are generated by treating DNA molecules with special
enzymes, known as restriction enzymes, that recognizes the

restriction sites in the DNA sequence and cleaves the DNA
wherever these sites occur. Optical mapping is a sequenc-
ing technique that produces high resolution restriction maps
of an entire genome, giving it a unique numeric representa-
tion. It is used alone or in concert with sequence data, i.e.,
assembling long and short reads [1, 8, 12, 27], scaffolding as-
sembled regions [4, 20, 28], detecting misassemblies in draft
genomes [17, 21] and finding structural variations [5, 11].

The main laboratory steps of optical mapping are as fol-
lows. First, the DNA of multiple cells of the same organism
are untangled and randomly sheared to produce a large col-
lection of DNA molecules which are then stretched and held
in place on a slide and observed under a fluorescent micro-
scope. Next, a restriction enzyme is selected and applied to
the DNA which cleaves them at specific sites, called cut sites.
The cleaved DNA fragments are size estimated and ordered,
resulting in a single molecule restriction map for each sheared
DNA molecule. These single molecule restriction maps called
Rmaps are the raw data. For example, digesting a DNA se-
quence with the restriction enzyme BspQI which recognizes
the site GCTCTTC, we may obtain the following Rmap 𝑅 =

[1213, 7129, 19 632, 2845, 11 754, 1935, 9775, 4005, 3854, 17 432].
From this we can deduce that the first occurrence of GCTCTTC
in the DNA sequence is at location 1213 base-pairs(bp) fol-
lowed by 8,342 bp and so on. A large portion of this process
has been automated, and with the automation the resulting
data has become increasingly more accurate over the past
decade. For example, BioNano’s nanochannel has significantly
improved the accuracy and accessibility of the data [7].

After the Rmaps are produced they are assembled to pro-
duce genome wide optical maps, which are synonymous to
assembled contigs from sequence data, i.e., they usually do
not span an entire chromosome but span significantly larger
genomic regions than the raw data. Also, similar to a se-
quence read, the location and orientation of an individual
Rmap in the genome is unknown. For example the two Rmaps,
𝑅1 = [1213, 7129, 19 632, 2845, 11 754, 1935] and 𝑅2 = [2845,
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11 754, 1935, 9775, 4005, 3854, 17 432] can be assembled to pro-
duce the consensus optical map 𝑅 = [1213, 7129, 19 632, 2845,
11 754, 1935, 9775, 4005, 3854, 17 432]. In a genome wide opti-
cal map, we see that 𝑅1 should occur and then be followed
by 𝑅2. In addition, we note that uncorrected Rmaps contain
the following types of errors: (a) sizing error, meaning that
the estimation of the size of a fragment in the Rmap dif-
fers from the true size; (b) added cut sites, meaning a cut
site occurs accidentally and results from the splicing of a
single fragment into two or more smaller fragments; and
lastly (c) deleted cut sites, meaning a cut site should have oc-
curred but was missed and two or more smaller fragments
are merged into a single one. Using our example above, a
realistic representation of the two Rmaps with errors is as
follows: 𝑅′

1 = [1521, 2123, 5123, 19 699, 3115, 11 576, 1605] and
𝑅′
2 = [2965, 6704, 5123, 1935, 9763, 4598, 3804, 17 073] where

missed cut sites are introduced in the second fragment of 𝑅1
and second fragment of 𝑅2, and sizing errors are introduced
to all fragments from both Rmaps.

The first step in assembling Rmaps is to find all pairwise
alignments, which are then used to error correct the Rmaps,
and finding overlaps between the error corrected data. How-
ever, due to the error profile of Rmap data, finding pairwise
alignments between Rmaps is challenging. Dynamic program-
ming remains the only robust method for finding pairwise
alignments between Rmaps as existing alignment methods
largely focus on finding alignments between assembled genome
wide optical maps [13, 15]. Unfortunately, dynamic program-
ming is computationally expensive and is unable to scale to
even moderately large sized genomes, such as the human
genome [18]. Therefore, all existing error correction methods
(cOMet and Elmeri) use heuristics to filter out pairs of Rmaps
that are likely to not have significant pairwise alignment, and
then find alignments between the remaining pairs [19, 22].
These methods, as well as other optical mapping analysis
methods, require the data to be first quantized, which involves
assigning all fragment sizes into discrete bins, and replacing
all fragment sizes in the same bin with a pre-defined size. For
example, if any fragment size within the range [1500, 2000] are
binned together and assigned the value 1750, then 1625, 1855,
and 1999 would be replaced with 1750 in their correspond-
ing Rmaps. While these heuristics for finding pairs of related
Rmaps are efficient, the accuracy of these heuristics has not
been fully explored. Ideally, any method that filters for pair-
wise alignments should have high precision since the objective
is to maximize the fraction of the true pairwise alignments.

In this paper, we propose an efficient clustering-basedmethod
for finding related Rmaps with high precision, which does not
require any quantization or noise reduction. We refer to our
method as OMclust. It first performs a grid search to find the
best parameters of the clustering model and replaces quan-
tization by identifying a set of cluster centers and uses the
variance of the cluster centers to account for the noise. Next,
for finding related Rmaps, a cluster is assigned to each 𝑘-mer
(i.e. 𝑘 consecutive fragments of an Rmap) extracted from the
Rmaps based on its proximity to the identified cluster centers.
Finally, we call a pair of Rmaps as related if a number of their
𝑘-mers are assigned to the same cluster.

We implemented OMclust and compared it to the heuris-
tics for finding related Rmaps in Elmeri [22] and cOMet [19].
OMclust achieved the highest precision, and was most ef-
ficient with respect to both time and memory. In particular
on a simulated E. coli dataset, we show OMclust found the
relations with a precision of 73.3%; whereas, Elmeri achieves
48.3% precision and cOMet achieve a precision of 5.1%. Next,
using a dataset consisting of over 14 million Rmaps generated
from human DNA, we evaluated the increase to the perfor-
mance of cOMet using OMclust to find the set of related
Rmaps. We demonstrated that the combination of OMclust
and cOMet outperformed cOMet in its default setting; the
combined method corrected close to three times more Rmaps
(from 987,985 to 2,757,266), and reduced the CPU time by
more than 35 times (from 23,637 to 638 CPU hours). Lastly,
we note that Elmeri ran out of memory (exceeding 800 GB)
on the human dataset so we were unable to perform the same
comparison.

2 RELATEDWORK
As previously mentioned, assembly and error correction re-
quire finding pairwise alignments – and hence, pairs of related
Rmaps – between Rmaps. In this section, we will briefly de-
scribe error correction and assembly methods.

Two error correction methods are available for Rmaps:
cOMet [19] and Elmeri [22]. Both methods use an heuris-
tic to quantize the data, find all pairs of related Rmaps, align
each Rmap to all of its related Rmaps, use this alignment to
find a consensus, and error correct each Rmap by making
it consistent to the consensus. In both methods, the quan-
tization scheme replaces all fragments by discrete number
bins that are found by dividing the fragment sizes by an in-
teger 𝑏 and then rounding off the quotient to the closest in-
teger value. All sets of 𝑘 consecutive Rmap fragments, called
𝑘-mers, are then extracted from the quantized Rmaps for
some value of 𝑘 . Using the example above, quantizing 𝑅′

1 =

[1521, 2123, 5123, 19 699, 3115, 11 576, 1605] using a bucket size,
𝑏 = 2000 transforms it into 𝑅′′

1 = [1, 1, 3, 10, 2, 6, 1]. cOMet
considers two Rmaps to be related if there exists at least𝑚
common 𝑘-mers, where𝑚 is an input parameter. After finding
related Rmaps, cOMet finds all pairwise alignments using
the dynamic programming alignment algorithm of Valouev et
al. [25]. Although cOMet is shown to reliably reduce errors
in Rmaps, it requires a considerable amount of time to find all
pairwise alignments since the set of related Rmaps has low
precision, i.e., considers a large number of Rmaps to be related.
Elmeri improves upon the precision and recall of finding re-
lated Rmaps compared to cOMet [22] but it requires more
than 10 times as much memory [22]. Elmeri replaces 𝑘-mers
with (𝑘, ℓ)-mers, which are defined as Rmap segments that
add up to ℓ base pairs and contains at least 𝑘 fragments. If a
segment does not include at least 𝑘 fragments then it is ex-
tended to the right until it covers 𝑘 fragments. The (𝑘, ℓ)-mers
are extracted from quantized Rmaps, similar to cOMet, and a
pair of Rmaps are deemed to be related if they have at least
𝑚 common (𝑘, ℓ)-mers. The related Rmaps are then aligned
using a heuristic and Rmaps are error corrected based on the
consensus of these alignments. Both Elmeri and cOMet are
used in the evaluation of our method.
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The traditional and more deterministic way of finding re-
lated Rmaps is to determine the alignment between all pairs
of Rmaps. The alignment algorithm of Valouev et al. [25],
Maligner [13], OMBlast [9] and Kohdista [16] are capable of
finding pairwise alignments between Rmaps. The dynamic
programming algorithm of Valouev et al. [25] can be seen as
a modification of Smith-Waterman algorithm [24] which op-
timizes an alignment score that is referred to as S-score. The
S-score is based on a probabilistic model that assumes that the
fragment sizes follow an exponential distribution, the occur-
rence of a restriction site is an independent Bernoulli process,
the number of false cuts in a genomic interval is a Poisson
process, and the sizing error follows a gaussian distribution
with mean zero and variance being a linear function of the
true fragment size. Valouev et al. use the an S-score cutoff
of 25 to distinguish between related and unrelated Rmaps;
where two Rmaps whose S-score is greater than or equal to
25 are deemed to be related. We use the S-score later in the
paper to evaluate the quality of relation calls. Although this
method for alignment is robust to errors, it is impractical for
even reasonably large datasets. OMBlast [9] uses a seed-and-
extend method for finding alignments for Rmaps against a
reference genome optical map by first building an index from
the reference optical map. From this index, seeds are identi-
fied for a query Rmap and alignment is performed matching
the segments between two consecutive seeds. Although this
workflow is not primarily designed for pairwise alignment of
Rmaps, it was shown to be able to generalize to that problem
by considering each Rmap as a reference map and adjusting
the parameters [16]. The index-based aligner Kohdista formu-
lates the alignment problem as an automaton path-matching
problem which builds an automaton from all the Rmaps and
uses that for finding all alignments for Rmaps.

Since pairwise alignment of Rmaps is a critical step for
Rmap assembly, the lack of an efficient solution to this problem
has inhibited the development of Rmap assemblers. Currently
there exists only two non-proprietary methods for Rmap as-
sembly: the assembly method of Valouev et al. [26], and a de
Bruijn graph-based assembler called rmapper [18]. The former
uses the alignment method of Valouev et al. to first compute
all pairwise alignments and uses a threshold alignment score
to identify reliable overlaps among Rmaps. Then, it constructs
an overlap graph and traverses it to construct genome wide
optical maps. Due to the inefficiency of the pairwise alignment,
this overlap-layout-consensus based method is only able to
assemble small genomes with low coverage of data. rmapper
is a recent assembly method that circumvents the problem
of pairwise alignment of Rmaps by constructing a de Bruijn
graph from all unique bi-labels extracted from Rmaps, where
a bi-label is a pair of 𝑘-mers which are separated by a given
length in base-pairs. This de Bruijn graph is then traversed to
construct a genome wide optical map.

3 METHODS
3.1 Overview of OMclust
Our method requires an initial preprocessing phase, where,
for a fixed 𝑘 , we extract 𝑘-mers from all Rmaps in the training
dataset. Then we train a Gaussian mixture model for finding

𝑘-mer cluster centers that best represents the dataset. Once
the training phase is concluded, we find related Rmaps by
extracting all 𝑘-mers from the test dataset and assigning each
𝑘-mer to a cluster center with a probability proportional to
the proximity of the 𝑘-mer to the center of the cluster. Finally,
we call two Rmaps as related if at least𝑚 of their 𝑘-mers are
clustered together.

3.2 Gaussian mixture model clustering of
𝑘-mers

For an integer 𝑘 , we first extract all 𝑘-mers from every Rmap
in the training dataset. Here a 𝑘-mer refers to 𝑘 successive
fragments of the Rmap. If an Rmap has 𝑛 fragments then a
total of 𝑛 − 𝑘 + 1 number of 𝑘-mers can be extracted from
the Rmap. For example, say an Rmap has the following frag-
ments: 𝑅 = [1213, 7129, 19 632, 2845, 11 754, 1935]. Then the
following 4-mers can be extracted: (1213, 7129, 19 632, 2845),
(7129, 19 632, 2845, 11 754) and (19 632, 2845, 11 754, 1935). The
extracted 𝑘-mers are stored in memory as a two-dimensional
array of integers of size 𝑁 × 𝑘 where 𝑁 is the number of
𝑘-mers.

The full parameter set can be compactly stated as _ =

{𝜙 𝑗 , ` 𝑗 , Σ 𝑗 }[𝑗=1. Next, we cluster the 𝑘-mers using multivari-
ate Gaussian mixture model clustering [2]. This clustering
approach assumes that in a sample 𝑋 = 𝑋1, 𝑋2, . . . , 𝑋𝑛 of ob-
servations from independent and identically distributed (i.i.d.)
random variables, each 𝑋𝑖 is a 𝑘-dimensional variable that
comes from a finite-mixture, Gaussian-based probability den-
sity function made by [ components, of the form:

𝑃𝑟 (𝑋𝑖 ) =
[∑
𝑗=1

𝜙 𝑗N(𝑋𝑖 |` 𝑗 , Σ 𝑗 ) (1)

where𝜙 𝑗 is the prior for component 𝑗 with constraints
∑[

𝑗=1 𝜙 𝑗 =

1 and 𝜙 𝑗 ≥ 0 and N(𝑋 |`, Σ) is a 𝑘-dimensional Gaussian den-
sity function with mean ` and covariance matrix Σ defined as
follows.

N(𝑋𝑖 |` 𝑗 , Σ 𝑗 ) =
1√

(2𝜋)𝑘 |Σ 𝑗 |
𝑒
− 1

2 (𝑋𝑖−` 𝑗 )𝑇 Σ−1𝑗 (𝑋𝑖−` 𝑗 ) (2)

where |Σ 𝑗 | and Σ−1
𝑗

denote the determinant and inverse of Σ
respectively and (𝑋𝑖 − ` 𝑗 )𝑇 denotes the transpose of (𝑋𝑖 − ` 𝑗 ).
Themost general form for a cluster is ellipsoidal, centered in ` 𝑗 ,
while the co-variance matrix Σ 𝑗 determines other geometric
features like orientation, volume, and shape. The simplest
form for Σ 𝑗 is _𝐼 , which means a spherical Gaussian cluster,
and requires only an additional parameter that is the standard
deviation.

For a given number of clusters [, the mixture model’s pa-
rameters can be estimated via expectation-maximization [3].
However, determining the optimal number of clusters is not
straightforward [6]. Standard approaches for this is to compute
statistics such as the Bayesian Information Criterion (BIC) and
the silhouette score. The BIC statistic calculates the in-sample
model log-likelihood ℓ = log(∑𝑛

𝑖=1 𝑃𝑟 (𝑋𝑖 )) and penalizes it by
the number of parameters [ in relation to the sample size 𝑛,
according to the formula BIC=[log(𝑛) − 2ℓ . For the silhouette
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score, given a point, we compute the mean distance of the
point from (i) all other points in its own cluster and from (ii)
all points in next closest cluster. The silhouette score for the
point is defined as the difference between (ii) and (i) divided
by the greater of the two values. We use the mean of the sil-
houette score over all points to estimate the quality of the
clustering. We also compute a similar statistic by recording
the percentage of 𝑘-mers producing negative silhouette scores,
where a lower value indicates a better clustering.

Hence, we fit a Gaussian mixture models and observed
the variation of the three aforementioned statistic when the
number of clusters are varied. In order to ameliorate possible
variance in the statistics resulting from a single point esti-
mate, we run the GMM optimization thrice for each cluster
setting. Of note, we transformed the original values using the
inverse hyperbolic sine function, asinh(·), to reduce the value
distribution skewness.

The clustering procedures were run using the Armadillo
C++ library [23] which provides the class called 𝑔𝑚𝑚_𝑑𝑖𝑎𝑔
for building and evaluating multi-threaded Gaussian mixture
models. This class assumes spherical cluster shapes and uses
a diagonal co-variance matrix.

The training of the clusters is the most expensive step in
our algorithm. However, once we have trained clusters for a
genome, these clusters can be used for classifying new data
belonging to individuals of the same species, provided they are
generated on the same platform (i.e. they will have same error
rates) and use the same restriction enzyme. This is significant
since optical maps are now mass-produced for human individ-
uals and analyzed for structural variants and other markers.

3.3 Finding related Rmaps
Once we have fit the GMM, obtained the training data clus-
ters and stored the clusters’ centers, we proceed to find re-
lated Rmaps from the test dataset as follows. First, we extract
all 𝑘-mers from the Rmaps and for each 𝑘-mer, we store its
corresponding Rmap in an array, which provides a mapping
between 𝑘-mers and Rmaps. Next, we assign each 𝑘-mer to
a single cluster which is defined by its nearest cluster center.
For efficient assignment, we use a k-d tree to store all cluster
centers and query the k-d tree repeatedly to find the near-
est neighbor for each 𝑘-mer. We store the assignments in an
array 𝐴 of length equal to the number of 𝑘-mers in the test
data where 𝐴[𝑖] holds the cluster to which the 𝑖-th 𝑘-mer is
assigned. Also, for every cluster 𝑗 , we maintain a list 𝐵 𝑗 that
stores the indices of the 𝑘-mers that are assigned to that cluster.
For example, if 𝐴[𝑖] = 𝑗 then 𝐵 𝑗 will contain 𝑖 .

For finding relations for an Rmap 𝑅𝑖 , we declare an array
𝐶𝑖 of size equal to the number of Rmaps and initialize 𝐶𝑖 with
zeroes. Next, we traverse through the list of 𝑘-mers in 𝑅𝑖 , and
for each 𝑘-mer, we visit the other 𝑘-mers that it is clustered
together with using the data-structures 𝐴 and 𝐵. For every
such co-clustered 𝑘-mer, let 𝑅 𝑗 be the Rmap that it is extracted
from, we note 𝑅 𝑗 by incrementing𝐶𝑖 [ 𝑗] by 1. This implies that
𝑅𝑖 and 𝑅 𝑗 has a pair of 𝑘-mers that are clustered together. We
repeat this for all 𝑘-mers of 𝑅𝑖 . Finally, we traverse through
𝐶𝑖 to identify the Rmaps that has𝑚 or more of their 𝑘-mers
co-clustered with 𝑅𝑖 and this set of Rmaps are deemed to
be related to 𝑅𝑖 . We repeat this for all Rmaps in the dataset

and report all pairs of Rmaps that have at least𝑚 𝑘-mers in
common.

4 EXPERIMENTS
In this section, we investigate the accuracy of our method
OMclust and compare it with the method for finding re-
lated Rmaps used in cOMet and Elmeri. We performed all
experiments on Intel E5-2698v3 processors with 100 GB of
RAM running 64-bit Linux. For training, OMclust is run as a
multi-threaded process on 64 CPUs in parallel. We used the
Armadillo C++ linear algebra library which provides a fast
and robust implementation of GMMs by employing multi-
threaded versions of the Expectation Maximisation (EM) and
K-means algorithms reformulated into a Hadoop MapReduce-
like framework. For finding related Rmaps, all methods are
run on a single CPU, where not otherwise specified.

4.1 Metrics
We define two Rmaps as related if they are oriented in the same
direction (i.e. both forward or both reverse with respect to
the reference genome) and they overlap by at least 100,000 bp
and 7 fragments. We chose this criteria to be consistent with
prior work [22]. We refer to the set of all related Rmaps as the
Positive (𝑃 ) set. In addition, we refer to an Rmap relation as a
True Positive (𝑇𝑃 ) if it is predicted by the method, and it is in 𝑃 ,
and we refer to an Rmap relation as a False Positive (𝐹𝑃 ) if it is
predicted by the method but it is not in 𝑃 . Therefore, we define
precision of a method as 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃). The precision repre-
sents the percentage of correct Rmap relations a method made,
and is also commonly referred to as the positive predictive
value. Similarly, we define recall as𝑇𝑃/𝑃 . The recall is also com-
monly referred to as sensitivity or true positive rate. We then
consider 𝐹𝛽 score which is the harmonic mean of the precision
and recall where the recall is considered 𝛽 times as important
as the precision. We use 𝛽 = 0.5. Therefore the 𝐹𝛽 score is as
follows (1 + 𝛽2) · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙/(𝛽2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙).
We are able to compute precision and recall only on simulated
dataset.

Additionally, for a pair of related Rmaps, we compute the
alignment score (called S-score) using the dynamic program-
ming method of Valouev et al. [25]. For this alignment, we use
the pairwise alignment module of the method which considers
Rmap pairs that score above 25 as overlapping [26].

We further investigate the impact of using related Rmaps
found byOMclust on the error correction modules of cOMet
and Elmeri by replacing the related Rmaps found by their
heuristics for finding related Rmaps with OMclust. Then we
align the Rmaps before and after error correction to the refer-
ence optical map using the fit alignment module of the method
of Valouev et al. and report the mean S-score of the alignment
before and after error correction as well as the number of
Rmaps whose S-score improved after error correction. These
metrics are standard for evaluating efficacy of error correction
[19, 22].

4.2 Datasets
We evaluated our method on a simulated E. coli bacterial
dataset and a real human dataset. For our first experiment,
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we simulated two different Rmap datasets from E. coli K-12
substr MG1655 genome using the Rmap simulation software
OMSim [14]. We used one of these datasets for training the
clusters whereas the second is used for testing. We used the
same simulation parameters and the same restriction enzyme,
BspQI, for generating both datasets. We used the default er-
ror rate of OMSim for BspQI, which is a 15% rate of deleted
cut sites, and 1 added cut site per 100 kbp. Since OMSim
does not output the locations and orientations of the sim-
ulated Rmaps in the genome, we modified the software in
order to record this information and used it to generate the
ground truth for Rmap relations. The updated software is avail-
able at: https://github.com/asimas12/OMSIM_MODIFIED/tree/
omsim_modified. The training dataset contains 8,095 Rmaps
whereas the test dataset contains 8,051 Rmaps, both at 300x
coverage.

For our second experiment, we used a real human Rmap
dataset (Accession: SAMN01091029) generated for finding
large structural variations from Levy-Sakin et al. [10]. This
dataset consists of 14,692,103 Rmaps; which is 140x cover-
age. For training clusters for this dataset, we used OMSim
to simulate human Rmap data from the human reference
genome GRCh38 (accession number GCF_000001405.26) using
the same restriction enzyme as was used to generate the real
data. The simulated dataset contains 149,279 Rmaps; which is
25x coverage.

4.3 Results on simulated E. coli data
In order to estimate the optimal number of clusters for E. coli,
we varied the number of clusters between 300 to 6,000 and
plotting the BIC statistics, the mean Silhouette statistic and
the percentage of negative Silhouette for various values of 𝑘
(i.e., 𝑘 = 4, 𝑘 = 5, and 𝑘 = 6) using the simulated training
data. The plots are shown in Figures 1, 2, and 3. The BIC curve
is maximized at around 3,800 clusters when 𝑘 is equal to 4;
while the mean silhouette curve is maximized at 2,200 clusters.
The percent of negative silhouette scores hits a minimum at
around 800 clusters. Since we have three different inflection
points, we take the median of the three figures, which is 2,200,
and set it as the optimal number of clusters for 𝑘 = 4 for this
dataset. Similarly, we find the inflection points to be at 3,800,
2,600 and 600 when 𝑘 is equal to 5. Hence, we choose the
median value 2,600 as optimal for 𝑘 = 5. When 𝑘 is equal to
6, we find inflection points at 4.200 in the BIC curve, and 800
in the percent of negative silhouette scores curve but do not
find one in the mean silhouette curve. Hence, we choose the
median of the two, i.e., 3,000 clusters was optimal for 𝑘 = 6.
We store these cluster centers from the training step to be used
in testing. When 𝑘 is equal to 4, the wall time for training is
2 minutes and 43 seconds using 64 CPUs. The corresponding
CPU time was 2 hours 20 minutes and 43 seconds. When 𝑘

is equal to 5, the wall time for training was 3 minutes and
1 seconds, and the CPU time was 2 hours 9 minutes and 3
seconds. Lastly, when 𝑘 is equal to 6, the wall time for training
was 3 minutes and 8 seconds, and the CPU time was 2 hours
23 minutes and 31 seconds.

Next, we evaluated the performance of OMclust as the
value of𝑚 is varied, i.e.,𝑚 = 1, .., 15. Figure 4 illustrates the
precision, recall and 𝐹𝛽 of this experiment. For lower values

of𝑚, the recall is higher since a large number of Rmaps are
deemed to be related; however, this also results in lower preci-
sion. As𝑚 is increased, we find that the precision rises sharply
while the recall drops. For both 𝑘 = 4 and 𝑘 = 5, we find the
peak of the 𝐹𝛽 curve is at𝑚 = 4, whereas, it is at𝑚 = 3 for
𝑘 = 6. Based on this experiment, we choose𝑚 = 4 and 𝑘 = 4
as the default setting for OMclust.

As previously discussed, both Elmeri and cOMet use𝑚 and
𝑘 in a synonymous manner as OMclust and therefore, we
evaluated the performance of these methods as the value of
𝑚 and 𝑘 are varied. We note that the default setting is 𝑘 = 5
and 𝑚 = 10 for Elmeri, and 𝑘 = 4 and 𝑚 = 1 for cOMet.
Figures 5 and 6 show the variation of precision, recall and 𝐹𝛽
as these parameters are varied. Comparing, these figures with
Figure Figure 4, we see that the maximum precision achieved
by Elmeri is 50% and by cOMet is just under 60%; whereas the
maximum precision achieved by OMclust is more than 90%.
Moreover, recall of cOMet is consistently low (below 20%)
when the precision is above 40%.

Although we have shown that the BIC index should be
robust (through the bootstrapping and the correlation with
silhouette) to identify the optimal number range, the number
of classes has an influence on the precision/recall. A lower
number of classes improves recall at the price of precision.
Since we chose the minimum number of clusters among those
with a maximised BIC or within the region of stabilization
after the elbow, the reported precision was the most conser-
vative. Thus, if the cluster number was underestimated, the
precision would only increase by choosing a higher number.
The overestimation could still be an issue, but less probable,
since in most datasets and for most values of 𝑘 , there was a
clear flexion of the BIC/silhouette.

In Table 1, we compare OMclust with cOMet and Elmeri
using the E. coli test dataset. OMclust was ran with 𝑘 = 4
and 𝑚 = 4, and Elmeri and cOMet were ran with their de-
fault settings. OMclust required 6 seconds of CPU time and
0.01 GB of peak memory. cOMet had a CPU time of 10 sec-
onds and peak memory usage of 0.74 GB, and Elmeri needed
5 minutes 49 seconds of CPU time and peak memory of 1.02
GB. OMclust had the highest precision (73.3%), followed by
Elmeri with a precision of 48.3%, and cOMet with a preci-
sion of 5.1%. cOMet had highest recall (81.4%), followed by
Elmeri (45.6%), and thenOMclust (35.8%). Hence, cOMet had
the highest recall but very low precision. OMclust had the
highest precision but the lowest recall.

Next, we compared the pairwise alignments of pairs of
Rmaps that were predicted to be related from each of the
methods. As previously mentioned, the S-score is the standard
metric used to evaluate the alignment of two Rmaps. We note
that higher S-score values represent larger andmore consistent
alignments. Therefore, we randomly sampled 100,000 pairs
of Rmaps that were deemed to be related from each method
and computed their pairwise alignments using the dynamic
programming method of Valouev et al. Figure 7 illustrates
the distribution of these values for the various methods. The
mean S-score for cOMet, Elmeri and OMclust is 22.42, 33.52
and 35.01 with standard deviations 8.88, 12.20 and 14.55, re-
spectively. Comparing the distributions and means, we see
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(a) BIC (b) Silhouette - mean (c) Silhouette - % of negative values

Figure 1: Variation of BIC, mean silhouette scores and percentage of negative silhouette scores with respect to the
number of clusters for E. coli for 𝑘 = 4.

(a) BIC (b) Silhouette - mean (c) Silhouette - % of negative values

Figure 2: Variation of BIC, mean silhouette scores and percentage of negative silhouette scores with respect to the
number of clusters for E. coli for 𝑘 = 5.

(a) BIC (b) Silhouette - mean (c) Silhouette - % of negative values

Figure 3: Variation of BIC, mean silhouette scores and percentage of negative silhouette scores with respect to the
number of clusters for E. coli for 𝑘 = 6.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452722doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452722
http://creativecommons.org/licenses/by/4.0/


Finding Overlapping Rmaps via Gaussian Mixture Model Clustering

(a) 𝑘 = 4 (b) 𝑘 = 5 (c) 𝑘 = 6

Figure 4: Experimental results for simulated E. coli Rmaps using OMclust with varying values of𝑚 and 𝑘 .

(a) 𝑘 = 4 (b) 𝑘 = 5 (c) 𝑘 = 6

Figure 5: Experimental results for simulated E. coli Rmaps of the heuristic for finding related Rmaps used by Elmeri,
where𝑚 and 𝑘 are varied.

(a) 𝑘 = 4 (b) 𝑘 = 5 (c) 𝑘 = 6

Figure 6: Experimental results for simulated E. coliRmaps of the heuristics for finding related Rmaps used by cOMet,
where𝑚 and 𝑘 are varied.

OMclust have a greater overlap compared to those found by
the competing methods.

Further, we investigated the impact of using related Rmaps
found byOMclust on error correction by integratingOMclust
into cOMet and Elmeri. Table 2 shows the results of cOMet
using the set of related Rmaps found by OMclust with var-
ious values of 𝑚. In addition, we show the performance of

cOMet with its default setting. From these results, we con-
clude that our choice of 𝑘 = 4 is confirmed since with this
setting the best trade-off between CPU time, peak memory,
and error correction performance is achieved. In particular,
with 𝑚 = 4, error correction improved the S-score of 5,303
Rmaps, compared to 5,301 for the default settings of cOMet;
and the CPU time was reduced from 23 minutes 18 seconds to
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Method CPU time Peak mem Precision Recall No. of Related Rmaps
cOMet 00:00:10 0.74 5.1% 81.4% 20,974,053
Elmeri 00:05:49 1.02 48.3% 45.6% 866,164

OMclust 00:00:06 0.01 73.3% 35.8% 445,121
Table 1: Comparison of the accuracy and efficiency of finding related Rmaps in simulated E. coliRmap data. The peak
memory (“peakmem”) is given in gigabytes (GB). The CPU time is reported in hh:mm:ss. OMclustwas run with 𝑘 = 4
and𝑚 = 4 and 2,200 clusters. Elmeri and cOMetwere run with their default parameters, i.e., 𝑘=5 and𝑚 = 10 for Elmeri
and 𝑘 = 4 and𝑚 = 1 for cOMet.

Figure 7: Comparison of the distribution of the S-scores
of the related Rmaps found by Elmeri, cOMet and
OMclust using simulated E. coli Rmap data. From each
set of related Rmaps, 100,000 pairs of Rmaps were se-
lected at random without replacement and pairwise
aligned using Valouev et al. to calculate the S-score.

16 minutes and 9 seconds. The mean S-score after error correc-
tion is correspondingly increased 67.66 to 68.03. We note that
cOMet uses a heuristic to filter pairs of Rmaps that are un-
likely to be related, which is not used when OMclust is used
in combination with cOMet. Hence, although cOMet finds a
larger number of relations, compared to what OMclust finds
with 𝑚 = 1 and 𝑚 = 2, the CPU time of cOMet is slightly
shorter.

Similarly, Table 3 shows the results of Elmeri using the set
of related Rmaps found by OMclust with various values of
𝑚. Here, we see that when OMclust is used in combination
with Elmeri, it is able to obtain nearly the same mean S-score
(70.2 verses 70.44) but in less than one third the CPU time and
less peak memory.

4.4 Results for Real Human Data
For training OMclust on the real human dataset, we sim-
ulated a dataset using the same restriction enzyme as used
to generate the real data. We found the optimal number of
clusters by performing a grid search from 10,000 clusters to
1,000,000 clusters, and plotting the BIC statistic, mean silhou-
ette values, and percentage of negative silhouette values. The
resulting plots are shown in Figure 8. Since the BIC and the

mean silhouette do not have an inflection point but the per-
centage of negative silhouette values reaches a minimum at
100,000 clusters, we used this clustering. Training the model
required 36,922 hours 31 minutes and 13 seconds of CPU time
and 605 hours 5 minutes and 19 seconds of wall time running
on 64 CPUs in parallel. The peak memory usage was 7.12 GB.

We evaluated our trained model using the real human data.
It took 2 hours 59 minutes and 17 seconds of CPU time to
classify the 𝑘-mers into clusters with a peak memory of 10.48
GB and another 227 hours and 13 minutes and 44 seconds of
CPU time to find related Rmaps. Because of the large number
of Rmaps, we found related Rmaps on 1,000 CPUs in parallel
which brought the wall-time down to just 22 minutes and 33
seconds with peak memory of 16.29 GB and found a total of
171,307,975 related Rmaps. For the classification step, we split
the dataset into 1 ≤ 𝑋 ≤ 𝑁 streams where 𝑁 is the total
number of the Rmaps. For the 𝑖-th stream, we process 𝑁 /𝑋
number of Rmaps, from e.g. from index 𝑁 /𝑋 ∗ (𝑖−1) to 𝑁 /𝑋 ∗𝑖 .
Each stream extracts the k-mers for each Rmap in its Rmap
interval. The k-d-tree data structure used for classification is
replicated in each stream, and used to assign each k-mer to a
cluster center. All k-mer to cluster assignments are collected
and distributed to all the streams. Each stream computes the 𝐵
array from Section 3.3 which maps clusters to k-mers, and uses
it to find the Rmaps related to the Rmap in its Rmap interval.
The related Rmaps from each stream are written on a separate
output file and these files are concatenated to produce the final
output. Both Elmeri and cOMetwere unable to run to comple-
tion on this dataset. Elmeri exceeded our memory constraint
of 800 GB, and cOMet exceeded our disk space constraint of
10 TB. Elmeri crashed without any output; whereas, cOMet
outputted the related Rmap pairs prior to crashing. Therefore,
using this intermediate result of cOMet we sampled 100,000
pairs of Rmaps randomly without replacement from the pairs
of Rmaps predicted to be related from OMclust, and from
cOMet and calculated the S-score of these alignments using
the method of Valouev et al. Figure 9 illustrates the distribu-
tions of these S-scores. The mean and standard deviation of the
S-score of OMclust is 26.20 and 11.72, respectively; whereas
for cOMet it is 18.21 and 8.74, respectively. We note that these
distribution of cOMet does not reflect the distribution of a
random sampling of all the relations and thus, may differ from
the reported distribution – however, this would be unlikely as
it would require a skewed distribution of the input data.

Lastly, we compared the performance of error correction
of cOMet by running it with its default setting and running
cOMet using the set of related Rmaps found by OMclust.
We note that although the initial step of finding all related
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m No. of related Rmaps CPU time Peak mem No. of improved Rmaps Mean S-score Std-dev of S-score
1 6,299,757 01:31:01 0.23 5,806 67.46 54.94
2 1,780,207 00:36:51 0.18 5,964 68.43 55.40
3 775,699 00:20:36 0.16 5,688 68.45 55.89
4 445,121 00:16:09 0.15 5,303 68.03 56.15
5 288,649 00:13:47 0.13 4,804 67.46 56.54
6 196,413 00:11:42 0.12 4,281 66.85 56.80
7 134,943 00:10:15 0.10 3,751 66.10 57.00
8 92,755 00:08:33 0.09 3,301 65.30 56.88
9 63,487 00:07:12 0.07 2,821 64.52 56.66
10 43,251 00:05:52 0.06 2,373 63.67 56.17

cOMet 20,974,053 00:23:18 0.14 5,301 67.66 54.83
Table 2: Performance of cOMet using the related Rmaps found by OMclustwith various values of𝑚, i.e.,𝑚 = 1, . . . , 10.
In addition, we included the performance of cOMet using the default setting in the last row. The CPU time is in
hh:mm:ss and peakmemory (“Peakmem”) is in GB. “No. of improved Rmaps” is the number of Rmaps whose S-score
increased after error correction. The mean and standard deviation of the S-score after error correction is also shown.
We note the mean and standard deviation of the S-score for uncorrected Rmaps are 58.17 and 46.50, respectively.

m No. of related Rmaps CPU time Peak mem No. of improved Rmaps Mean S-score Std-dev of S-score
1 6,299,757 00:04:10 0.17 3,253 58.25 40.48
2 1,780,207 00:03:44 0.09 4,870 66.61 49.56
3 775,699 00:03:30 0.07 5,120 69.01 54.34
4 445,121 00:03:14 0.07 4,986 70.20 57.64
5 288,649 00:03:01 0.07 4,493 69.08 58.01
6 196,413 00:02:29 0.06 4,080 68.65 58.77
7 134,943 00:02:11 0.06 3,656 67.64 58.46
8 92,755 00:02:07 0.06 3,182 66.66 58.27
9 63,487 00:01:41 0.06 2,715 65.69 58.24
10 43,251 00:01:23 0.06 2,264 64.16 56.74

Elmeri 866,164 00:10:45 0.98 5,219 70.44 56.91
Table 3: Comparison of the performance of Elmeri using the related Rmaps found by OMclust using various values
of𝑚, and Elmeri with default setting (last row). The column headers are described in the caption of Table 2. Themean
and standard deviation of the S-score for uncorrected Rmaps are 58.17 and 46.50, respectively.

(a) BIC (b) Silhouette - mean (c) Silhouette - % of negative values

Figure 8: Variation of BIC, mean silhouette scores and percentage of negative silhouette scores with respect to the
number of clusters for human data.
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Method Wall time CPU time Peak mem No. of improved Rmaps Mean S-score Std-dev of S-score
OMclust + cOMet 00:50:25 638:41:35 16.29 2,757,266 71.96 44.87

cOMet 23:60:36 23637:21:11 15.73 987,985 59.01 25.18
Table 4: Error correction performance of cOMet on real human Rmap data using its default relations and using
relations found by OMclustwith𝑚 = 4 (OMclust + cOMet). The column headers are described in the caption of Table
2.

Figure 9: Comparison of alignment scores of related
Rmaps found by OMclust and cOMet for real hu-
man Rmaps. From the related Rmaps called by each
method 100,000 relations were randomly sampled and
the aligner of of Valouev et al. was used to align pairs
of Rmaps from those relations. The alignment scores
(called S-scores) were plotted as a histogram. The mean
S-score for cOMet, and OMclust are 18.21 and 26.20
with standard deviations 8.74 and 11.72, respectively.

Rmaps in cOMet ran out of disk space (see above), the error
correction step of cOMet can still be ran since it does not
use any external memory for this step. Both methods were
run in parallel on 3,000 CPUs. As for the classification step,
we split up the dataset into 𝑋 streams and for each Rmap in
the stream Rmap interval, we find related Rmaps, we align
the Rmap to its related Rmaps and lastly, we error-correct the
Rmap based on a consensus from the alignments. The error-
corrected Rmaps from each stream are written on a separate
output file and these files are concatenated to produce the
final output. Each stream is handled as a separate job by an
individual machine core. Table 4 shows the results of this
experiment. We witness that the combined approach of using
OMclust with cOMet uses a fraction of the CPU time and
improves a significantly larger number of Rmaps. The mean S-
score after error-correction improves from 37.41 to 59.01 using
default cOMet, whereas it improves to 71.96 using OMclust
relations. This demonstrates the benefit of using related Rmaps
with high precision.

5 CONCLUSION
In this paper, we developed a method for finding overlapping
Rmaps that uses a Gaussianmixturemodel clustering, and does
not require any quantization. We demonstrated that OMclust
achieved the highest precision and was more efficient than
competing methods, i.e., Elmeri and cOMet. In addition, we
showed that usingOMclust to find related Rmaps, the quality
of error correction of cOMet is substantially improved and
the CPU time is reduced. For example, the mean S-score of
Rmaps generated from human DNA that were error corrected
using cOMet with the related Rmaps from OMclust was
71.96; whereas the mean S-score was 59.01 using the default
setting of cOMet. Moreover, the number of error corrected
Rmaps also increased nearly 3x from 987,985 to 2,757,266 us-
ing OMclust. In summary, the high precision and efficiency
of OMclust makes it suitable as a filtering step for finding
related Rmaps for error correction, assembly or other applica-
tions of optical mapping data. We believe the integration of
OMclust into these methods warrants future study. Another
area that we warrants investigation is developing methods
to select the optimal number of clusters. We used standard
machine learning methods for cluster evaluation, which af-
fects the time required for training the model. There may be
a relationship between the coverage of the optical mapping
data and the number of clusters, however, this relationship is
complicated based on other factors, including the restriction
enzyme and the repetition in the genome. However, predict-
ing the number of clusters in a deterministic manner could
potentially decrease the training time and thus, would be a
valuable contribution.
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