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Abstract 

Factors such as host age, sex, diet, health status and genotype constitute the environmental 

envelope shaping microbial communities in the host’s gut. It has also been proposed that gut 

microbiota may be influenced by host epigenetics. Although the relationship between the 

host’s genotype/epigenotype and its associated microbiota has been the focus of a number of 

recent studies, the relative importance of these interactions and their biological relevance are 

still poorly understood. We used methylation-sensitive genotyping by sequencing to genotype 

and epigenotype invasive cane toads (Rhinella marina) from the species’ Australian range-

core (three sites) and the invasion-front (three sites), and 16S rRNA gene sequencing to 

characterize their gut bacterial communities. We tested the effect of host genotype and 

epigenotype (i.e., methylome) on gut bacterial communities. Our results indicate that the 

genotypes, epigenotypes and gut communities of the range-core and invasion-front are 

significantly different from one another. We found a positive association between host 

pairwise genetic and epigenetic distances. More importantly, a positive relationship was 

found between the host’s epigenetic and gut bacterial pairwise distances. Interestingly, this 

association was stronger in individuals with low genetic differentiation. Our findings suggest 

that in range-expanding populations, where individuals are often genetically similar, the 

interaction between gut bacterial communities and host methylome may provide a mechanism 

through which invaders increase the plasticity of their response to novel environments, 

potentially increasing their invasion success.
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Introduction 

The gut microbiota can play a key role in host adaptation to the environment by affecting its 

phenotype (Alberdi et al. 2016). Concurrently, host factors such as age, sex and health status 

contribute to the environmental envelope shaping gut microbial communities (Pereira et al. 

2020; Tong et al. 2020). In addition to these factors, host genetic diversity also may be an 

important determinant of host-microbial relationships. For example, host heterozygosity 

(within-individual genetic variation) has been positively associated with individual fitness 

and adaptive potential (Mainguy et al. 2009; Velando et al. 2015). Such heterozygosity-

fitness correlations have been widely studied, including in the context of disease/parasite 

resistance, and host body mass, reproductive performance and survival (Eastwood et al. 2017; 

Coltman et al. 1999; Penn et al. 2002; Luikart et al. 2008; Mainguy et al. 2009; Velando et al. 

2015; Brambilla et al. 2018). In gut microbial studies, alpha diversity (microbial diversity 

within individual hosts) also has been associated with increased host fitness (e.g. resistance to 

parasites and disease; Kreisinger et al. 2015; Estaki et al. 2016; Suzuki 2017). These results 

suggest a positive correlation between host genetic diversity and microbial alpha diversity. 

However, a negative relationship between these metrics has been found in at least one species 

(fur seals; Grosser et al., 2019), indicating that further analysis of these relationships in a 

broader range of taxa would allow a better understanding of how the host’s genetic diversity 

affects gut microbial community diversity.  

In addition to the degree of host genetic diversity within an individual, the patterns of genetic 

variation across the genome warrant investigation with respect to interactions with the host’s 
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microbial community. Even though gut microbiota is largely acquired from the environment 

(Alberdi et al. 2016), this community also can be shaped by host genotype (Goodrich et al. 

2014; Blekhman et al. 2015; Goodrich et al. 2016). Particular host genotypes have accounted 

for substantial differences in microbial community composition and diversity; for example, in 

humans, microbiota variation was driven by immunity-related host genotype (Blekhman et al. 

2015). This suggests that there could be a heritable component to gut microbial composition. 

Microbiome composition of desert bighorn sheep (Ovis canadensis nelsoni) diverged in 

accordance with both landscape-scale environmental and host population characteristics 

(Couch et al. 2020). Stickleback gut microbiota variation across populations was associated 

with host genotype more than with environmental factors (Smith et al. 2015). Conversely, 

host genetic effects were much weaker than the environment in shaping the human gut 

microbiota (Rothschild et al. 2018). Collectedly, these results indicate that the relative 

strength of host genetic versus environmental influence on gut microbiota may be species-

specific.  

Gut microbiota may also interact with host epigenotype, providing a mechanism through 

which gut microbial communities can affect host health and adaptation (Stilling et al. 2014; 

Krautkramer et al. 2016). For example, clear associations between bacterial composition and 

host DNA methylation profiles have been identified in relation to body weight and 

metabolism regulation (Kumar et al. 2014; Cuevas-Sierra et al. 2019).  Additionally, gut 

microbiota guides and/or facilitates epigenetic development of intestinal stem cells during the 

postnatal period and may influence lifelong gut health (Yu et al. 2015). At the same time, 

host epigenetic status may affect gut microbiota: DNA methylation in intestinal tissue is 

known to contribute to the regulation of genes involved in cell proliferation, anti-bacteria 

metabolite production, anti-inflammation and to play a critical role in re-establishing gut 

homeostasis in mice (Ansari et al. 2020; Wu et al. 2020). These results suggest that it is 
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important to examine the interaction between gut bacteria and host DNA methylation, and 

that this relationship can be bi-directional.  

An individual’s genotype can strongly influence their epigenotype (Bell et al. 2011; Dubin et 

al. 2015). Additionally, genetic variation can contribute to the transgenerational heritability 

of DNA methylation (in humans; McRae et al. 2014). Genetic effects can be stronger than the 

effects of exogenously manipulated DNA methylation (in cane toads; Sarma et al. 2020). In 

addition to the relationship between an individual’s genotype and epigenotype, at the 

population level, an increased variability in DNA methylation may occur in populations with 

low genetic variation, as compared to populations with higher genetic variation (Liebl et al. 

2013). In particular, this has been discussed in the context of expanding range-edge 

populations of invasive species, and it has been hypothesised that this may facilitate 

adaptation to new environments by creating phenotypic diversity (Ardura et al. 2017; 

Sheldon et al. 2018; Hawes et al. 2018; Carja et al. 2017).  

Although these relationships between gut microbiota, host genotype and host epigenotype 

(e.g. DNA methylome) have been examined in humans and domesticated animals (Goodrich 

et al. 2016; Cuevas-Sierra et al. 2019; David et al. 2019; Ansari et al. 2020; Ryan et al. 2020; 

Xu et al. 2020), little of this research has been conducted in non-model species. Further, the 

relevance of these relationships to invasion success is virtually unexplored. Here, we used the 

iconic invasive cane toad to conduct the first characterisation of these relationships in an 

amphibian and to determine whether these relationships change when comparing samples 

collected across an expanding invasive range. Although gut bacterial communities and toad 

genetics have been previously characterised across Australia, their relationship to each other 

has not been studied. We have previously found significant differences between the gut 

bacterial communities of range-core and invasion-front cane toads (Zhou et al. 2020). Host 
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genetics also differ across the range: population structure has been identified across Australia 

and genetic diversity is reduced at the range edge (Selechnik, Richardson, Shine, DeVore, et 

al. 2019). Moreover, substantial shifts in gene expression in spleen and muscle tissue were 

identified between invasion-front and range-core toads (Rollins et al. 2015; Selechnik, 

Richardson, Shine, Brown, et al. 2019). To date, there have been no investigations of DNA 

methylation in wild-collected toads in Australia.  

We investigated whether the variation observed in cane toad gut bacteria across Australia is 

mediated by host genetics, and whether gut bacterial communities are correlated with host 

DNA methylation. Specifically, we tested the following hypotheses: (1) if host 

heterozygosity and diversity in gut bacteria are both positively associated with individual 

fitness and long-term population persistence, then more heterozygous hosts will have higher 

gut bacterial diversity; (2) if epigenetic diversity acts as a compensatory factor in populations 

with low genetic diversity, then genetic diversity will be negatively correlated with DNA 

methylation diversity; (3) if the host genotype is an important contributor to the 

environmental envelope in which gut microbes develop, then genetically similar toads will 

share similar gut bacteria; and (4) if gut bacteria can cause heritable phenotypic changes 

through epigenetic modification and DNA methylation in intestinal tissue is known to play a 

critical role in re-establishing gut homeostasis, then cane toads that possess similar gut 

bacteria will also have similar DNA methylation profiles. 

Results 

Characterisation of host genetic, host DNA methylation and gut bacterial diversity and 

differentiation  
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A total of 55 individuals were used for all datasets analysis, after removing those whose 

msGBS reads from blood samples presenting low coverage. We first investigated within-

individual genetic and gut bacterial community by calculating individual heterozygosity (HL) 

and gut bacterial alpha diversity (Shannon’s diversity Index). The observed mean HL was 

0.49 (SD: 0.03) and the mean of Shannon’s index was 6.00 (SD = 0.92).  

Principal coordinate analysis (PCoA) plots showed host SNP, DNA methylation and gut 

bacterial profiles clustered according to their provenance, first by sampling site and then by 

region (invasion-front or range-core) (Figure 1 A, B, and C, respectively). PCoA plots 

suggested similar levels of diversity for all three profile types. However, comparison of Bray 

Curtis values from SNP data indicated that range-core toads had significantly higher levels of 

genetic diversity than those from the invasion-front (invasion-front: mean = 0.126, SD = 

0.009; range-core: mean = 0.140, SD = 0.010; t test: t = 19.569, df = 710.3, p-value < 0.01); 

while range-core and invasion-front toads had similar levels of diversity of DNA methylation 

(invasion-front: mean = 0.121, SD = 0.022; range-core: mean = 0.122, SD = 0.019; t test: t = 

0.232, df = 723.42, p-value = 0.82) and gut bacterial community diversity (invasion-front: 

mean = 0.640, SD = 0.132; range-core: mean = 0.656, SD = 0.114; t test: t = 1.708, df = 

723.19, p-value = 0.09). Genetic, epigenetic and gut bacterial community pairwise 

comparisons show significant differences in beta diversity (diversity between samples) 

between most sampling sites (Table 1). Finally, we found significant differences between 

invasion-front and range-core sampling sites in host genotypes (adonis2: R2  = 0.089, F = 

5.162, p-value < 0.001; betadisper: F-value = 23.337, p-value < 0.001), host epigenotypes 

(adonis2: R2  = 0.104, F = 6.120, p-value < 0.001; betadisper: F-value = 0.005, p-value = 

0.942) and gut bacterial community (adonis2: R2  = 0.099, F = 5.830, p-value < 0.001; 

betadisper: F-value = 0.226, p-value = 0.636). 
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Figure 1. Genetic, epigenetic and gut bacteria differences between wild cane toads in the 

Australian invasion-front and range-core. Principal coordinate analysis plots were built 

using Bray Curtis genetic (A), epigenetic (B), and gut bacterial community (C) distance 

matrices between 6 sampling sites located in the toad’s invasion-front (Western Australian: 

Kununurra, Old Theda, Mary Pool) and range-core (Queensland: Rossville, Croydon, 

Lucinda). Genetic and epigenetic distances were estimated based on SNPs and DNA 

methylation epialleles identified using msGBS profiles. Bacterial community distances were 

calculated using the Core50 gut bacteria taxa identified using 16S rRNA gene sequencing. 

All analyses were performed on data collected from 10 female cane toads per sampling site. 

Table 1. Analysis of genetic, epigenetic, and gut bacteria differences between cane toad 

sampling sites in the Australian invasion-front and range-core. Pairwise comparisons 

were calculated using permutation MANOVAs on Bray Curtis genetic, epigenetic, and gut 

bacterial community distance matrices from 10 female cane toads per sampling site in the 

invasion-front (Kununurra, Old Theda, Mary Pool) and range-core (Rossville, Croydon, 

Lucinda). Genetic and epigenetic distances were estimated based on SNPs and DNA 

methylation epialleles identified using msGBS profiles. Bacterial community distances were 

calculated using the Core50 gut bacteria taxa identified using 16S rRNA gene sequencing. 

Bold font indicates significantly different comparisons.  

 Kununurra Old Theda Mary Pool Rossville Croydon 

Genetic 

Old Theda 0.069 - - - - 

Mary Pool 0.001 0.368 - - - 

Rossville 0.001 0.001 0.001 - - 

Croydon 0.001 0.001 0.001 0.001 - 

Lucinda 0.001 0.001 0.001 0.001 0.001 

 

Epigenetic 

Old Theda 0.063 - - - - 

Mary Pool 0.002 0.063 - - - 

Rossville 0.001 0.001 0.001 - - 

Croydon 0.001 0.001 0.001 0.001 - 
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Lucinda 0.001 0.001 0.001 0.001 0.001 

Gut bacterial community 

Old Theda 2e-04 - - - - 

Mary Pool 2e-04 2e-04 - - - 

Rossville 2e-04 2e-04 2e-04 - - 

Croydon 2e-04 2e-04 2e-04 2e-04 - 

Lucinda 2e-04 2e-04 2e-04 2e-04 2e-04 

P-value adjustment method: Hochberg (1988) 

Association between host genetic/epigenetic and gut bacterial diversity and 

differentiation 

Linear mixed model (LMM) analysis accounting for sampling site as a random effect did not 

identify a correlation between within-individual heterozygosity index (HL) and within-

individual gut bacterial alpha diversity (Shannon’s diversity Index) (df = 52.716, t-value = 

1.444, p-value = 0.16).  

Mantel tests comparing between-individual genetic and gut bacterial community differences 

showed that genetically similar toads did not share similar gut bacteria (Spearman 

correlation: Mantel r = 0.0788, p-value = 0.116). On the contrary, toads with similar DNA 

methylation profiles shared similar gut microbial composition (Spearman correlation: Mantel 

r = 0.1553, p-value = 0.03). Host genotype and host DNA methylation dissimilarity matrices 

were positively associated (Spearman correlation: Mantel r = 0.654, p-value = 0.001).  

LMM analysis with gut microbial distance as the response variable indicated that gut 

bacterial differentiation between individuals is affected by: 1) host DNA methylation 

differentiation (df = 1461.645, t-value = 2.505, p-value = 0.01), and 2) the interaction of host 

genetic distance with host methylation distance (df = 1441.646, t-value = -2.155, p-value = 

0.03; Figure 2). The observed relationship between gut bacterial distance and host DNA 

methylation distance was stronger in cane toad pairs that were more genetically similar 

(Figure 2). When host DNA methylation distance was used as the response variable, LMM 
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analysis indicated that DNA methylation distance was not affected by gut bacterial distance 

(df = 1390, t-value = 0.598, p-value = 0.55; Figure 3). DNA methylation distance was 

significantly associated with genetic distance (df = 1390, t-value = 5.734, p-value < 0.001; 

Figure 3). There was no interaction between these relationships and population (invasion-

front vs. range-core). 

 

AIC = -3372.482, BIC = -3319.45 

Random effects 

Groups Name Variance Std.Dev.       

SampleIDi (Intercept)  0.001879 0.04335       

SampleIDj (Intercept)  0.004906 0.07005       

Residual   0.004862 0.06973       

Number of obs: 1485, groups:  c1, 54; c2, 54 

Fixed effects: 

  Estimate Std.Error df t value Pr(>|t|)   

(Intercept) 0.58232 0.14258 1474.21264 4.084 4.66E-05 *** 

genetics 1.62221 1.01523 1453.39647 1.598 0.1103   

methylation 3.20298 1.27862 1461.64514 2.505 0.0124 * 

scale(geographic) 0.21469 0.01275 1446.59752 16.838 < 2e-16 *** 

Populationi -0.37168 0.0286 533.77127 -12.997 < 2e-16 *** 

Populationj 0.31752 0.03024 232.814 10.501 < 2e-16 *** 

genetics:methylation -18.90622 8.77433 1441.64551 -2.155 0.0313 * 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Correlation of Fixed Effects: 

  (Intr) genetics methylation scale(geographic) Populationi Populationj 

genetics -0.957           

methylation -0.881 0.829         

scale(geographic) 0.179 -0.127 0.134       

Populationi -0.175 0.128 -0.123 -0.884     

Populationj 0.084 -0.097 0.044 0.727 -0.663   

genetics:methylation 0.895 -0.905 -0.970 -0.100 0.07 -0.009 

 

Figure 2 Linear mixed model analysis of the association between gut bacterial 

community and epigenetic differences among individuals. LMM was based on the Bray 

Curtis pairwise distances: Bacteria_distij ~ Genetics_distij * Methylation_Distij + 

scale(Geographic Distanceij) + Populationi + Populationj + (1|SampleIDi) + (1|SampleIDj). 

Bacterial community distance was considered as the response variable, and genetic, 

epigenetic, and geographic distance (rescaled), and population (invasion-front or range-core) 

were considered as fixed factors. Sample IDs as random factor. The figure shows the 

correlation between epigenetic and bacterial community distances (X axis: fixed factor, Y 

axis: response factor). Three genetic representative values represent an infinite set of values 

with which to fix the continuous genetic distances (UCLA: Statistical Consulting Group): the 

mean level of genetic distance, one standard deviation above the mean level of genetic 

distance, and one standard deviation below the mean level of genetic distance. LMM model 

statistics output is shown in the table.  
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AIC = -11590.97 , BIC = -11537.94 

Random effects 

Groups Name Variance Std.Dev.       

SampleIDi (Intercept)  2.01E-04 0.01419       

SampleIDj (Intercept)  1.74E-04 0.01318       

Residual   1.52E-05 0.0039       

Number of obs: 1485, groups:  c1, 54; c2, 54 

Fixed effects: 

  Estimate Std.Error df t value Pr(>|t|)   

(Intercept) 6.01E-02 1.09E-02 1.41E+03 5.544 3.52E-08 *** 

genetics 4.22E-01 7.36E-02 1.39E+03 5.734 1.20E-08 *** 

bacteria 8.29E-03 1.39E-02 1.39E+03 0.598 0.54962   

scale(geographic) -0.001968 8.18E-04 1.39E+03 -2.405 0.01632 * 

Populationi 1.35E-02 4.19E-03 7.08E+01 3.208 0.00201 ** 

Populationj -1.062e-02 3.87E-03 6.87E+01 -2.743 0.00775 ** 

genetics:bacteria -5.297e-02 1.03E-01 1.39E+03 -0.513 0.60835   

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Correlation of Fixed Effects: 

  (Intr) genetics bacteria scale(geographic) Populationi Populationj 

genetics -0.926           

bacteria -0.874 0.946         

scale(geographic) 0.375 -0.279 -0.179       

Populationi -0.307 0.099 0.064 -0.378     

Populationj -0.049 -0.070 -0.054 0.353 -0.137   

genetics:bacteria 0.866 -0.951 -0.994 0.138 -0.050 0.041 
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Figure 3 Linear mixed model analysis of the association between epigenetic and gut 

bacterial community differences among individuals. LMM was based on the Bray Curtis 

pairwise distances: Methylation_Distij ~ Genetics_distij * Bacteria_distij + scale(Geographic 

Distanceij) + Populationi + Populationj + (1|SampleIDi) + (1|SampleIDj). Epigenetic 

distance was considered as the response variable, and genetic, bacterial community, and 

geographic distance (rescaled), and population (invasion-front or range-core) were 

considered as fixed factors. Sample IDs as random factor. The figure shows the correlation 

between epigenetic and bacterial community distances (X axis: fixed factor, Y axis: response 

factor). Three genetic representative values represent an infinite set of values with which to 

fix the continuous genetic distances (UCLA: Statistical Consulting Group): the mean level of 

genetic distance, one standard deviation above the mean level of genetic distance, and one 

standard deviation below the mean level of genetic distance. LMM model statistics output is 

shown in the table.  

Discussion 

In this study, we used next-generation sequencing to characterize and explore the relationship 

between genotype, epigenotype (DNA methylation), and gut bacterial communities in wild 

cane toads across their Australian invasive range. We found no relationship between within-

individual genetic diversity and the diversity of its gut bacteria. Additionally, we found that 

while genetic differentiation was positively related to DNA methylation differences between 

individuals, there did not appear to be a relationship between the diversity of these two 

measures. We also found that pairwise differentiation between cane toad gut bacteria was 

associated with pairwise differentiation between host DNA methylation, and this association 

was stronger in pairs that were more genetically similar. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 11, 2021. ; https://doi.org/10.1101/2021.07.10.451923doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.10.451923
http://creativecommons.org/licenses/by-nc/4.0/


There is a growing interest in understanding how host and environmental factors contribute to 

gut microbiota variation, and how these may impact host phenotype (Zhang et al. 2010; Ussar 

et al. 2015; Kreznar et al. 2017). However, few studies have investigated the relationship 

between host heterozygosity and gut bacteria. Because both host heterozygosity (Mainguy et 

al. 2009; Velando et al. 2015) and gut bacterial diversity (Kreisinger et al. 2015; Estaki et al. 

2016) have been reported to be positively related to individual fitness, we predicted that hosts 

with higher levels of heterozygosity would have more diverse gut bacteria. This relationship 

has been investigated previously in fur seals (Grosser et al., 2018) and that study found that 

an individual's heterozygosity (calculated with microsatellite data) was negatively associated 

with its microbial diversity. Grosser et al., (2018) proposed that higher quality individuals 

(who have greater heterozygosity) should be more effective at suppressing nonbeneficial 

microbes, thus having less diverse microbiotas (Grosser et al., 2018). A negative relationship 

between these metrics has also been found in sticklebacks, where individuals with greater 

heterozygosity at the MHC (Major Histocompatibility class II) had less diverse gut 

microbiota (Bolnick et al. 2014). In this study, we found no relationship between host 

individual heterozygosity and bacterial diversity in cane toads. The hypotheses in all these 

studies depend on a positive relationship between heterozygosity and fitness. However, the 

validity of studies of heterozygosity-fitness correlations, where small numbers of markers 

(e.g. microsatellites) have been used, has been challenged because the correlation between 

estimated heterozygosity and true genome-wide heterozygosity is weak (Dewoody & 

Dewoody 2005; Forstmeier et al. 2012). The SNP data set used here to calculate 

heterozygosity was large (>38,000 SNPs) and, thus, may provide a more accurate picture of 

these relationships.  

There could be a heritable influence on gut microbial composition, mediated by host 

genotype (Goodrich et al. 2014; Blekhman et al. 2015; Goodrich et al. 2016). To investigate 
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this in toads, we tested whether genetic similarity between hosts was related to similarity of 

their gut bacteria. We found no significant association between these metrics. Results of other 

studies investigating this question are mixed. In chickens, host genetics played a minor role 

in shaping the gut microbiota (Wen et al. 2019). However, in wild house mice, gut microbiota 

dissimilarity was significantly correlated with both host genetic distance and body mass 

index, but not significantly associated with other factors, including diet, climate and 

geographic distance (Suzuki et al. 2019). Gut microbiota was also found to be significantly 

correlated with host genetics in fish and amphibians (Griffiths et al. 2018; Uren Webster et al. 

2018). Because gut microbiota can be affected by a wide variety of host and environmental 

factors, it seems likely the relationship between host genetics and gut bacteria is complex and 

may vary depending on the strength of other host and environmental factors.  

Gut microbiota can cause heritable phenotypic changes through epigenetic modification of 

host genome (Stilling et al. 2014; Krautkramer et al. 2016; Grieneisen et al. 2020). DNA 

methylation is an epigenetic mechanism known to play a critical role in re-establishing gut 

homeostasis in intestinal tissue (Ansari et al. 2020; Wu et al. 2020), suggesting this may be a 

bi-directional relationship. The observed changes in some phenotypic traits (e.g. behaviour) 

in cane toads across Australia have been linked to their gut bacteria (Zhou et al. 2020). It is 

possible that this association could be mediated through shifts in DNA methylation in toads. 

In this study, we found that both DNA methylation and gut bacteria were significantly 

different between different sampling localities, and that differentiation of host DNA 

methylation was positively related to differentiation of gut bacteria between pairs of 

individuals. Because the direction of the relationship between host DNA methylation and gut 

bacterial community is unknown, we ran separate LMMs using each of these metrics as the 

dependent variable. Interestingly, when gut bacterial distance was used as the dependent 

variable, its relationship to DNA methylation distance was stronger in pairs of individuals 
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that were more genetically similar. This dynamic suggests that in populations with more 

genetically similar individuals (e.g. invasion-front populations), the relationship between 

DNA methylation and gut bacteria also may be stronger. On the contrary, when DNA 

methylation distance was used as the dependent variable, there was no significant relationship 

with gut bacterial distance. The strong influence of host genotype on DNA methylation may 

mask any potential influence of gut bacteria on DNA methylation.  

It is tempting to speculate that the strengthened relationship between gut bacteria and DNA 

methylation in cane toads that are genetically similar could facilitate cane toad adaptation to 

novel environments in Australia. First, gut bacterial variation caused by environmental 

factors (e.g. food resources) could alter host DNA methylation, leading to beneficial 

phenotypic changes that increase host fitness (Stilling et al. 2014; Krautkramer et al. 2016; 

Grieneisen et al. 2020). Second,  environmental factors could alter host DNA methylation, 

which could affect the host’s ability to use local microbes or to maintain a balanced gut 

bacteria by supressing nonbeneficial microbes (Ansari et al. 2020; Wu et al. 2020). Future 

studies including, fecal transplantation and methylation manipulation experiments will be 

needed to illuminate the causal relationship and underlying mechanisms in this system.  

During invasions, increased variation in host DNA methylation could be compensatory for 

low genetic diversity, and facilitate adaptation to novel environments by creating phenotypic 

diversity (Ardura et al. 2017; Carja et al. 2017; Sheldon et al. 2018; Hawes et al. 2018). This 

is an intriguing idea, and could explain the multitude of phenotype shifts seen in toads as they 

have spread across Australia (Rollins et al. 2016), despite their low genetic diversity, 

especially at the invasion-front (Lillie et al. 2014; Selechnik, Richardson, Shine, DeVore, et 

al. 2019). In this study, we found that although genetic diversity differed across the 

Australian range, DNA methylation patterns did not, suggesting that no such relationship 
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exists in this invasion. Similarly, in a study of invasive house sparrows (Passer domesticus) 

in Australia, no compensatory relationship between genetic diversity and DNA methylation 

diversity was detected either (Sheldon et al., 2018). In human populations, diversity of DNA 

methylation mirrored genetic diversity (Carja et al. 2017).  Together, this evidence suggests 

that further research is needed to understand whether these factors interact to promote 

phenotypic variation on invasion fronts and, if so, whether the strength of this relationship 

depends on the degree of influence that the genome exerts on the epigenome for a given 

species. 

Conclusion 

Our results demonstrate that gut bacteria of invasive cane toads in Australia is positively 

correlated with individual DNA methylation profile changes, and this is accentuated when 

genetic differentiation is low. DNA methylation variation is similar across the invasion, 

whereas genetic diversity decreases on the invasion front, suggesting no relationship between 

the diversity of these metrics. However, genetic differentiation and DNA methylation 

differentiation have a strong, positive association suggesting that genetic composition 

determines DNA methylation in this species. These findings provide insights into the 

dynamics between host genotype, epigenotype and gut bacteria in this iconic invasive 

amphibian. Moreover, this study draws our attention to the complexity of these relationships 

and how they may shift over an expanding invasion.  

Materials and Methodology 

Animal materials 
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We hand-captured 60 wild adult female cane toads from three sites in the Australian 

invasion-front and three sites in the range-core (Figure S1) and euthanized them by injecting 

tricaine methanesulfonate (MS222) buffered with bicarbonate of soda. We collected blood 

and colon content by heart puncture and colon dissection respectively, and preserved these 

samples in 95% ethanol. Samples were frozen at -20°C for storage until we conducted DNA 

extractions. The University of Adelaide Animal Ethics Committee approved the collection 

and use of animals for in this research (approval number: S-2018-056). 

Blood Genomic DNA extraction and Methylation-sensitive genotype by sequencing 

We extracted genomic DNA from blood using a PureGene Tissue Kit (QIAGEN), following 

the manufacturer’s protocols. We performed msGBS on blood DNA as described by Kitimu 

et al. (Kitimu et al. 2015). In addition to the 60 genomic DNA samples, we included a water 

blank to account for environmental contamination introduced during sequencing library 

preparation. We used two enzymes, EcoRI (cutsite: GAATTC) and HpaII (cutsite: CCGG), to 

generate restriction products. Enzymatic restrictions were performed in a 16 μl mix 

containing: 1.6 μl Cut Smart Buffer, 0.32 μl EcoRI-HF (NEB #R0101 (20,000 units/ml)), 

0.64 μl HpaII (NEB #R0171S (10,000 units/ml)), and 13.4 μl DNA (10ng/μl). The enzyme 

digestion reaction was conducted at 37 °C for 2 h and then 65 °C for 20 min for enzyme 

inactivation.  

A set of barcoded adapters with an HpaII overhang and a common Y adapter with an EcoRI 

overhang (Table S1) were used for the ligation reaction. Working stocks of barcoded (0.02 

μM) and common Y adapters (3 μM) were prepared in advance as described by Poland et al., 

(2012). The 32 μl ligation reaction was carried out by adding 0.08 μl T4 Ligase (200 U, 

NEB) and 3.2 μl T4 Ligase buffer (10X, NEB), 8.72 μl water and 4 μl of the working adapter 

stock to the 16 μl restriction products. Ligation mixes were incubated at 22 °C for 2 h and 
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65 °C for 20 min. We removed unused adapters and restriction/ligation products smaller than 

100 bp using AMPure XP magnetic beads (x0.9 bead/reaction volume to volume ratio). The 

clean-up products were used for PCR amplification. Each 25 μl PCR consisted of 10ul 

digested/ligated DNA library (<1,000ng), 12.5 µl of Q5 MasterMix (Q5 High-Fidelity 2X 

Master Mix), 2 µl forward and reverse primers @10 µM (Table S1) and 0.5 µl of water. 

Reactions were performed at 98 oC for 30 sec, 12 cycles for (98 oC for 30 sec, 62 oC for 20 

sec, 72 oC for 30 sec) and 72 oC for 5 min. PCR product concentrations were estimated using 

NanoDrop Onec spectrophotometer. Samples were then equimolarly mixed into a single pool. 

The resultant pool was then split into four subsamples. Fragments below 100 bp and above 

600 bp were removed using a magnetic beads and double size selection (x1 bead/reaction 

volume to volume ratio followed by x0.55 bead/reaction volume to volume ratio). All four 

size selected fractions were then pooled and quality checked using a Qubit 4 Fluorometer 

(Thermo Fisher Scientific, Waltham, MA, USA) and a Fragment Analyzer (Agilent, Santa 

Clara, CA, USA). Sequencing was performed using HiSeq 4000 150bp PE at Novogene 

Corporation Inc (Sacramento, CA, USA).  

Bacterial DNA isolation and amplicon sequencing 

The bacterial DNA isolation, amplicon library preparation and sequencing were described 

previously (Zhou et al. 2020). Briefly, we extracted bacterial DNA from colon content using 

the DNeasy PowerSoil kit (Qiagen), following the manufacturer’s protocols. We performed 

16S rRNA gene amplicon sequencing on DNA samples by following guidelines for the 

Illumina MiSeq System. We included 60 colon DNA extracts, one Zymo isolated DNA 

standard (D6305, community positive control) and one water blank (PCR negative control). 

We prepared libraries based on the hypervariable (V3-V4) region of the 16S rRNA gene 

using primers 341F (5’ – 
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TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-

3’) and 785R (5’- 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAA

TCC-3’) (Herlemann et al. 2011). Sequencing was conducted on the Illumina MiSeq platform 

at the Ramaciotti Centre for Genomics (University of New South Wales, Kensington, 

Sydney). 

Data analysis 

DNA Methylation profiling 

We demultiplexed sequencing data with GBSX v1.3 (Herten et al. 2015) and checked quality 

using FastQC v0.11.4 (Andrews 2010). We trimmed data using AdapterRemoval v2.2.1 

(Schubert et al. 2016) and aligned trimmed data to the cane toad reference genome (Rhinella 

marina PRJEB24695; Edwards et al. 2018) using HISAT2 v2.1.0 (Kim et al. 2015). The 

water blank had very low QC-passed reads (637 reads) and showed low contamination in 

library preparation and sequencing process. Non-control samples presented an average of 

23,330,961 (+/- 21,763,581) QC passed reads, with a mean GC content of 45.96% (+/- 

1.95%) and a mean mapping efficiency of 78.21% (+/- 1.11%). Samples presenting less than 

5,000,000 reads were removed from further analysis, resulting in the inclusion of 55 cane 

toad samples. We used SAMtools (Li et al. 2009) to sort and index bam files and then loaded 

them into Rstudio (R Core Team 2020). We estimated the methylation status of the 

sequenced loci using “msgbsR” v1.12.0, an R package developed specifically for msGBS 

data analysis (Mayne et al. 2018). After removing loci not yielding reads in more than 40% 

of the toad samples and less than one count per million (CPM) in at least 60% of toads using 

“edgeR” v3.30.3 (Robinson et al. 2010) in R, a total 165,858 loci were kept for further 

analysis.  
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SNPs profiling 

We used BCFtools v1.9 (Li et al. 2009) for SNP calling. We used VCFtools v0.1.15 

(Danecek et al. 2011) filtering to only keep variants that have been successfully genotyped in 

60% of individuals, a minimum quality score of 30, and a minor allele count of 3. These were 

then imported as a vcf output file into Tassel v5.0 (Bradbury et al. 2007). Here, only SNPs 

with at least 0.05 minor allele frequency (Suzuki et al. 2019) were kept (i.e., 38,140 SNPs). 

For duplicate positions, only the first SNP record was retained and the final SNPs dataset 

included 38,129 SNPs.  

Bacterial community profiling 

The filtering and processing of raw 16S rRNA sequences were described previously (Zhou et 

al. 2020). In summary, sequences were filtered by trimming the first 20 bases and truncating 

each read to 200 bases (based on sequence base quality score), dereplicating, then merging 

forward/reverse reads, removing chimeras, and finally generating amplicon sequence variants 

(ASVs) for downstream analysis through the DADA2 pipeline, implemented in QIIME2 

v2020.8 (Callahan et al. 2016; Bolyen et al. 2018). In this ASVs table, reads from colon 

samples and the positive control ranged between 103,245 and 245,059 counts; the PCR 

negative control yielded 6,727 reads. We used Greengenes version 13_8 to assign taxonomy 

to the ASVs (DeSantis et al. 2006). 

We imported ASVs into the R package “phyloseq” (McMurdie & Holmes 2013) to remove 

representatives classified to Archaea (n = 28), chloroplast (n = 17), mitochondria (n = 186), 

and 151 unassigned (“kingdom”) ASVs. We also removed the ASVs with prevalence of less 

than four, which makes the logged counts per sample more evenly distributed. The remaining 

9,878 taxa were classified to the kingdom with 62.62% assigned to phylum level and 39.65% 
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assigned to family level. We imported the pruned ASVs into QIIME2 and calculated 

observed ASVs (DeSantis et al. 2006), evenness (Pielou 1966), and Shannon (Shannon 1948) 

indices for bacterial alpha diversity (a measure of microbial diversity within individual host).  

We calculated Core50 gut community (Bletz et al. 2016) by filtering ASVs and keeping only 

those presented in a minimum of 50% of individual toads from each site. This calculation 

was performed separately for three sites from invasion-front toads: Kununurra (gut Core50: n 

= 111 ASVs), Old Theda (gut Core50: n = 118 ASVs), and Mary Pool (gut Core50: n = 129 

ASVs); three sites from range-core toads: Rossville (gut Core50: n = 148 ASVs), Croydon 

(gut Core50: n = 86 ASVs), and Lucinda (gut Core50: n = 117 ASVs). We then compiled 

filtered ASVs of the six sites to avoid excluding ASVs that may be specific to only one site. 

In combination, the gut Core50 contained 325 unique ASVs, which We used for analysis of 

beta diversity. 

Association analysis of heterozygosity and gut bacterial diversity within individuals  

Since host heterozygosity and homozygosity matrixes are highly correlated (Charpentier et 

al. 2008; Chapman et al. 2009), we chose Homozygosity by locus (HL, (Aparicio et al. 2006) 

as a metric of diversity within individuals. We used the R package “Genhet” v3.1 (Coulon 

2010) to calculate HL. Similarly, because the gut bacterial alpha diversity matric (Shannon) 

is highly correlated with other matrices (observed ASVs and evenness: R2 ≥ 0.8), we used 

Shannon diversity to estimate diversity within individuals. We examined the relationship 

between host heterozygosity and bacterial alpha diversity using the lmer function in the R 

package “lme4” v1.1-23 (Bates et al. 2015) to run linear mixed models (LMMs) by setting 

alpha diversity as the response and heterozygosity as the fixed effect, and collection site as a 

random effect. The linear mixed model dispersion and residuals were checked with 

DHARMa v0.3.3.0 (Hartig 2019). 
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Estimation of host genetic, host DNA methylation and gut bacterial diversity and 

differentiation  

We used the R package “phyloseq” v1.32.0 (McMurdie & Holmes 2013) to calculate a Bray 

Curtis pairwise distance matrices for SNP data, bacterial taxa abundance, and methylation 

abundance (per locus). Before calculating Bray Curtis distances, We used a Hellinger 

transformation (Legendre & Gallagher 2001) implemented in the package “microbiome” 

(Valverde et al. 2014) in R for bacteria and methylation abundance data, which converted 

absolute abundance to relative abundance. For SNP data, we used TASSEL v5.0 to convert 

vcf file genotype information into the probability that an allele selected at random at a site is 

the major allele (e.g. homozygous for major allele = 1.0, homozygous for minor allele = 0.0, 

and heterozygous genotype = 0.5). We used PCoA analysis through R package “phyloseq” 

v1.32.0 to visualize data, which is not very sensitive to the influence of double-zeros in the 

ordination analysis. To compare the diversity of genetic, DNA methylation and gut 

microbiota between invasion-front and range-core, we calculated the mean and standard 

deviation (SD) of Bray Curtis distances.  

We used the adonis command from the package “Vegan” to perform permutational 

multivariate analysis (the number of permutations = 9999) of variance (perMANOVA) to 

check whether the cane toad genotype, DNA methylation profile, and bacterial communities 

from each region were significantly different. We used the command betadisper in the 

package “Vegan” (Oksanen et al. 2019) to check the homogeneity of group variances, an 

assumption of perMANOVA. After finding significant differences between invasion-front 

and range-core toads, we performed pairwise comparisons between the six sampling sites 

using the command pairwise.perm.manova function in “RVAideMemoire” package with the 
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Wilks Lambda (Nath & Pavur 1985) and corrected for multiple testing (Herve 2018) using 

the Hochberg procedure (Hochberg 1988). 

To investigate relationships between host genotype, host DNA methylation and gut bacteria, 

we used two methods. First, we used a partial Mantel test implemented in the 

function mantel.partial in the R package “vegan” to compare Bray Curtis distance matrices, 

while controlling for the effect of geographic distance. After that, we examined the 

interactions among these three Bray Curtis distance matrices. Then we used LMMs to 

compare pairwise Bray Curtis distance matrices, accounting for geographic distance 

(rescaled) and population (invasion-front or range-core) as fixed factors, and individual toad 

ID as a random factor. We selected the models based on AIC and BIC values and checked 

their dispersion and residual plots. Each pairwise distance included two individuals: i and j. 

Each was used in two models: a model with bacterial distance as the response (Bacteria_distij 

~ Genotype_distij * Methylation_Distij + scale(Geographic Distanceij) + Populationi + 

Populationj + (1|SampleIDi) + (1|SampleIDj)); and a model with DNA methylation distance 

as the response (Methylation_Distij ~ Genotype_distij * Bacteria_distij + scale(Geographic 

Distanceij) + Populationi + Populationj + (1|SampleIDi) + (1|SampleIDj)). I then used 

“emmeans” v1.5.4 (V. Lenth et al. 2021) and “ggplot2” v3.3.2 (Wickham 2016) packages in 

R to visualize the output of the models with an interaction between gut bacterial, host DNA 

methylation and host genetic distances. To examine the interactions, we visualized how gut 

bacterial and host DNA methylation varied across different genetic distance classes. We used 

three representative values to present an infinite set of values with which to fix the 

continuous genetic distances (UCLA: Statistical Consulting Group). The three representative 

values of host genetic distances were the mean level of genetic distance, one standard 

deviation above the mean level of genetic distance, and one standard deviation below the 

mean level of genetic distance. The slope of the relationship between gut bacteria and host 
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DNA methylation was estimated based on these distance classes, which is a modified version 

of spotlight analysis (Aiken & West 1991). 
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All the data and supporting information will be made available online.  

1. Supplementary Figures S1. 

2. Supplementary Tables S1-2. 

The sequence data that support the findings of this study are openly available in NCBI 

Sequence Read Archive (16S rRNA data accession number: PRJNA670039, msGBS data 

accession number: PRJNA735013). 
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