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Abstract

Motivation: Protein-protein interactions are of great importance in the life cycles of living cells. Accurate
prediction of the protein-protein interaction site (PPIs) from protein sequence improves our understanding
of protein-protein interaction, contributes to the protein-protein docking and is crucial for drug design.
However, practical experimental methods are costly and time-consuming so that many sequence-based
computational methods have been developed. Most of those methods employ a sliding window approach,
which utilize local neighbor information within a window size. However, they don’t distinguish and use the
effect of each individual neighboring residue at different position.
Results: We propose a novel sequence-based deep learning method consisting of convolutional neural
networks (CNNs) and attention mechanism to improve the performance of PPIs prediction. Our attention-
based CNNs captures the different effect of each neighboring residue within a sliding window, and therefore
making a better understanding of the local environment of target residue. We employ experiments on
several public benchmark datasets. The experimental results demonstrate that our proposed method
significantly outperforms the state-of-the-art techniques. We also analyze the difference using various
sliding window sizes and amino acid residue features combination.
Availability: The source code can be obtained from https://github.com/biolushuai/attention-based-CNNs-
for-PPIs-prediction
Contact: iexfnan@zzu.edu.cn or zhangst@zzu.edu.cn
Supplementary information: Supplementary data are available online.

1 Introduction
Proteins carry out their cellular functions by interacting with a variety
of other molecules including DNA, RNA, small ligands and other
proteins(Chen and Kurgan, 2009; Ding et al., 2010; Sudha et al.,
2014; Fornes et al., 2014). Protein–protein interactions drive many life
processes, such as immune response(Mian et al., 1991), transport(Rohani
and Zydney, 2009), and signal transduction(Kyriakis and Avruch, 2001).
Protein–protein interactions are driven by forming chemical bonds. The
bonding amino acid residues participating in interactions are protein-
protein interaction sites(Li and Ilie, 2020). Accurate recognition of these
interaction site is helpful for the development of novel therapeutics(Kozma
et al., 2013; Petta et al., 2016), annotation of protein functions(Orii and

Ganapathiraju, 2012), and molecular mechanisms study of diseases(Nibbe
et al., 2011; Kuzmanov and Emili, 2013).

However, practical experimental methods for judging whether a
residue of protein sequence belongs to the binding sites remains costly and
time-consuming(Terentiev et al., 2009; Brettner and Masel, 2012; Wodak
et al., 2013). Therefore, a lot of computational predictors for protein-
protein interaction site (PPIs) prediction have been developed to bridge
the gap. These methods can be roughly divided into three groups: protein-
protein docking, structure-based interface prediction and sequence-based
interaction sites determination(Hou et al., 2017; Zeng et al., 2020). While
protein-protein docking and structure-based methods usually need the 3D
structure of proteins, sequence-based approaches are faster and cheaper as
they only utilize information from protein sequence. Also, compared with
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structure information, there are massive protein sequences because of the
popularity of high-throughput sequencing techniques.

In this study, we focus on the sequence-based computational models
for PPIs prediction, most of which apply machine learning algorithms,
including shallow neural networks(Ofran and Rost, 2003, 2007; Sanchez,
2006; Singh G, Dhole K, Pai PP, 2014), random forest(Wei et al., 2015,
2016; Hou et al., 2017), Naïve Bayes(Murakami and Mizuguchi, 2010),
logistic regression(Dhole et al., 2014) and ensemble learning(Wei et al.,
2016; Zhang and Kurgan, 2019; Li and Ilie, 2020; Zhang et al., 2020).
A lot of models in those studies employ a sliding window to gather
information from the local environment of target residue. However, the
sliding window approaches consider all the neighboring residues having
the same effect for PPIs prediction. In fact, each neighboring residue at
different position plays a different role in PPIs prediction. In recent years,
a new direction of neural network research has emerged. It learns to put
different “attention” on different parts of input, and has been applied in
machine translation(Bahdanau et al., 2015), sentence classification(Zhao
and Wu, 2016), compound–protein interaction prediction(Chen et al.,
2020), paratope prediction(Pittala and Bailey-Kellogg, 2020) and protein
structure prediction(Berkeley et al., 2020).

Here, we propose a novel deep learning model using attention based
convolutional neural networks(CNNs) for PPIs Prediction, where attention
mechanism is used to capture the neighboring residue information and
its correlation with the target residue. The experiment is carried out
on benchmark datasets, and our model outperforms the state-of-the-art
methods. In order to investigate whether the attention mechanism is helpful
to predict PPI sites, we remove it in our model for comparison purpose.
The detailed analyses show that attention mechanism is very important in
our model.

2 Materials and Methods

2.1 Datasets

In this study, we use the same protein sequences as the state-of-the-
art method DeepPPISP(Zeng et al., 2020), including three benchmark
datasets Dset_186, Dset_72(Murakami and Mizuguchi, 2010) and
PDBset_164(Singh G, Dhole K, Pai PP, 2014). All the protein sequences
in those datasets are collected form Protein Data Bank(Sussman et al.,
1999). The sequences are derived from heterodimeric structures with
resolution <3.0 Å, sequence homology <25% and length >50. Protein
structures with missing ratio (i.e. the number of missing residues of a
chain listed in REMARK465 divided by the total number of residues of
the chain) >30% are removed. Also, protein complexes with interface area
of <500Å2 or ≥2500Å2 as mentioned in PDBsum(Laskowski, 2009)
and transmembrane proteins listed in PDBTM(Kozma et al., 2013) are
removed. Same as the works in (Murakami and Mizuguchi, 2010; Singh G,
Dhole K, Pai PP, 2014; Zeng et al., 2020), an amino acid residue is defined
as an interaction site if its absolute solvent accessibility is <1Å2, before
and after the binding form; otherwise, it is defined as a non-interaction
site.

Table 1. Sumarry of datasets

Datasets
NO. of Protein

Sequences
NO. of Binding

Residues
NO. of non-Binding

Residues
TrainingSet 352 11206 61982
TestingSet 70 2330 9461

These three datasets come from different resources, and are integrated
to a fused dataset to insure that training set and testing set are from

an identical distribution, same as DeepPPISP(Zeng et al., 2020). The
reconstruction of datasets is helpful for making full use of all proteins
to train a deep learning model. Table 1 shows the size of datasets, the
number of binding residues and non-binding residues.

2.2 Input Features

In this work, we use residue features including one-hot encoding of
protein sequence, protein evolutionary information, and other predicted
structural features from protein primary sequence. Because we focus only
on the sequence-based computational method, the secondary structure
information used here are predicted by NetsurfP-2.0(Klausen et al.,
2019) rather than assigned by DSSP(Kabsch and Sander, 1983) which
takes protein structure as input. We also take advantage of other
features generated by NetsurfP-2.0(Klausen et al., 2019), such as solvent
accessibility and backbone dihedral angles. All those features are described
in detail as follows:

2.2.1 One-hot encoding of protein sequence
There are only 20 possible natural residue types, and we encode each raw
protein sequence as a 20 dimensional one-hot vector, where each element
is either 1 or 0 and 1 indicates the existence of a corresponding residue.

2.2.2 Position-specific scoring matrix
Various related works have proved that the evolutionary information
in position-specific scoring matrix (PSSM) is helpful for PPIs
prediction(Zhang and Kurgan, 2019; Hou et al., 2017; Zeng et al.,
2020). By running PSI-BLAST(Altschul et al., 1997) against the non-
redundant(McGinnis and Madden, 2004) database with three iterations
and an E-value threshold of 0.001, we get PSSM in which each residue
is encoded as a 20D vector representing the probabilities of 20 natural
residues occurring at each position. For each protein sequence with L
residues, there are L rows and 20 columns in PSSM.

2.2.3 Predicted structural features
In this study, we utilize NetsurfP-2.0(Klausen et al., 2019) to predict
local structural features from protein primary sequence, including solvent
accessibility, secondary structure, and backbone dihedral angles for each
residue of the input sequences. NetsurfP-2.0(Klausen et al., 2019) is a novel
deep learning model trained on several independent datasets and achieves
the state-of-the-art performance of predicting those local structural protein
features.

For every reside in each input sequence, we calculate its absolute
and relative solvent accessibility surface accessibility(ASA and RSA,
respectively) , 8-class secondary structure classification (SS8), and the
backbone dihedral angles(φ and ψ). ASA and RSA represent the solvent
accessibility of an amino acid residue. The predicted secondary structure
describes the local structural environment of a residue. And, φ andψ figure
the relative positions of adjacent residues. The 8-class secondary structures
are: 3-helix (G), a-helix (H), p-helix (I), b-strand (E), b-bridge (B), b-turn
(T), bend (S) and loop or irregular (L). All those residues features are very
helpful for PPIs prediction.

In our work, a 52D feature vector for each residue in every input protein
sequence is used. These features are richer than those in the state-of-the-art
method DeepPPISP(Zeng et al., 2020).

2.3 Model architecture

The PPIs prediction problem can be summarized as a binary classification
task: judging whether a residue from a given protein sequence binding
with its partner protein or not. As described in Section 2.2, each residue is
encoded into a 52D vector. And each protein sequence can be represented
as a matrix S, including a list of residues:
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Attention-based CNNs for PPIs prediction 3

Fig. 1. The deep neural network architecture of our model. In attention layer, the dotted lines correspond to formula (4)-(5), the black solid lines to formula (3), the blue solid line is copy
operation.

S = [r1, r2, r3, · · · , ri, · · · , rl]T , S ∈ R(l∗d) (1)

where ri ∈ Rd is the residue feature vector corresponding to the i-th
residue in the protein sequence, l is the protein sequence length, and d is
the residue feature dimension (52 in this paper).

2.3.1 Convolution neural networks
Convolution neural networks(CNNs) model has been adapted to various
bioinformatics tasks such as protein binding site prediction(Wardah et al.,
2020), protein-ligand scoring(Ragoza et al., 2017) and protein-compound
affinity prediction(Karimi et al., 2019). In PPIs prediction, the input
of CNNs is a protein sequence represented as a matrix S. The CNNs
model employs a convolutional operation on a sliding window of length
w(w = 2n+1) , where n could be any positive integer for the i-th target
residue ri. It means that we consider the target amino acid at the center
and 2n neighboring residues as input features of the target residue.Similar
as DeepPPISP(Zeng et al., 2020), we use the all-zero vector padding for
those amino acids which do not have neighboring residues in the left or
right. A convolutional operation can be shown as:

ci = f(w ∗ ri−n:i+n + b) (2)

where f is a non-linear activation function, and ri−n:i+n denotes
the concatenation of w residue vectors:ri−n:i+n = ri−n ⊕ ri−n+1 ⊕
· · · ⊕ ri ⊕ · · · ⊕ ri+n−1 ⊕ ri+n, where ri is the target residue, and
ri−n, ri−n+1, · · · , ri−1, ri+1, · · · , ri+n are neighboring residues.
After convolutional operation, a max pooling operation is applied on ci,
and two fully connected layers are followed which predicts the interaction
probability of the target residue. However, CNNs model treats neighboring
residues within a sliding window equally by direct concatenation, and
ignores their different effects on the target residue.

2.3.2 Attention-based Convolution neural networks
As shown in Fig.1, our model consists of four parts, i.e. input, attention,
convolution & polling and fully-connected layers. The input layer takes

the protein sequence as input and extract all sequence-based features.
The convolution & polling and fully-connected layers share the same
architecture as CNNs model said in Section 2.3.1. The attention layer
utilizes attention mechanism which is employed as an additional fully-
connected layer, and it is trained in conjunction with all the other network
components like other machine learning works (Zhao and Wu, 2016). To be
more specific, the attention layer is to build a context vector representation
for each residue. The context vector is concatenated with the input residue
vector to form a new residue representation, and it is then fed to the
convolution & polling layer.

The attention mechanism enables a target residue learning to pay
different attention on each neighboring residue. Neighboring residue
vectors are scored and combined in a weighted sum:

gi =
∑
j 6=i

αi,j ∗ rj (3)

where αi,j are attention weights and should satisfy the following
restrictions: αi,j ≥ 0 and

∑
i αi,j = 1. Context vector gi is derived

for target residue ri. gi is shown as a blue rectangle in Fig. 1.
The attention weights are calculated as:

αi,j =
exp(score(ri, rj))∑

j′ (score(ri, rj)
(4)

score(ri, rj) = v
T
a tanh(Wa[ri ⊕ rj ]) (5)

The residue pair correlation score score(ri, rj) is computed by a two-
layer neural network described in formula (5). And neighboring residues
rj,j 6=i with larger scores contribute more on context vector gi.

After attention layer, each residue ri is concatenated with its context
vector gi to form an extended residue vector r′i : r

′
i = ri ⊕ gi, r′i is then

used to fed into the convolution & polling layer. Attention mechanism
determines which residues should be put more attention on than other
residues over the sequence in PPIs prediction. At last, the fully-connected
layer output the binding probability of each target residue.
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2.4 Performance assessment

We use six evaluation metrics to evaluate the performances of the PPIs
prediction models. Five of them are classic threshold-dependent binary
classification metrics as shown in the following:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F −measure =
2 ∗ Precision ∗ Recall
Precision+ Recall

(9)

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(10)

where, TP(True Positive) is the number of interacting residues that
are correctly predicted as interacting, FP(False Positive) is the number of
non-interacting residues that are falsely predicted as interacting, TN(True
Negative) denotes the number of non-interacting sites that are identified
correctly, and FN(False Negative) denotes the number of interacting sites
that are identified falsely. Because all those five metrics are threshold-
dependent, we also utilize the area under the precision-recall curve
(AUC PR) which gives a threshold-independent evaluation on the overall
performance. Also, AUC PR is sensitive on imbalanced data, and PPIs
prediction is normally an imbalanced learning problem(Zeng et al., 2020).
Therefore, we take AUC PR as the most import metric for model
evaluation(Staeheli and Mitchell, 2006).

2.5 Implementation

We implement our model using PyTorch v1.4(Steiner et al., 2019). The
training configurations are: loss function: cross-entropy loss, optimization:
Adaptive Momentum (Adam); learning rate: 0.1, 0.01, 0.001; batch size:
32, 64, 128; dropout: 0.2, 0.5, 0.7; sliding window length: 3, 5, 7,
9, 11. Convolution layers with the kernels (3, 5 and 7) are used, and
the convolutional results are concatenated and fed to a two-layer fully
connected networks. The first fully connected layer has 512 nodes and the
second fully connected layer has 256 nodes. An independent validation
set (10% of our training set) is used to tune parameters. Training time of
each epoch varies roughly from 5 to10 minutes depending on the sliding
window length, using a single NVIDIA RTX2080 GPU.

3 Results

3.1 Comparison with competing methods

To evaluate the performance of our model for PPIs prediction, we compared
it with six competing sequenced-based computational methods including
PSIVER(Murakami and Mizuguchi, 2010), SPPIDER(Sanchez, 2006),
SPRINGS(Singh G, Dhole K, Pai PP, 2014), ISIS(Ofran and Rost, 2007),
RF_PPI(Hou et al., 2017) and DeepPPISP(Zeng et al., 2020). It must be
noted that DeepPPISP(Zeng et al., 2020) uses not only protein sequence but
also structure information when it computes protein secondary structure
using DSSP(Kabsch and Sander, 1983) which takes protein structure as
input.

The six competing methods all employ a sliding window approach.
Except for DeepPPISP utilizing a deep learning framework, all others

use shallow machine learning methods. The sequenced-based features
in those models include PSSM and predicted properties such as solvent
accessibility, fingerprints, evolutionary information, and structural
information. Our model uses one-hot encoding of protein sequence, PSSM,
and predicted accessibility, secondary structure information and backbone
dihedral angles. Specially, DeepPPISP combines local features with global
feature from the whole protein sequence. Our model only utilizes local
features from residues within a sliding window length.

Table 2 shows the results of our model and six competing methods on
the testing set. Results of PSIVER, SPPIDER, SPRINGS, ISIS, RF_PPI
and DeepPPISP are excerpted from DeepPPISP (Zeng et al., 2020). Our
model outperforms other competing methods on most assessment metrics.
Although our model’s accuracy is slightly lower than ISIS, our method
achieves the highest scores on all other metrics.

Table 2. Performance of our model and other competing methods

Method AUC PR ACC Precision Recall F-measure MCC
PSIVER 0.250 0.653 0.253 0.468 0.328 0.138

SPPIDER 0.230 0.622 0.209 0.459 0.287 0.089
SPRINGS 0.280 0.631 0.248 0.598 0.350 0.181

ISIS 0.240 0.694 0.211 0.362 0.267 0.097
RF_PPI 0.210 0.598 0.173 0.512 0.258 0.118

DeepPPISP 0.320 0.655 0.303 0.577 0.397 0.206
Our Method 0.359 0.657 0.313 0.611 0.414 0.229

3.2 The effects of different sliding window lengths

We employ the sliding window approach with different lengths (i.e. 3, 5,
7, 9, 11). As shown in Table 3, AUC PR, Precision, Recall, F-measure
and MCC obtained by our model of a sliding window length 5 are 0.359,
0.657, 0.313, 0.414 and 0.229, respectively, which are better than all other
window lengths. Recall of window length of 5 is lower than window lengths
of 3, 7 and 11. However, Precision and Recall are usually contradictory
performance metrics. The higher Precision is always accompanied by the
lower Recall. Therefore, the results show that our method performs best
when the sliding window length is 5.

Table 3. Performance of our model with different sliding window length

Window
Length

AUC PR ACC Precision Recall F-measure MCC

3 0.346 0.611 0.288 0.654 0.399 0.204
5 0.359 0.657 0.313 0.611 0.414 0.229
7 0.339 0.630 0.300 0.652 0.411 0.222
9 0.321 0.623 0.287 0.610 0.390 0.190

11 0.308 0.548 0.264 0.717 0.386 0.179

Compared with DeepPPISP(Zeng et al., 2020), our model doesn’t use
global features, and still achieves better performance with a small sliding
window size. It also shows that too long or too short sliding window
length isn’t helpful for PPIs prediction, and an appropriate number of
neighboring residues is effective for better representation of target residue’s
local environment. When the sliding window length is 3, the performance
of our model is poor as there are too few neighboring residues to get
effective information of target residue for prediction. When the sliding
window length is too long, such as 11, too many neighboring residues
cause distraction of “attention”. Therefore, our model performs badly as
well.
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3.3 The effects of different feature types

To find out what role each feature type plays in our model, we compare
the performances of our model with a sliding window length of 5 using
different feature combinations. Table 4 shows the effects of different input
feature types in our model. AUC PR drops to 0.347, 0.303, 0.353, 0.279,
and 0.339 from 0.359, when the input features of our model miss One-
hot, PSSM, SS8, ASA and RSA, and backbone dihedral angles(φ and ψ),
respectively. Among them, input features missing ASA and RSA have the
largest drop. When the missing feature is ASA and RSA, ACC, Precision,
Recall, F-measure, MCC drop to 0.544, 0.248, 0.641, 0.358 and 0.129,
respectively. Except for ACC, the missing of ASA and RSA cause largest
drop on other metrics. It indicates that ASA and RSA are the most import
features in our model.

Table 4. Performance of our model with different features combination

Missing
Features

AUC PR ACC Precision Recall F-measure MCC

One_hot 0.347 0.607 0.292 0.693 0.411 0.223
PSSM 0.303 0.521 0.260 0.769 0.388 0.185
SS8 0.353 0.567 0.280 0.757 0.409 0.221

ASA,RSA 0.279 0.544 0.248 0.641 0.358 0.129
φ, ψ 0.339 0.620 0.293 0.651 0.404 0.212
None 0.359 0.657 0.313 0.611 0.414 0.229

In the state-of-the-art method DeepPPISP(Zeng et al., 2020), the raw
protein sequence, PSSM, secondary structure are used. And, inspired by
word embedding techniques in natural language processing, an embedding
layer is applied to transform the one-hot encoding of a raw protein sequence
to a denser vector. Therefore, raw protein sequence contributes most in
DeepPPISP(Zeng et al., 2020). In our study, the usage of new predicted

features provides more useful information. And the same conclusion is
that all features used can get best results.

3.4 The effect and visualization of attention mechanism

Table 5 shows our attention-based convolutional neural network model
significantly outperforms the CNNs model on most evaluation metrics
due to the attention mechanism. As expected, the attention mechanism
distinguishes different effect of each neighboring residue and provides
more accurate information about target residue’s local environment.

Table 5. Effect of attention mechanism

Method AUC PR ACC Precision Recall F-measure MCC

CNNs 0.350 0.641 0.304 0.631 0.410 0.222
Our Method 0.359 0.657 0.313 0.611 0.414 0.229

Fig. 2 shows the averaged attention score visualization of each residue
type pair with various sliding window sizes. The vertical axis represents
the types of target amino acid residues and the horizontal axis represents
the neighboring residues. All residues types are in alphabetical order.
The red color represents that more attention is put on the corresponding
neighboring residue. On the contrary, the green color represents that less
attention is put. For example, when the sliding window length is 11, and
the target residue is Cysteine(C), the residue Tryptophan(W) draws the
most attention among all neighboring residue types.

The results show that the variations in attention scores don’t correlate
with the properties of amino acids such as polarity, charge and alkalinity
or acidity. In PPIs prediction, the attention mechanism captures context
information of protein sequence other than properties of individual amino
acid.

Fig. 2. Averaged attention scores visualization of each residue type pair with various sliding window lengths.
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However, it is obvious that when the sliding window length is 3, there
are very few dark red and dark green cells. In other words, neighboring
residues don’t get specific and effective attention as the window length
is too short. From both Table 3 and Fig. 2, we can see that when the
sliding window length is 5, our model performs best and neighboring
residues get most specific and effective attention. And when the length
of the sliding window grows longer than 5, the averaged attention scores
become even. Especial when the sliding window length is 11, almost every
neighboring residue doesn’t get enough "attention". When the sliding
window length is 9, "attention" focuses on a few types of neighboring
residues such as Proline(P) which cause poor results. We count the
number of occurrences of each residue type which is not relevant to this
concentration of "attention". This situation needs further study.

4 Conclusion
In this study, we combine attention mechanism with convolutional neural
networks to capture the residue correlations within a sliding window
for PPIs prediction using protein sequence information. Our model
can distinguish the effects of different neighboring residues on a target
residue. It captures more accurate information of the target residue’s
local environment. The experiments show that our model significantly
outperforms other state-of-the-art methods.

Though our method has superior performance over other competing
methods, it also has some potential limitations. First, similar like
other sequence-base methods, our program takes a lot of time to
generate sequence profiles by running PSI-BLSAT(Altschul et al.,
1997) and NetsurfP-2.0(Klausen et al., 2019). Second, although the
attention mechanism improves the overall performance, it takes additional
computation consumption to calculate attention scores, especially when
the sliding window length is long. Third, with the sliding window length
growing much longer, teh attention mechanism doesn’t lead to better
results.

In this study, we show that paying different attention on different
neighboring residue can be helpful for sequence-based PPIs prediction.
We believe that the attention mechanism has a great potential in other
biological sequence analysis and prediction problems. Currently we only
employ attention mechanism by a one-layer fully connected network. More
complicated neural networks architecture should be used for seeking better
results.

However, amino acid residues that are far apart in the sequence may be
adjacent in space and longer sliding window length needs to be considered.
The results of our model show than too long sliding window length cause
the concentration and distraction of “attention”. This problem needs further
study and discussion.
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