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2 

Abstract 1 

The approximate number system (ANS) is vital for survival and reproduction in animals 2 

and crucial in constructing abstract mathematical abilities in humans. Most previous 3 

neuroimaging studies focused on identifying discrete brain regions responsible for the ANS and 4 

characterizing their functions in numerosity perception. However, there lacks a neuromarker to 5 

characterize an individual’s ANS acuity, especially one based on the whole-brain functional 6 

connectivity (FC). Here, we identified a distributed brain network (i.e., numerosity network) 7 

using a connectome-based predictive modeling (CPM) analysis on the resting-state functional 8 

magnetic resonance imaging (rs-fMRI) data based on a large sample size. The summed strength 9 

of all FCs within the numerosity network could reliably predict individual differences of the 10 

ANS acuity in behavior. Furthermore, in an independent dataset from the Human Connectome 11 

Project (HCP), we found that the summed FC strength within the numerosity network could also 12 

predict individual differences in arithmetic skills. Our findings illustrate that the numerosity 13 

network we identified could be an applicable neuromarker of the non-verbal number acuity and 14 

might serve as the neural basis underlying the known link between the non-verbal number acuity 15 

and mathematical abilities.  16 

 17 

 18 

 19 

Keywords: Approximate number system, Numerosity, Connectome-based predictive 20 

modeling, Arithmetic skills, individual differences 21 
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3 

Introduction 1 

The number of items in a set is represented in humans by two different representational 2 

systems: a language-dependent cultural system that encodes the precise cardinality of elements 1; 3 

and an approximate number system (ANS) shared by adults 2, 3, infants 4, many animal species 5, 4 

6, 7, and even deep convolutional neural networks 8, 9, 10, which encodes quantity in an 5 

approximate, non-symbolic manner without verbally counting (i.e., numerosity perception). In 6 

animals, the ANS is of evolutionary importance as it can guide behaviors necessary for survival 7 

and reproduction, such as determining the relative amount of food during foraging 11, 12. In 8 

humans, the ANS is hypothesized to be the foundation of constructing more abstract 9 

mathematical abilities 13. For example, Harvey et al. 14 revealed a positive correlation between 10 

ANS acuity and math achievement, indicating the importance of ANS in shaping symbolic math 11 

skills.  12 

Over decades, significant progress has been made to understand how numerosity 13 

information is represented in the brain. For instance, neurophysiological studies revealed that 14 

neurons in the prefrontal and parietal cortices of macaques were tuned to the numerosity of 15 

spatial arrays 15, 16, 17, 18. In humans, using the fMRI approach, researchers have also found that 16 

the numerosity information was mainly represented in the frontoparietal association cortex, 17 

including the horizontal part of the intraparietal sulcus, which exhibited similar tuning to 18 

numerosity 19, 20, 21, 22 (add He et al., PNAS,2015). However, recent new evidence showed that 19 

other brain areas were also involved in processing numerosity information. For example, Harvey 20 

23 has proposed a numerical neural system including visual cortex, inferior temporal gyrus (ITG), 21 

fusiform gyrus, and angular gyrus, in addition to the parietal lobe and prefrontal cortex. The 22 

earliest numerosity-related neural activity has also been found in the visual cortex, such as V2 23 
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4 

and V3 24, 25, and numerosity information could be decoded in both the early visual and intra-1 

parietal cortex 26. Number neurons were also found in the medial temporal lobe (MTL) of human 2 

neurosurgical patients when they performed calculation tasks on symbolic and non-symbolic 3 

stimuli 27. The angular gyrus also plays a central role in the linguistic number representation 4 

system 28, 29. Taken together, the neural representation of the ANS system seems to involve 5 

multiple cortical areas. However, most of these previous studies focused on identifying the 6 

function of specific brain regions supporting the ANS. There still lacks a connectome-wise 7 

neuromarker based on whole-brain functional connectivity (FC) that can characterize an 8 

individual’s ANS acuity.  9 

FC measures the activity synchronization or interaction between fMRI bold oxygen level-10 

dependent (BOLD) signals of two brain areas 30, 31. Whole-brain FC analysis based on network 11 

theory provides information on how distributed brain regions simultaneously exchange or 12 

integrate information to support specific cognitive functions 32. Recently, a connectome-based 13 

modeling (CPM) analysis 33 has been proposed to predict individual differences in human 14 

behavior (e.g., cognitive abilities) based on participants’ whole-brain FC pattern. The CPM 15 

analysis provides a complementary measure of human cognitive abilities to traditional 16 

approaches that focused on specific functions of discrete brain regions. The CPM approach can 17 

be successfully applied to predict individual differences in several cognitive abilities, such as 18 

fluid intelligence (gF) 34, sustained attention 35, reading accuracy 36, and creative ability 37. 19 

Because substantial variations also exist in the ANS acuity among individuals 14, 38, 39, here in the 20 

present study, we aimed to employ the CPM analysis to develop a whole-brain neuromarker (i.e., 21 

numerosity network) for the ANS acuity based on the resting-state fMRI data. 22 
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5 

In addition, previous studies also illustrated that the CPM identified with one task could be 1 

generalized to predict the performance of other related tasks. For instance, sustained attention 2 

CPM, derived from healthy individuals in a sustained attention task, could also predict the 3 

ADHD-Rating-Scale (ADHD-RS) score in the ADHD patients 35, and the reading recall accuracy 4 

in another group of healthy individuals 36. As mentioned above, because the ANS plays a crucial 5 

role in determining an individual’s math achievement 14, the second aim of the present study is to 6 

examine whether the numerosity network that we identified above could also predict an 7 

individual’s arithmetic skills.  8 

Specifically, in a large sample dataset (n>250), we measured each individual’s ANS acuity 9 

(i.e., numerosity precision) using a dot-array number comparison (NC) task 14. We then 10 

constructed a numerosity CPM based on their resting-state fMRI data to predict the individual 11 

differences in ANS acuity, using a leave-one-out (LOO) cross-validation procedure. As a result, 12 

the summed FC strength within the numerosity network could predict individual differences of 13 

the ANS in the left-out participant. More importantly, we further examined whether the 14 

numerosity network can predict the performance of arithmetic skills in an independent dataset 15 

from the Human Connectome Project (HCP). Our results suggested that the summed FC strength 16 

within the numerosity network could also predict individual differences in arithmetic skills, not 17 

language comprehension abilities. In sum, our findings demonstrate that the ANS acuity can be 18 

reliably predicted from the strength of the numerosity network of each individual, and imply that 19 

the numerosity network might also serve as the neural basis underlying the known link between 20 

ANS acuity and mathematical ability. 21 

 22 

Results  23 
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6 

Behavioral performance 1 

The present investigation included an ANS dataset and an HCP math/story dataset. The 2 

ANS dataset consisted of a primary dataset and a validating dataset. It was used to obtain and 3 

verify the numerosity network. The HCP math/story dataset was used to investigate whether the 4 

numerosity network identified in the previous ANS dataset could predict individual differences 5 

in arithmetic skills and/or language comprehension abilities. In the ANS dataset,  we calculated 6 

the Weber fraction for each participant, representing the participant's ANS acuity 14. In the HCP 7 

math/story dataset, we calculated two measures of the inverse efficiency score (IES) for each 8 

participant, representing the participant’s arithmetic skills and language comprehension abilities, 9 

respectively 40. Larger scores of Weber fraction or IES performance indicate poorer numerosity 10 

acuity or arithmetic skills, respectively. The mean performance for these behavioral tasks of all 11 

datasets was shown in Table 1.  12 

Because the Jarque-Bera tests of normality revealed that these behavioral scores were not 13 

normally distributed (Fig. 1 B-E), we thus used Spearman’s rank correlation for the edge 14 

selection in establishing the numerosity network during the CPM analysis. Note that the 15 

numerosity network was constructed using the ANS primary dataset and validated using the 16 

ANS validating dataset.  17 

Numerosity network can predict the individual differences in the ANS acuity 18 

In the ANS primary dataset (141 participants), using the Shen et al. protocol 33, we adopted 19 

the LOO cross-validation method to test whether the intrinsic FC profile can predict the Weber 20 

fraction. For each LOO iteration, all 141 participants were divided into training (140 21 

participants) and testing (1 left-out participant) sets. In the training set, for each edge between 22 

pair of nodes within the Shen’s atlas 41, we calculated the correlation between its FC and the 23 
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7 

Weber fraction across participants. Edges showing significant positive or negative correlation 1 

(p<0.01) composed a positive or negative predictive network, respectively. Next, for each of the 2 

140 participants, we calculated the summed strength of all FCs within the positive and negative 3 

networks separately. We constructed a general linear model (GLM) for both the positive and 4 

negative networks by relating the summed strength to the Weber fraction across 140 participants 5 

in the training set. Then, in the testing set, the GLM was used to obtain the predicted Weber 6 

fraction of the left-out participant from his/her summed FC strength within the positive and 7 

negative network separately.  8 

Across all 141 LOO iterations, we then calculated the Pearson’s correlation between the 9 

observed and predicted Weber fraction scores to evaluate the predictive power. For the positive 10 

networks, the correlation between observed and predicted Weber fractions was significant (r = 11 

0.204, p = 0.015), while for the negative networks, the correlation was non-significant (r = 12 

0.032, p = 0.703) (Fig. 2). We carried out a permutation test to further confirm the reliability of 13 

these results. We shuffled the behavior performance across participants 10,000 times and 14 

calculated the Pearson's correlation coefficients between observed (randomly shuffled) and 15 

predicted Weber fraction. We found that the positive network outperformed the set of 10,000 16 

permutation tests (pperm = 0.0081). In comparison, the negative network did not outperform the 17 

set of 10,000 permutation tests (pperm = 0.3510). There was a significant difference in the 18 

predictive power between the positive and negative networks (Steiger's z = 2.67, p = 7.6×10-3) 42. 19 

It thus suggests that the strength of the functional connectivity profile within the positive 20 

networks could predict individual differences in ANS acuity. However, the negative network did 21 

not show the predictive ability of the individual differences in ANS acuity. Therefore, in the 22 

subsequent analysis, we focused on the predictive power of the positive network. Note that the 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 12, 2021. ; https://doi.org/10.1101/2021.07.09.451740doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.09.451740
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

predictive ability of the numerosity network cannot be alternatively explained by head motion, as 1 

the average frame-to-frame motion was not correlated with Weber fraction (r = -0.0149, p = 2 

0.8607).  3 

Note that the positive networks differed across iterations. Across all 141 iterations, the 4 

number of edges within the positive ranged from 114 to 155. We generated a final numerosity 5 

network by selecting the overlapping edges of the positive networks across all iterations. There 6 

were 87 nodes and 80 edges in the final numerosity network.  7 

Then, in the independent validating dataset (112 participants), we evaluated whether the 8 

final numerosity network could successfully predict the individual differences of the ANS acuity. 9 

The correlation between the summed strength of the numerosity network and the Weber fraction 10 

across participants was significant (r = 0.236, p = 0.012) (Fig. 3 A). We also conducted the same 11 

permutation test to confirm this result further. The numerosity network outperformed the set of 12 

10,000 permutations where we randomly shuffled the behavior performance across participants 13 

(pperm = 0.0060). It thus indicated that the final numerosity network we identified could serve as a 14 

connectome-based neuromarker to predict an individual’s ANS acuity reliably.  15 

Summed FC strength within the numerosity network can predict arithmetic 16 

skills 17 

To address our second aim, we further evaluated whether the summed FC strengths within 18 

the numerosity network could predict the individual differences in the arithmetic skills in an 19 

HCP math/story dataset. We found that the summed FC strengths within the numerosity network 20 

we identified above correlated significantly with the IESs in the math task (r = 0.247, P = 0.006) 21 

(Fig. 3 B). The numerosity network also outperformed the set of 10,000 permutation tests where 22 

we randomly shuffled the IES performance in the math task across participants (Pperm=0.0025). 23 
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9 

The greater the summed FC strength within the numerosity network, the larger the IES measure 1 

of the arithmetic skills. Greater summed FC strength within the numerosity network pointed to 2 

both the higher Weber fraction (i.e., poorer numerosity precision) in the NC task and the larger 3 

IES (i.e., poorer arithmetic skills) in the math task. It thus indicates that the numerosity network 4 

could also predict the performance of arithmetic skills, even in a completely new dataset.    5 

We next evaluated whether the numerosity network could predict the IES of the story task. 6 

We found that the summed FC strength within the numerosity network could not predict the IES 7 

in the story task (r = 0.109, P = 0.234) (Fig.3 C). We again ran permutation tests and found that 8 

the numerosity network failed to outperform the set of 10,000 permutations where we randomly 9 

shuffled the IES performance in the story task across participants (Pperm=0.1161). 10 

In short, these findings suggest that the numerosity network could only predict the 11 

individual differences in the arithmetic skills in specific, but not language comprehension 12 

abilities in general. 13 

Anatomical locations of network edges 14 

We also examined the Anatomical locations of network edges within the numerosity 15 

network. The numerosity neuromarker involves a distributed neural network in the neocortex 16 

(Fig. 4B). As shown in Fig. 4A, in the numerosity network, 45 nodes were in the right 17 

hemisphere, and 42 nodes were in the left hemisphere. 18, 17, 13, 13, 12, 11, and 3 nodes located 18 

in seven macroscale regions (i.e., the temporal, prefrontal, motor, limbic, occipital, parietal, and 19 

insula) in Shen’s atlas 41 (Fig. 4C). Contralateral connections (50 edges) were more common 20 

than ipsilateral connections (30 edges) in the numerosity network (χ2(1) = 5.0022, p = 0.0253). 21 

There were 19 right-right connections and 11 left-left connections in the numerosity network 22 

(χ2(1) = 2.3793, p = 0.1229).  23 
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10 

The numerosity networks include many numerosity-related brain regions previously 1 

revealed, such as the early visual cortex 43, parietal sensory cortex 26, angular gyrus 44, medial 2 

temporal gyrus (MTG) 27, the motor cortex 45, and prefrontal cortex 18. However, some regions in 3 

the numerosity network, such as the visual association cortex, inferior temporal gyrus (ITG), and 4 

fusiform gyrus, have not been reported to be involved in processing numerosity information. The 5 

occipital (primary visual and visual association) nodes mostly connect to parietal and motor 6 

regions (Fig. 5A). There are dense connections between left temporal nodes and right motor, 7 

right parietal regions (Fig. 5B, 5C). The PFC nodes mainly connect within the lobes (Fig. 5D). 8 

Detailed information of all nodes and edges could be found in supplementary materials.  9 

In addition, we investigated hub nodes in the numerosity network by ranking all nodes 10 

according to their degree centrality 46 (DC; i.e., the number of direct functional connections 11 

between a given node and the rest nodes within the numerosity network). The top 27 nodes with 12 

high DC are presented in Table 2 (DC>1). Regions with the highest DC indicates the hub regions 13 

of the numerosity network, including brain regions in the occipital (e.g., right primary visual 14 

cortex, Brodmann area (BA) 17, DC = 11), motor (e.g., right premotor cortex, BA 6, DC = 6), 15 

and temporal (e.g., left ITG, BA 20, DC = 5) cortex.  16 

 17 

Discussion  18 

In the present study, using the CPM analysis, we obtained a numerosity network based on 19 

the numerosity comparison task, whose strength could reliably predict the individual differences 20 

in the ANS acuity among individuals. This identified numerosity network consisted of functional 21 

connections between distributed brain regions, suggesting that a whole-brain, widely distributed 22 

numerosity network could serve as a reliable neuromarker for an individual’s non-symbolic 23 
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11 

numerosity ability. The robust predictive power of this numerosity neuromarker was further 1 

verified in a completely new dataset with the same behavioral task. 2 

Only the positive network could predict individual differences in the ANS acuity. The 3 

negative network could not reliably predict the ANS acuity among individuals. Similar to our 4 

results, in predicting individual gF score 34, the negative network also showed less accurate 5 

predictions than the positive network. When the nodes were restricted within frontoparietal 6 

networks, the positive-feature models showed significant prediction results. In contrast, negative-7 

feature models didn’t show significant predictive power 34. The reason for the inability of the 8 

negative network to predict the individual differences in the ANS acuity still needs future 9 

investigation.  10 

Another significance of our study was that the numerosity neuromarker we identified could 11 

also specifically predict individual differences in arithmetic skills. In the literature of numerosity 12 

perception, many studies have found a positive correlation between numerosity precision and 13 

cognitive arithmetic skills 14, 47, suggesting that the number sense may serve as a ‘start-up’ tool 14 

for mathematics acquisition13. Our results provided a neural basis for this important link, 15 

suggesting that numerosity perception and arithmetic skills may share similar functional 16 

networks. On the contrary, this numerosity network could not predict language comprehension 17 

abilities, consistent with previous findings that mathematical processing relies on specific brain 18 

areas and dissociates from language processing 48, 49, 50.  19 

The increased strength of the numerosity network was indicative of poor numerosity acuity 20 

or arithmetic skills. It seems to be counterintuitive. However, there were two possible 21 

explanations for this finding. One possible explanation was that this result might reflect a kind of 22 

compensatory mechanism 51. The participants with poor numerosity acuity need more sensory 23 
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representation of the stimulus. Another possible explanation was that the strength of the 1 

numerosity network might represent the control ability to inhibit non-numerical magnitude 2 

information when extracting numerosity information, which can characterize numerosity 3 

information more accurately 52, 53, 54, 55, 56. However, our current findings cannot provide direct 4 

evidence to support any of these two accounts. Therefore, further investigations are needed to 5 

address this issue.  6 

At the node level, the numerosity network involves multiple distributed regions, such as 7 

occipital regions (early visual cortex, visual association), sensorimotor regions (premotor cortex, 8 

supplementary motor cortex, primary sensory cortex), temporal regions (ITG, temporopolar area, 9 

and fusiform), and prefrontal areas (Frontopolar area and orbitofrontal cortex). Most of these 10 

regions have been suggested to involve in numerosity processing. For instance, Previous studies 11 

show that numerosity processing involves at least two temporal stages in the visual cortex 57. 12 

Subsequent studies found that the earliest activity likely arises from areas such as V2 and V3 24. 13 

The sensorimotor cortex is suggested to be involved in a generalized system with quantitative 14 

information processing 45. In monkeys, neurons in the parietal sensorimotor area respond to the 15 

number of self-generated motor actions 58. A link between mathematics acquisition and motor 16 

skills has also been reported in children with learning disabilities, showing a correlation between 17 

motor skills and proficiency in solving mathematical problems 59. Both premotor and parietal 18 

areas get additional activation during verbal counting of visual and auditory items 60. Studies in 19 

humans 61, 62 indicated parts of the parietal cortex as a core number system that processes 20 

symbolic and non-symbolic numerical magnitude. There is also evidence that single-neuron 21 

activity from the medial temporal lobe (MTL) encoded numerical information when participants 22 

performed calculation tasks on symbolic and non-symbolic stimuli 27. Neurons in the lateral 23 
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prefrontal cortex responded selectively to a specific number of items (i.e., numerosity) in visual 1 

multiple-dot displays 63. Therefore, the numerosity system might rely on the cooperative work of 2 

multiple distributed brain regions.  3 

At the edge level, in the numerosity network, occipital regions are connected with angular 4 

gyrus, ITG, and fusiform gyrus, which could be conceptualized as a communication process 5 

between visual input and visual information extraction, such as visual recognition, spatial 6 

orientation, semantic representation processing. Moreover, the numerosity network did include 7 

many connections between occipital nodes and sensorimotor nodes, indicating the interaction 8 

between visual perception, action planning, and execution in the numerosity system. These 9 

results show a crucial role of the sensorimotor cortex in the numerosity system and the strong 10 

interaction between different perceptual features in the numerosity system 45. In addition, the 11 

numerosity network shows dense connections between left temporal and right premotor, and 12 

between left temporal and right parietal sensorimotor regions. These connections may present 13 

functional coupling between ventral and dorsal areas of the numerosity system. The numerosity 14 

network also shows connections within the prefrontal lobe. A nonverbal quantification system 15 

resides in a dedicated parietal-frontal brain network in primates 64. However, our numerosity 16 

network did not contain any parietal-frontal connections. Our findings provided a 17 

complementary measure of numerosity perception and arithmetic skills to traditional approaches 18 

that focused on the specific function of discrete brain regions.  19 

However, it remains an open question whether the numerosity network we identified could 20 

predict changes in ANS acuity during development. Previous research has revealed that the 21 

precision of numerical acuity is sharped with age and the acquisition of formal mathematical 22 

education, which may reflect an ability to focus on numerical information while filtering out 23 
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non-numerical information 53, 54, 55, 56, 65.  Testing the change of the numerosity network 1 

associated with the within-individual changes in numerosity perception and mathematical 2 

abilities over years can inform the common and distinct functional architecture of these 3 

processes during development. In particular, it can provide insights into how functional brain 4 

organization reflects risk for or resilience to impairments such as developmental dyscalculia or 5 

mathematical difficulties, potentially informing early treatments or interventions.  6 

A limitation of our study is that the ANS acuity and arithmetical skills were only assessed 7 

by specific paradigms. And we didn’t include the investigation of symbolic number 8 

representation. Further research could include various number-related tasks to verify our findings 9 

or address the common and distinct functional architecture of these tasks related to number 10 

perception and mathematical abilities.  11 

 12 

Methods  13 

Overview 14 

In the primary ANS dataset, we constructed a numerosity CPM based on their behavior 15 

performance in an NC task and their resting-state fMRI data, to predict the individual differences 16 

in the ANS acuity, using a leave-one-out cross-validation procedure. The reliability of the 17 

identified numerosity network was verified in an independent validating ANS dataset with the 18 

same NC task. Then in the HCP math/story dataset, we examined whether the identified 19 

numerosity network could predict the individual differences in the arithmetic skills. 20 

ANS dataset  21 

Participants. The behavioral data, and the structural and resting-state fMRI data were collected 22 

from two batches of college students (Batch A and Batch B). Data from the Batch A (154 23 
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participants; age: 20–25; mean = 21.66, SD = 1.07; 65 males) was used to construct the 1 

numerosity CPM. Data from the Batch B (145 participants; age: 20–25, mean = 21.39, SD = 2 

0.91; 36 males) was used to validate the reliability of the numerosity network. Batch A and 3 

Batch B datasets correspond to the ANS primary and validating datasets, respectively. All 4 

participants have no history of neurological disorder (e.g., mental retardation, traumatic brain 5 

injury) or psychiatric illness. The experimental protocol was approved by the Institutional 6 

Review Board of Beijing Normal University. Written informed consent was obtained from all 7 

participants before the study.  8 

NC task. Similar to previous research 14, a classical NC paradigm was used to measure 9 

participants’ ANS acuity. In each trial, a spatially intermixed blue and yellow dot display was 10 

presented on a computer screen for 750 ms (Fig1. A). Participants indicated which color was 11 

more numerous by the keypress. The ratio between the two sets of colored dots varied at 11 12 

levels, including 12:11, 11:10, 10:9, 9:8, 8:7, 7:6, 6:5, 10:8, 8:6, 9:6, and 12:6. The color of the 13 

dots set was counterbalanced across trials. Dot-size of each ratio level was controlled: the 14 

average blue dot size variation was equal to the variation range of the average yellow dot size. 15 

Participants completed forty test trials after practicing five practice trials. 16 

The minimum distinguishable difference between numbers of blue and yellow dots that 17 

produces a noticeable response was estimated as each participant’s ANS acuity known as the 18 

Weber fraction. The Weber fraction of each participant was estimated by a QUEST routine 66, 67, 19 

68. The QUEST routine provides a given number of sequential trials and updating the probability 20 

distribution function (PDF) of Weber fraction based on the participant’s response and current 21 

PDF, following the Bayes’ Rule. After the final trial, the mean value of PDF was recorded as the 22 
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participant's Weber fraction and used to represent the participant's ANS acuity. Thus, a greater 1 

Weber fraction score corresponds to the poorer ANS acuity.  2 

Participants with divergent estimating sequences were excluded by visual inspection. 3 

Participants with Weber fraction greater than 0.5 were also excluded from the subsequent 4 

analysis (e.g., Weber fraction greater than 0.5 means an inability to distinguish 12 dots from 6 5 

dots). In sum, 13 participants in the ANS primary dataset and 25 participants in the ANS 6 

validating dataset were excluded from further analysis. 7 

MRI data and preprocessing. The structural and resting-state fMRI data were acquired in the 8 

same session. The MRI data were acquired from a Siemens 3T Trio scanner (MAGENTOM 9 

Trio, a Tim system) with a 12-channel phased-array head coil at the BNU Imaging Center for 10 

Brain Research, Beijing, China. T1-weighted structure images were acquired with a 11 

magnetization-prepared rapid gradient-echo (MPRAGE) sequence (TR/TE/TI = 2.53 s/3.45 12 

ms/1.1 sec, FA = 7 degrees, voxel size = 1×1×1 mm, slice thickness = 1.33 mm, number of 13 

volumes = 128) for each participant. The resting-state data was acquired using a T2*-weighted 14 

GRE-EPI sequence with different parameters from task-state fMRI (TR = 2000 ms, TE = 30 ms, 15 

flip angle = 90 degrees, number of slices = 33, voxel size = 3.125 × 3.125 × 3.6 mm).  16 

Resting-state fMRI images were preprocessed using the FMRI Expert Analysis Tool 17 

version 5.98, part of FMRIB’s Software Library (www.fmrib.ox.ac.uk/fsl). The first four 18 

volumes of each participant were discarded to allow for the stabilization of magnetization. In 19 

addition to head-motion correction, brain extraction, spatial smoothing (FWHM = 6 mm), grand-20 

mean intensity normalization, and removing a linear trend, several other preprocessing steps 21 

were also used to reduce spurious variance. These steps included using a temporal band-pass 22 

filter (0.01–0.08 Hz) to retain only low-frequency signals, and regression of the time course 23 
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obtained from motion correction parameters, the mean signals of the cerebrospinal fluid and 1 

white matter, and the first derivatives of these signals. Then, all functional images were aligned 2 

to the structural images using FMRIB’s linear image registration tools and warped to the 3 

MNI152 template using FMRIB’s nonlinear image registration tool. Since head motion might 4 

confound functional connectivity analyses, in the validating dataset, we excluded eight 5 

participants with frame-to-frame head motion estimation greater than 0.15 34. Finally, 141 6 

participants were retained in the ANS primary dataset, and 112 participants were retained in the 7 

ANS validating dataset. There was no correlation between head motion and Weber fraction in 8 

the retained participants of both datasets (the primary dataset: r = -0.0149, p = 0.8607; the 9 

validating dataset: r = -0.0068, p = 0.9433). 10 

Functional connectivity calculation. FC was calculated between ROIs or “nodes” in Shen’s 11 

atlas, which maximized the similarity of the time series of the voxels within each node 41, 69. A 12 

subset of nodes of the 268-node functional brain atlas was used in our study because some 13 

resting-fMRI scans did not cover the full brainstem and cerebellum. We thus focused on nodes in 14 

the neocortex by removing all nodes of the cerebellum, brainstem, and subcortex (67 nodes 15 

totally). The remained 201 nodes were shown in Fig. S1. The mean time course of each node was 16 

extracted as a measure of spontaneous neural activity in that node. Pearson's correlation 17 

coefficients (r) were calculated between the time courses of each pair of nodes and normalized 18 

using Fisher's r-to-Z transformation. Finally, a 201×201 FC matrix was obtained for each 19 

participant in the primary dataset and the validating dataset. 20 

HCP dataset 21 

Participants. Data for evaluating the numerosity network's predictive power in predicting the 22 

individual differences in mathematical and language comprehension abilities were from the 23 
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Human Connectome Project (Q1 and Q2 HCP data releases; 131 participants; age: 22–35; 30 1 

males). Resting-state fMRI data of both left-right (LR) and right-left (RL) phase-encoding runs 2 

(HCP filenames: rfMRI_REST1) were included in subsequent analysis. Consistent with the 3 

preprocessing procedure of the ANS dataset, we also excluded seven participants with frame-to-4 

frame head motion estimation greater than 0.15 (violated in either of LR or RL phase-encoding 5 

runs, HCP: Movement_RelativeRMS_mean).  6 

Behavioral Test. In the HCP language math/story task, participants answered math-related and 7 

story-related questions after hearing auditory blocks. The HCP language task consists of two 8 

runs that each interleaves four blocks of math task and four blocks of story task 70. The math task 9 

engages participants' attention continuously with mental arithmetic. The math task includes 10 

auditory trials and requires participants to complete addition and subtraction problems, followed 11 

by a 2-alternative forced-choice task. For example, "Four plus twelve minus two plus nine equals 12 

twenty-two or twenty-three?" The math task is adaptive to maintain a similar level of difficulty 13 

across participants. The story task includes brief and engaging auditory stories (5-9 sentences) 14 

adapted from Aesop's fables. For example, after a story about an eagle that saves a man who had 15 

done him a favor, participants were asked the question of "That was about revenge or 16 

reciprocity?" For both tasks, participants push a button to select either the first or the second 17 

choice. Median reaction time and accuracy were recorded for both math and story tasks (HCP 18 

math task: Language_Task_Math_Acc and Language_Task_Math_Median_RT, HCP story task: 19 

Language_Task_Story_Acc and Language_Task_Story_Median_RT).  20 

We calculated the inverse efficiency score (IES) to integrate response time and accuracy 40. 21 

The IES was calculated as median response time divided by accuracy, to evaluate mathematical 22 

and language comprehension abilities. There was no correlation between head motion and IES in 23 
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the remaining set of n = 124 participants for math and story tasks (LR: IES of Math r= 0.05, p= 1 

0.5588, IES of Story r= -0.03, p= 0.76; RL: IES of Math r= 0.01, p= 0.9114, IES of Story r= -2 

0.09, p= 0.32).  3 

MRI data and preprocessing. The HCP minimal preprocessing pipeline was used for the HCP 4 

data set 71. This pipeline includes artifact removal, motion correction, and registration to standard 5 

space. After this pipeline, several standard preprocessing procedures, including linear detrend, 6 

temporal filtering (0.01-0.1Hz), regression of 12 motion parameters (HCP data; these include 7 

first derivatives, given as Movement_Regressors_dt.txt) and mean time courses of the white 8 

matter and CSF as well as the global signal, were applied to the fMRI data 34. No spatial 9 

smoothing was used in HCP MRI dataset preprocessing. 10 

Functional connectivity calculation. All steps to construct resting-state FC networks were 11 

identical to those used in the ANS dataset. Data from both LR and RL phase-encoding runs were 12 

used to calculate connectivity matrices, respectively. The average of these two connectivity 13 

matrices was used as the participants' connectivity matrices. Then a 201×201 FC matrix was 14 

obtained for each participant. 15 

Numerosity CPM and numerosity network 16 

Numerosity CPM. Numerosity CPM was established to predict individual differences in the 17 

ANS acuity, using a leave-one-out (LOO) procedure 35, 36. One participant was left out for each 18 

LOO iteration as the testing set, and the remaining participants were regarded as the training set. 19 

The Spearman's rank correlation was calculated across participants between functional 20 

connectivity of each edge in the FC matrix and Weber fraction. Consistent with previous 21 

research 35, for each LOO iteration, in the training set, the edges showing significant positive or 22 

negative correlation with a p-value below a threshold (p<0.01) across participants were included 23 
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in a positive or negative network, respectively. The network strength of the training participant 1 

was defined as the participant's summed strength of all FCs within the positive or negative 2 

network. A general linear model (GLM) was fit to relate the summed strengths to the Weber 3 

fraction for positive and negative networks, respectively. Then, in the testing set, the GLM was 4 

used to obtain the predicted Weber fraction of the left-out participant from his/her summed FC 5 

strength within the positive and negative network. After the LOO procedure was repeated for 6 

each participant iteratively, we calculated the Pearson's correlation coefficient between the 7 

observed and predicted Weber fractions across all participants to evaluate the predictive power. 8 

The standard deviation (SD) method was applied to the Weber fraction to remove participants 9 

with an outlier of the Weber fraction. The Weber fraction of each participant was within the 10 

range of ± three times SD around the mean value. No participant was removed from the ANS 11 

primary dataset. 12 

Permutation test. To confirm the reliability of prediction results, we fixed the predicted Weber 13 

fraction and shuffled the observed Weber fraction across participants 10,000 times. We 14 

calculated the Pearson's correlation between predicted and observed (randomly shuffled) scores. 15 

The number of times that the correlation coefficients in the set of 10,000 permutation tests 16 

outperformed the correlation coefficient from the numerosity CPM divided by 10,000 was 17 

recorded as permutation test probability. 18 

Numerosity network. Note that the positive or negative networks differed across iterations. To 19 

obtain a unique numerosity network, we generated a final numerosity network by selecting the 20 

overlapping edges across all LOO iterations’ network of the numerosity CPM (i.e., the overall 21 

network consisted of edges found in all LOO iterations). Then, the numerosity neuromarker was 22 

defined as the summed FC strength within the final numerosity network in this study. We 23 
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evaluated the predictive power of the numerosity neuromarker on several datasets, including an 1 

independent ANS dataset and an HCP math/story dataset. Note that we used the numerosity 2 

network to denote the final numerosity network.  3 

The predictive power of numerosity network 4 

The predictive power of numerosity network on ANS validating dataset. The ANS validating 5 

dataset was used to confirm the reliable predictive power of the numerosity network to an 6 

independent dataset with the same NC task. To evaluate the predictive power of the numerosity 7 

network, we calculated the Pearson's correlation coefficients between the summed strength of the 8 

numerosity network and the Weber fraction of the ANS validating dataset. The standard 9 

deviation (SD) method (beyond the range of ± three times SD around the mean value) was used 10 

to exclude participants with outlier behavior performance from the correlation analysis. No 11 

participant was excluded from the ANS validating dataset.  12 

Permutation test. To confirm the significance of results on the ANS validating dataset, we fixed 13 

the strength of the numerosity network and shuffled the observed Weber fraction 10,000 times, 14 

and calculated the Pearson's correlation coefficients between them. Permutation test probability 15 

was calculated by the number of times that correlation coefficients in a set of 10,000 permutation 16 

tests outperformed the predictive power of the numerosity network, then divided by 10,000. 17 

The predictive power of numerosity network on HCP dataset. The HCP (math/story) dataset 18 

was used to evaluate the predictive ability of the numerosity network to arithmetic skills and 19 

language comprehension abilities. The predictive power of the numerosity network is evaluated 20 

by Pearson's correlation coefficients between the strength of the numerosity network and the 21 

behavioral performance of the HCP math/story dataset. Two participants (participant ID: 22 
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172332, 217429) in the HCP math task and two participants (participant ID: 193239, 255639) in 1 

the HCP story task were excluded because their performances were beyond the range of ± three 2 

times SD around the mean value. These four participants were excluded from the correlation 3 

analysis. Permutation test procedures were the same as those for the ANS validating dataset.   4 

Anatomical distribution of numerosity network. To determine the anatomical location of the 5 

numerosity network, we grouped the 201 nodes into seven macroscale regions, including the 6 

prefrontal (PFC), motor (Mot), insular (Ins), parietal (Par), temporal (Tem), occipital (Occ), and 7 

limbic systems (Lim). We calculated the number of functional connections within or between all 8 

the seven macroscale regions. To investigate the hub nodes in the numerosity network, we 9 

ranked all nodes according to their degree centrality (DC; i.e., the number of direct functional 10 

connections between a given node and the rest nodes within the numerosity network).  . The 11 

nodes and edges of the numerosity network were presented using BrainNet Viewer (V1.70, 12 

www.nitrc.org/projects/bnv) 72. 13 

 14 
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Figures  1 

 2 

Fig  1. Experimental task and group performance for the ANS dataset and HCP story/math dataset. (A) The paradigm for 3 

the NC task. (B) Histogram of weber fraction w, the ANS acuity, for the ANS primary dataset (n=141), as determined by a 4 

psychophysical model for each participant. (C) Histogram of weber fraction w for the ANS validating dataset (n=112). (D/E) 5 

Experimental task and histogram of the IES performance for the HCP math/story dataset (n=120). 6 

7 
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 1 

Fig  2. CPMs predict Weber fraction. Scatter plots show correlations between observed Weber fraction and predictions by 2 

positive (left) and negative (right) networks. Network models were iteratively trained on behavior and MRI data from n-1 3 

participants in the ANS primary dataset and tested on the left-out participant. The r and p-value above each plot show the 4 

Pearson's correlation coefficient between observed and predicted Weber fraction, and corresponding significance level. 5 
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 1 

Fig  3. The predictive power of numerosity neuromarker on several independent datasets. Pearson's correlations between 2 

network strength of numerosity network and behavior performance in the ANS validating dataset (A), HCP math dataset (B), and 3 

HCP story dataset (C) were calculated to assess the predictive power of numerosity neuromarker. The meaning of r and p shows 4 

the Pearson's correlation coefficient between numerosity network strength and each behavior performance, and corresponding 5 

significance level, respectively.  6 
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 1 

Fig  4. Anatomical locations of the numerosity network. (A) A 3d view of numerosity network edges and nodes on a glass 2 

brain. Nodes in the cerebellum, subcortical, and brainstem were not included in our analysis. Hence, Macroscale regions include 3 

the prefrontal cortex (PFC), the motor cortex (Mot), insula (Ins), parietal (Par), temporal (Tem), occipital (Occ), limbic 4 

(including the cingulate cortex, amygdala, and hippocampus; Lim). The larger size of a node indicates that the node gets a larger 5 

degree centrality (DC) value. (B) Cortical areas of the numerosity network. (C) All edges are grouped by macroscale region and 6 

hemisphere (L = left, R= right). Colorbar values indicate the number of edges within or between the macroscale regions.  7 
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 1 

Fig  5. Functional connections in the numerosity network in each of four macroscale regions. (A) occipital, (B) temporal, 2 

(C) parietal, and (D) prefrontal regions. Dot color indicates macroscale region as in Fig. 4. 3 
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Tables  1 

Table 1. Summary of behavioral data. Jarque-Bera tests indicated significant departures from normality, supporting the use of 2 
Spearman’s rank correlations. Because we sought to identify any potential departures from normality, no correction for multiple 3 
comparisons was applied across these tests. All p-values are based on two-tailed tests. 4 

Task Metric Participant # Mean SD Range Jarque-Bera(p) 

ANS primary dataset Weber fraction  141 0.252 0.099 [0.061, 0.474] 0.039 

ANS validating dataset  Weber fraction  112 0.236 0.088 [0.094, 0.430] 0.054 

HCP math Inverse efficiency score 120 46.910 7.713 [32.72, 66.77] 0.104 

HCP story Inverse efficiency score 120 35.461 4.290 [27.58, 48.84] 0.016 
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Table 2. Information of the hub nodes (DC>1) in the numerosity network.  1 

No. DC Node name L/R Macroscale region BA MNI 

1 11 Primary visual cortex R Occipital 17 (14.6, -68.3, 8.3) 

2 6 Premotor cortex R Motor 6 (49.2, -4.6, 48.1) 

3 5 Inferior temporal gyrus L Temporal 20 (-51.8, -18.2, -28.8) 

4 4 Fusiform gyrus L Temporal 37 (-60.3, -50.0, -14.0) 

5 4 Premotor cortex R Motor 6 (13.7, 6.3, 65.4) 

6 4 Fusiform gyrus L Temporal 37 (-26.7, -42.7, -16.1) 

7 4 Fusiform gyrus R Temporal 37 (55.2, -56.3, -4.8) 

8 4 Parahippocampal cortex L Temporal 36 (-30.0, -5.8, -40.9) 

9 3 Fusiform gyrus R Temporal 37 (41.6, -45.7, -22.6) 

10 3 Frontopolar area L Prefrontal 10 (-42.7, 47.3, -6.9) 

11 3 Temporopolar area R Temporal 38 (40.0, 18.9, -34.2) 

12 3 Primary sensory cortex R Parietal 1 (43.3, -10.8, 13.9) 

13 3 Supplementary motor area R Motor 6 (7.0, -8.1, 52.9) 

14 3 Visual association cortex L Occipital 18 (-22.3, -96,6, -10.1) 

15 2 Orbitofrontal cortex L Prefrontal 11 (-18.2, 19.0, -21) 

16 2 Ventral anterior cingulate gyrus R Limbic 24 (5.3, -1.0, 35.6) 

17 2 Angular gyrus R Parietal 39 (48.9, -58.1, 14.4) 

18 2 Frontopolar area L Prefrontal 10 (-6.9, 48.3, -5.7) 

19 2 Orbitofrontal area R Prefrontal 11 (5.1, 34.9, -17.4) 

20 2 Primary sensory cortex R Motor 1 (42.0, -23.4, 53.4) 

21 2 Paracentral lobule R Motor 6 (6.0, -22.3, 65.6) 

22 2 Primary motor cortex R Motor 4 (57.8, -8.3, 27.3) 

23 2 Inferior temporal gyrus L Temporal 20 (-49.3, -4.7, -37.4) 

24 2 Visual association cortex R Occipital 18 (23.7, -96.0, 6.5) 

25 2 Middle frontal gyrus L Prefrontal 8 (-39.3, 17.2, 46.7) 

26 2 Inferior parietal gyrus R Parietal 40 (52.8, -27.2, 40.9) 

27 2 Orbitofrontal cortex R Prefrontal 11 (13.9, 56.8, -16.6) 

BA, Brodmann area; DC, degree centrality; L, left; R, right. 2 
3 
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Supplementary information  1 
Fine spatial distribution of numerosity network 2 

The ROIs to which the occipital region is connected in numerosity network are visualized in 3 
Fig. 5A. The occipital (primary visual and visual association) nodes are mainly connected to 4 
temporal, parietal and motor regions. To be specific, the left occipital regions connect to right 5 
premotor cortex, left primary motor cortex, left primary sensory cortex, right angular gyrus, 6 
bilateral primary sensory cortex, right superior temporal cortex and right fusiform gyrus; the 7 
right occipital regions connect to right primary motor cortex, bilateral premotor cortex, bilateral 8 
primary sensory cortex, left supramarginal gyrus (SMG) and right superior temporal cortex.  9 

The temporal regions played an outsize contribution in the numerosity network (Fig. 5B). 10 
The left temporal and right temporal region show sort of dissimilar connection patterns. The 11 
connection between left temporal (temporopolar area, medial temporal gyrus, inferior temporal 12 
gyrus and fusiform gyrus) nodes and right motor, right parietal regions is especially dense, while 13 
no connections between right temporal and parietal cortex was found. To be specific, the left 14 
temporal nodes mainly connected to several pre-motor nodes, right parietal sensory areas 15 
(located near the intraparietal sulcus, IPS) and bilateral ventral/dorsal posterior cingulate cortex 16 
(PCC); the right temporal nodes connected to a part of bilateral prefrontal cortex (PFC), right 17 
motor cortex, left temporal cortex and bilateral occipital cortex. 18 

The ROIs connected to the parietal region are visualized in Fig. 5C. In the parietal region, 19 
most connections locate between right parietal sensory nodes and left temporal cortex, bilateral 20 
occipital cortex, as mentioned previously. The left parietal regions (primary sensory and SMG) 21 
merely connect with the primary visual area. The right parietal regions connect with the left 22 
inferior temporal gyrus (ITG), left fusiform gyrus, left parahippocampal gyrus (PPA), right 23 
primary visual cortex and left visual association cortex.  24 

The right motor regions got more dense connections than the left motor regions 25 
(supplementary Fig. 2A). The motor (primary motor/sensory and premotor) nodes are mainly 26 
connected with occipital and temporal cortex. To be specific, the left motor regions connect with 27 
left ITG, left PPA, right primary visual and left visual association nodes; the right motor regions 28 
primarily connect with bilateral ITG, bilateral fusiform gyrus, left PPA, bilateral primary visual 29 
and visual association nodes.  30 

The prefrontal cortex shows most connections located within prefrontal lobe (Fig. 5D). 31 
Besides the intra-lobe connections, the left prefrontal regions primarily connect with left 32 
premotor cortex, right fusiform gyrus and left medial temporal gyrus (MTG); the right prefrontal 33 
region connects to right primary sensory/motor cortex, right fusiform gyrus, right visual 34 
association area. 35 

The limbic cortex shows connections with all other six macroscale regions excepting insula 36 
(supplementary Fig. 2B). Limbic cortex connects more densely with motor and parietal cortex 37 
than other cortices. 38 
  39 
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 1 
Supplementary Fig. 1. The 201-region functional parcellation used to define network nodes in primary 2 
NC dataset. Colored nodes were included in the FC matrix calculation. All nodes (67 nodes) in the 3 
cerebellum, brainstem, and subcortex were not included in our analysis. 4 
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 1 
Supplementary Fig. 2. All connections in the numerosity network that include nodes in (A) motor and 2 
(B) limbic system. Dot color indicates macroscale region as in Fig. 4. 3 
 4 
 5 

 6 
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