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Abstract

Our understanding of the evolution of quantitative traits in nature is still limited by the chal-
lenge of including realistic trait distributions in the context of frequency-dependent selection and
ecological feedbacks. We develop a theoretical framework to analyse the dynamics of populations
composed of several morphs and structured into distinct classes (e.g. age, size, habitats, infection
status, species...). Our approach extends to class-structured populations a recently introduced
“oligomorphic approximation” which bridges the gap between adaptive dynamics and quantitative
genetics approaches and allows for the joint description of the dynamics of ecological variables
and of the moments of multimodal trait distributions. We also introduce a new approximation to
simplify the eco-evolutionary dynamics using reproductive values. This effectively extends Lande’s
univariate theorem not only to frequency- and density-dependent selection but also to multimodal
trait distributions. We illustrate the effectiveness of this approach by applying it to the important
conceptual case of two-habitat migration-selection models. In particular, we use our approach to
predict the equilibrium trait distributions in a local adaptation model with asymmetric migration
and habitat-specific mutational variance. We discuss the theoretical and practical implications of
our results and sketch perspectives for future work.

Many experimental and empirical studies in evolutionary ecology aim at understanding how eco-
logical processes affect how trait distributions change over time. This has motivated the development
of quantitative genetics methods to analyse the dynamics of quantitative traits (Lande, 1979; Bulmer,
1992; Falconer, 1996; Walsh & Lynch, 2018). Following Lande (1976, 1979, 1982)’s seminal work, most
quantitative genetics models assume unimodal trait distributions and frequency-independent selection,
leaving aside the problem of how multimodal distributions can be generated by frequency-dependent
disruptive selection. Under these assumptions, dynamical equations for the mean and higher moments
of a trait distribution can be derived for tightly clustered trait distributions (Barton & Turelli, 1987;
Turelli & Barton, 1990; Barton & Turelli, 1991). Assuming that trait distributions are narrowly
localised around a single mean also allows one to incorporate frequency-dependence to some extent
(Iwasa et al., 1991; Abrams et al., 1993), but many models rely on the more classical assumption
that trait distributions are and remain normally distributed. However, empirical evidence of skewed
(Bonamour et al., 2017) or multimodal distributions highlight the need for an alternative approach.
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A major limitation of current quantitative genetics theory is the reliance on simplified ecological
scenarios that are not representative of the complexity of eco-evolutionary feedbacks in nature. This
led to the development of adaptive dynamics theory, which, under the assumption that evolution
is limited by rare mutations, provides a mathematical framework to study the interplay between
ecological and evolutionary processes (Metz et al., 1992; Dieckmann & Law, 1996; Metz et al., 1996;
Geritz et al., 1998). Many authors have noted the similarities and subtle differences between AD
and QG approaches under the assumptions of small mutational steps and narrow trait distributions
respectively (Abrams et al., 1993; Abrams, 2001; Day, 2005; Lion, 2018c). However, there is a
clear conceptual gap in the canonical approaches to AD and QG: while adaptive dynamics has been
successful in taking into account environmental feedbacks and the emergence of polymorphism under
frequency-dependent disruptive selection, it does so by assuming strong constraints on the mutation
process and standing variation in the population. Recently, Sasaki & Dieckmann (2011) proposed
an alternative oligomorphic approach to bridge the gap between adaptive dynamics and quantitative
genetics theory. The crux of the oligomorphic approximation is to decompose the trait distribution
into a sum of narrow unimodal morph distributions and to derive the dynamics of the frequency, mean
trait value and variance of each morph. Suitable moment closure approximations at the morph level
yield a closed dynamical system. As such, the oligomorphic approximation can be seen as an extension
of quantitative genetics theory to take into account eco-evolutionary feedbacks and polymorphic trait
distributions.

The theoretical developments of Sasaki & Dieckmann (2011) rely on a number of additional assump-
tions, notably single-locus haploid genetics, large populations sizes, and unstructured populations. In
this paper, we retain the first two assumptions but investigate how class structure affects the dynamics
of quantitative trait distributions under the oligomorphic approximation. As class structure is ubiqui-
tuous in biological populations, this is an important extension to Sasaki & Dieckmann (2011)’s theory,
allowing us to take into account the fact that individuals can be in distinct demographic, physiological
or ecological states, such as different age groups, developmental stages, infection status, or habitats.

The paper is organised as follows. We first give a general decomposition of the trait distribution into
different morphs in a population structured into distinct classes. We then show how, by assuming that
each morph distribution is clustered around the morph mean, we can derive equations for the dynamics
of class-specific morph frequencies, morph means, and morph variances using Taylor approximations
of the vital rates describing between-classes transitions. We also apply recent theory on reproductive
value (Lion, 2018a,b; Lion & Gandon, 2021) to simplify the morph dynamics at the population level.
In particular, we show that the dynamics of morph means take the form of a frequency-dependent
extension of Lande’s theorem (Lande, 1976, 1979, 1982; Barfield et al., 2011), where the marginal
fitness effect on the vital rate from class j to class k is weighted by the morph’s reproductive value
in class k (a measure of class quality) and by the fraction of morph-i individuals that are in class j
(a measure of class quantity). Finally, we derive some simpler results for the important limit case of
two-class models, and apply this general framework to two specific models describing the interplay
between migration and selection in a population distributed over two habitats of distinct qualities
coupled by migration. The first example is a two-habitat extension of the resource competition model
analysed by Sasaki & Dieckmann (2011). The second example revisits the local adaptation models
analysed by Meszéna et al. (1997), Ronce & Kirkpatrick (2001), Débarre et al. (2013), and Mirrahimi
& Gandon (2020), but our oligomorphic approach allows us to express their results in terms of the
reproductive values of each habitat and to extend the analysis to asymmetric migration.

1 Densities and trait distributions
We consider a population of individuals characterised by a continuous phenotypic trait. The total
density of individuals with trait value z at time t is n(z, t) and, for simplicity, we denote the total
density of individuals as n(t) =

∫
n(z, t)dz (with a slight abuse of notation). We further assume that

the population is structured into K discrete classes, which can for instance represent different age
groups, developmental stages, or habitats. The density of individuals with trait value z in class k at
time t is nk(z, t). Similarly, we write nk(t) =

∫
nk(z, t)dz for the total density of individuals in class

2

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.08.451558doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451558
http://creativecommons.org/licenses/by-nc-nd/4.0/


k at t. See Table 1 for a description of the main notations in the paper.

1.1 Full distributions

The within- and across-class densities represent the raw statistics of the model. They can be used to
define some useful distributions to analyse the eco-evolutionary dynamics of the population. At the
ecological level, the class distribution can be defined as

fk(t) = nk(t)
n(t) , (1)

which represents the fraction of individuals that are in class k at time t. Note that ∑k f
k(t) = 1,

where the summation is over all classes, i.e. 1 ≤ k ≤ K (for simplicity, all summation limits will be
implicit in this article).

At an evolutionary level, two trait distributions can be defined. The within-class trait distribu-
tion is

φk(z, t) = nk(z, t)
nk(t) , (2)

which is the frequency of individuals with trait z in class k at time t. Averaging over classes yields
the across-class trait distribution

φ(z, t) = n(z, t)
n(t) . (3)

It is easy to check that, as expected,
∫
φk(z, t)dz =

∫
φ(z, t)dz = 1. Note that the class and trait

distributions are linked through the relationship φ(z, t) = ∑
k φ

k(z, t)fk(t).

1.2 Oligomorphic decomposition

Up to now, we have made no assumption on the trait distribution in the population. With the notations
defined so far, it is straightforward to produce a continuous-trait version of the Price equations derived
in Lion (2018a), but our aim here is slightly different, because we want to make specific predictions
on the dynamics of multimodal distributions. Following Sasaki & Dieckmann (2011), we therefore
assume that the trait distribution can be decomposed into M morphs. At the within-class level, we
write

φk(z, t) =
∑
i

φki (z, t)fki (t) (4)

where φki (z, t) is the distribution of morph i in class k at time t, and fki (t) is the frequency of morph
i in class k. Note that

∫
φki (z, t)dz = 1 and ∑i f

k
i (t) = 1, where the summation is implicitly over all

morphs (i.e. 1 ≤ i ≤M).
Equation (4) is a class-specific version of equation (5) in Sasaki & Dieckmann (2011). Biologically it

means that the full distribution φk(z, t) can be decomposed into a sum of morph distributions, φki (z, t),
each weighted by the morph frequency, fki (t). Under the assumption that the morph distributions are
sufficiently narrow, the dynamics of the full distribution can then be approximated by the dynamics
of morph-specific statistics, such as the morph means and variances, and morph frequencies. Figure 1
gives a graphical illustration of the oligomorphic decomposition using a two-class, two-morph example.

1.3 Morph moments

From the distributions φk(z, t), we can calculate class-specific moments, such as z̄k(t), the mean trait
value in class k at time t, and V k(t), the trait variance in class k at time t. Similarly, morph-specific
moments can be calculated from the distributions φki (z, t). For instance, the mean trait value of morph
i in class k at t is z̄ki (t), and the trait variance of morph i in class k at t is V k

i (t).
Under suitable moment closure approximations at the morph level, a morph can then be charac-

terised by its relative abundance (e.g. its frequency in each class, fki ), its position (e.g. the class-specific
morph mean z̄ki ), and its width (e.g. the class-specific morph standard deviation

√
V k
i ). Equation (4)
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Table 1: Definition of mathematical symbols used in the text

Symbol Definition Description
nk(z, t) Density of individuals with trait z in class k at t
nk(t) Total density of individuals in class k at t
n(z, t) = ∑

k n
k(z, t) Density of individuals with trait z at t

n(t) = ∑
k n

k(t) Total density of individuals at t
fk(t) = nk(t)/n(t) Fraction of individuals in class k at t
φk(z, t) = nk(z, t)/nk(t) Frequency of trait z in class k at t
φ(z, t) = n(z, t)/n(t) Total frequency of trait z at time t
fki (t) Morph frequencies within class k at t
φki (z, t) Morph distributions within class k at t
z̄k(t) =

∫
zφk(z, t)dz Mean trait value in class k at t

z̄(t) =
∫
zφ(z, t)dz Mean trait value at t in the whole population.

z̄ki (t) =
∫
zφji (z, t)dz Mean trait value of morph i in class k at t

V k(t) =
∫

[z − z̄k(t)]2φk(z, t)dz Trait variance in class k at t
V (t) =

∫
[z − z̄(t)]2φ(z, t)dz Trait variance at t in the whole population

V k
i (t) =

∫
[z − z̄ki (t)]2φki (z, t)dz Morph variance in class k at t

uki (t) Freq. of class-k individuals among morph-i individuals
vki (t) Morph-specific individual reproductive values in class k
cki (t) = vki u

k
i Morph-specific class reproductive values in class k

φi(z, t) = ∑
k φ

k
i (z, t)uki (t) Morph distribution at the population level at t (with

moments z̄i, Vi, ...)
φ̃i(z, t) = ∑

k φ
k
i (z, t)cki (t) RV-weighted morph distribution at the population level

at t (with moments z̃i, Ṽi, ...)
R(z) Matrix of transition rates rkj(z) (1 ≤ k, j ≤ K)
R Matrix of average transition rates r̄kj
Ri Matrix of morph-i average transition rates r̄kji

allows us to make connections between population-level moments and morph-specific moments. See
Table 1 for explicit definitions of the population-level and morph-specific moments, as well as figure 1
for a graphical summary of the notations.

1.4 Notational conventions

To simplify the notations, a number of conventions will be used throughout the paper. First, classes
will be identified by superscripts and morphs by subscripts. For classes, we use the superscripts j or
k, so that an implicit summation over k means that k takes values between 1 and K. For morphs,
we use the subscript i, which thus takes values between 1 and M . The symbol ` will be used either
for classes or morphs, when needed. Second, whenever it is clear from the context, we shall drop the
dependency on time, writing e.g. fk instead of fk(t).

2 Dynamics and separation of time scales
Having defined the statistics we need to describe the state of the population at a given time, we now
turn to their dynamics. Figure 1 illustrates how a multimodal trait distribution can be decomposed into
a mixture of unimodal morph distributions. By tracking the dynamics of these morph distributions,
we can understand how the various peaks of the multimodal distribution move and change over time.
To derive these dynamics, we first specify the rates associated with the different events of the life cycle,
then we calculate an approximation of these rates under the assumption that the morph distributions
are sufficiently narrow.
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(a) Ecological variables

Densities and morph frequencies Class reproductive values
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(b) Trait distributions

Class A φA(z): z̄A, V A...

φA
1 (z): z̄A

1 , V A
1 ... φA

2 (z): z̄A
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2 ...

Class B φB(z): z̄B, V B...
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1 fA
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decomposition
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2 = 1 − fB
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Morph 1 φ̃1(z): z̃1, Ṽ1... Morph 2φ̃2(z): z̃2, Ṽ2...
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1
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cB
2

RV
projection
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Figure 1: Summary of the notations and approach using a two-class, two-morph example. Panel
(a) shows the fast variables, which change on the ecological time scale. These are the densities of
individuals in each class, nA(t) and nB(t), the morph frequencies in each class, fki (t), and the morph-
specific class reproductive values, cki (t). In the simulation snapshot used to plot these graphs, morph
1 is relatively more abundant within class B (fB1 > fB2 ), but has a lower class reproductive value
(cB1 < cB2 ). Panel (b) shows the trait distributions, which change on the slow, evolutionary time
scales. The trait distribution in class A, φA(z, t), can be decomposed into a mixture of class-specific
morph distributions, φAi (z, t), weighted by the class-specific morph frequencies fAi (t). Note that, to
better illustrate the decomposition, the shaded areas represent fki (t)φki (z, t), and not the distributions
φki (z, t). This oligomorphic decomposition can also be applied to class B. On the slow time scale, the
relevant aggregate distributions at the morph level are the RV-weighted morph distributions φ̃i(z, t).
Note that all graphs have the same axis limits.
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2.1 Vital rates

At a general level, the vital rates are defined by functions rjk(z, E(t)), which give the rate of production
of individuals in class j by an individual in class k with trait z at time t. The variable E(t) represents
the environmental feedback, which collects all ecological variables needed to calculate the reproduction
and survival of individuals (Metz et al., 1992; Mylius & Diekmann, 1995; Metz et al., 2008; Lion,
2018c). For clonally reproducing organisms, this is sufficient to calculate the dynamics of the density
nj(z, t), as follows

dnj(z)
dt =

∑
k

rjk(z, E(t))nk(z). (5)

In the remainder of the manuscript, all operations on the vital rates rjk(z, E(t)) will be partial deriva-
tives or integration with respect to the first argument. Hence, we shall drop the dependency on
environmental feedback and write simply rjk(z) (and R(z) for the matrix of vital rates). However, it
must be kept in mind that this notation does not imply density-independent or frequency-independent
selection. Our formalism can be readily applied to scenarios where the vital rates depend on the den-
sity of conspecifics or other species, on the trait distribution, or on other biotic or abiotic ecological
variables (see e.g. Sasaki & Dieckmann (2011) and Lion (2018c)). Below, we will briefly illustrate this
flexibility using a resource competition model.

2.2 Oligomorphic approximation

The crux of the oligomorphic approximation is to assume that the morph distribution is tightly
clustered around its mean, that is the standard deviation of the distribution is proportional to a small
parameter ε (Sasaki & Dieckmann, 2011). In a class-structured model, this means that the quantity
ξki = z − z̄ki is small, and we write ξki = O(ε). A simple Taylor expansion of the vital rates rjk(z)
around the within-class morph mean z̄ki yields

rjk(z) = rjk(z̄ki ) + ξki
∂rjk

∂z

∣∣∣∣∣
z=z̄k

i

+ 1
2(ξki )2 ∂

2rjk

∂z2

∣∣∣∣∣
z=z̄k

i

+O(ε3) (6)

Integrating over the distribution φki (z) yields an approximation for the average vital rates of morph i,
in terms of the morph-specific mean and variances z̄ki and V k

i . We have

r̄jki = rjk(z̄ki ) + 1
2V

k
i

∂2rjk

∂z2

∣∣∣∣∣
z=z̄k

i

+O(ε4) (7)

Similarly, averaging over the distribution φk(z) yields the average vital rates r̄jk, which can be de-
composed in terms of morph averages as r̄jk = ∑

i r̄
jk
i f

k
i .

2.3 Separation of time scales

The oligomorphic approximation gives rise to a separation of time scales between ecological and
evolutionary variables. Specifically, the dynamics of the densities nk, class frequencies fk and morph
frequencies fki are all O(1) so that these can be treated as fast variables. On the other hand, the
dynamics of morph means and variances are at least O(ε) and O(ε2), repectively, so the morph
moments change on slower time scales. It is important to realise that this does not mean that there
is no feedback between ecology and evolution, and in fact this approximation can be used to study
situations where rapid evolution is fuelled by a large standing variance at the population level (for
instance if we have two morphs with very different mean trait values), while assuming that the standing
variation in each morph remains small.

This separation of time scales dictates the following step-by-step approach when analysing the
dynamics of polymorphic populations. First, we derive the dynamics of the ecological variables and
morph frequencies, for fixed values of the morph means and variances. The resulting equations are
reminiscent of those governing allele frequency change in classical population genetics models. Second,
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we relax the assumption that morph means are fixed, and derive the dynamics of the morph means.
Because the morph variances change on a slower time scale than the morph means, we can still assume
at this stage that morph variances are fixed, as classically assumed in quantitative genetics. Finally,
we relax this assumption, derive the dynamics of morph variances, and introduce a moment closure
approximation at the morph level to close the system.

3 Dynamics of ecological variables and morph frequencies
In this section, we derive the dynamics of the fast variables, which are the class densities nk(t) and
class-specific morph frequencies fki (t). We also introduce the idea of weighting each class by its
reproductive value in order to calculate the net effect of selection on the change of frequency of a
given morph.

3.1 Dynamics of densities

Collecting all the class densities nk(t) in a vector n, we can write

dn
dt = Rn (8)

where R is the matrix of average vital rates r̄jk. Using approximation (7), we have r̄jk = ∑
i f

k
i r

jk(z̄ki )+
O(ε2), so the dynamics of class densities only depend, to zeroth order, on the morph frequencies and
means.

Similarly, the vector of class frequencies f = n/n has the following dynamics (Lion, 2018a)

df
dt = Rf − r̄f (9)

where r̄ = 1>Rf = ∑
j

∑
k r̄

jkfk is the average growth rate of the total population. Again, the
oligomorphic approximation shows that the dynamics of class frequencies is O(1) and solely determined
by the morph frequencies and morph means.

3.2 Dynamics of morph frequencies

In Appendix A, we show that the dynamics of the within-class morph frequencies fki can be written
as

df ji
dt =

∑
k

fk

f j

(
fki r

jk
i − f ji r̄jk

)
=
∑
k

fk

f j

(
fki r

jk(z̄ki )− f ji
∑
`

fk` r
jk(z̄k` )

)
+O(ε2) (10)

which shows that the morph frequencies fki also have fast dynamics that depend only on the morph
positions and frequencies. Equation (10) is the class-structured extension of the first line of equation
(17) in Sasaki & Dieckmann (2011) and is reminiscent of the replicator equation (Crow & Kimura,
1970; Ewens, 2004).

It is also useful to introduce the total frequency of morph i, fi = ∑
k f

k
i f

k, and the vector ui
collecting the morph frequencies uki = fki f

k/fi, which gives the fraction of morph-i individuals which
are in class k. The dynamics of ui is then

dui
dt = Riui − r̄iui (11)

where Ri is the matrix of morph-specific average rates, r̄kji , and r̄i = 1>Riui is the average growth rate
of morph i. Hence, equation (11) is the morph-specific version of equation (9). Note the difference
between the two morph frequencies fki and uki . The frequency fki gives the fraction of morph-i
individuals among all class-k individuals, while the frequency uki is the fraction of class-k individuals
among all morph-i individuals.
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3.3 Dynamics of morph reproductive values

As in Lion (2018a), equation (11) has a "companion" equation (or adjoint equation, in mathematical
terms), which gives the dynamics of the vector of individual reproductive values for morph i, vi

dv>i
dt = −v>i Ri + r̄iv>i (12)

The reproductive value vki (t) measures the relative contribution to the future of a morph-i individual
in class k at time t, and therefore gives an instantaneous measure of the relative quality of class k
from the point of view of morph i. Note that vi and ui are co-normalised such that v>i ui = 1. This
co-normalisation condition means that the average quality of a morph-i individual is 1 at all times
(Lion & Gandon, 2021).

3.4 The net effect of selection on morph i

Equations (10) tell us whether a given morph increases or decreases in frequency within each class.
But suppose we want to know whether the overall effect of selection on morph i is positive or negative.
Intuitively, we need to calculate an average frequency over all classes, but how whould this average
be calculated? We can do this by weighting each class by its reproductive value, which amounts to
expressing fitness effects in each class into a common currency (Fisher, 1930; Taylor, 1990; Lehmann
& Rousset, 2014; Gardner, 2015; Grafen, 2015; Lion, 2018a). The net effect of selection on morph i
at a given time can then be captured by calculating the dynamics of this weighted average frequency
(Lion, 2018a). In the next sections, we will extend this idea to derive the net effect of selection on
the moments of the morph distributions, and show that this accurately describes the eco-evolutionary
dynamics when the morph distributions are sufficiently narrow.

4 Dynamics of morph means
On the fast time scale where morph means and variances do not change much, equations (8)-(10) are
sufficient to describe the eco-evolutionary dynamics of the population. We now look at the longer time
scale where morph means z̄ki change slowly but morph variances can be assumed to be fixed, leading
to equations that are reminiscent of classical quantitative genetics.

4.1 Class-specific morph means

In Appendix B, we show that the dynamics of morph means take the form of a class-structured Price
equation (similar to those derived in Lion (2018a,b)). With the oligomorphic approximation, and
assuming that the morph distributions are and remain symmetric, we obtain

dz̄ki
dt =

∑
j

uji
uki

(z̄ji − z̄ki )rkj(z̄ji ) + V j
i

∂rkj

∂z

∣∣∣∣∣
z=z̄j

i

+O(ε3) (13)

where the first term depends on the between-class phenotypic differentiation of morph i, while the
second term is scaled by the within-class morph variance V j

i . These two terms are O(ε) and O(ε2)
respectively, so that the z̄ki ’s are slow variables compared to the morph frequencies fki ’s, and the class
densities nk. In a quasi-equilibrium approximation, this means that, while the z̄ki change slowly, the
fast variables immediately track this change so that the right-hand sides of equations (8)-(10), which
all explicitly depend on the morph means z̄ki , can be set to zero.

A biological interpretation of equation (13) can be obtained by noting that the second term between
brackets in equation (13) corresponds to the effect of selection on morph i within class j, and depends
on the variance V j

i of morph i in class j and on the marginal effect of the trait on the vital rates,
evaluated at the morph mean in class j. On the other hand, the first term between brackets represents
the effect of between-class processes: for a given level of phenotypic differentiation z̄ji − z̄ki , generated
by selection or other processes, demographic transitions from class j to class k, which occur at rate
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rkj(z̄ki ), may also contribute to the dynamics of the morph mean z̄ki . Finally, the ratio uji/uki gives
the relative abundance of class j and k in the population of morph-i individuals and is used as a
weight to obtain the net change of the morph mean in class k, so that classes with a low frequency
in the population do not contribute much. Note that, in the absence of class structure, the first term
vanishes and we recover equation (25) in Sasaki & Dieckmann (2011).

4.2 RV-weighted trait distributions

Suppose now we are interested in how the different morphs behave on average. How can we calculate
the net effect of selection on the morph moments? As we discussed above, we use reproductive values
to define a weighted trait distribution (Lion, 2018a)

φ̃i(z, t) =
∑
k

cki (t)φki (z, t), (14)

where cki (t) = vki (t)uki (t) is the class reproductive value of morph i in class k at time t. Equation (14)
weighs the class-specific morph distribution by both the quantity uki (t) and quality vki (t) of class-k
individuals within the morph-i subpopulation. As intuitively expected, the quality and quantity of a
class may change over time, so these are dynamical variables (Lion, 2018a; Lion & Gandon, 2021).
Figure 1 gives a graphical illustration of the process by which class- and morph-specific distributions
can be aggregated to obtain morph-specific RV-weighted distributions.

Biologically, equation (14) gives us an appropriate metric to measure the average effect, across all
classes, of selection acting on a given morph. By accounting for the relative qualities of each class, it
is possible to get rid of any spurious effect due to intrinsic demographic differences between classes.
Mathematically, this means that we project the dynamics of moments on a lower-dimensional space,
on which we only need to track the moments of an average morph distribution instead of the moments
of class-specific morph distributions. For simplicity, we call this approximation the projection on RV
space.

4.3 Projection on RV space

We can use the projection on RV space to simplify the dynamics of the morph means and variances.
Mathematical details are given in Appendix D, but the key biological insight is that, if morph distri-
butions are sufficiently clustered around the morph mean, the dynamics of the morph moments on the
slow time scale will closely track the moments of the reproductive-value-weighted morph distribution.

Equation (12) shows that the dynamics of the morph reproductive values are O(1), so that re-
productive values change on the same time scale as class frequencies. On this fast time scale, a
quasi-equilibrium approximation yields

Riui = v>i Ri = 0 (15)

so that the vectors of class frequencies and reproductive values are respectively the right and left
eigenvectors of the matrix Ri associated with eigenvalue 0, where Ri has elements r̄kji = rkj(z̄i)+O(ε).
This is a multi-morph extension of a standard result from monomorphic theory (Taylor, 1990; Rousset,
2004; Lehmann & Rousset, 2014; Lion, 2018a,b; Priklopil & Lehmann, 2020).

4.4 Dynamics of morph means on RV space

On the slow time scale, the morph mean across all classes can be approximated, to leading order, by
the dynamics as the reproductive-weighted morph mean. This yields

dz̄i
dt ≈

dz̃i
dt =

∑
j

V j
i

∑
k

vki
∂rkj

∂z

∣∣∣∣∣
z=z̄j

i

uji +O(ε3). (16)

Thus, the dynamics of the morph mean is a weighted sum of the marginal effect on between-class
transition rates, weighted by (1) the variance V j

i of the morph in the class of origin j, (2) the individual
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reproductive value vki of the morph in the destination class, k, and (3) the frequency uji = f ji f
j/fi

of class-j invididuals in morph i. Equation (16) has the same form as equation (8) in Barfield et al.
(2011), but with a subtle difference. Indeed, in Barfield et al. (2011) the direction of selection is
given by a gradient in the mean transition rates (e.g. the r̄kj in our formalism), but equation (16)
depends on a gradient in the transition rates rkj . This is because, in contrast to Barfield et al. (2011),
we explicitly allow for frequency-dependent selection (Iwasa et al., 1991; Day, 2005; Lion, 2018c).
Thus, equation (16) represents a class-structured extension of Lande (1982)’s univariate theorem to
frequency-dependent selection and can be used to describe the dynamics of the modes of non-Gaussian,
multimodal distributions.

Figure 2 illustrates the convergence to RV space in a simple two-class model (this is a close-up
of the dynamics shown in figure S.3a). The time derivatives of morph means in classes A and B
(black lines) quickly relax then closely follow the prediction of equation (16) (gray line), until the
eco-evolutionary dynamics stabilise.

Note that, in equation (16), the class frequencies, morph frequencies and reproductive values are
all calculated using the zeroth-order terms of the equations (8)-(10). In particular, the vectors vi and
ui satisfy equation (15).

4.5 Morph-level closure

Although equation (16) accurately predicts the dynamics of the mean trait after relaxation of the
system, it still depends on the habitat-specific moments z̄ki and V k

i . However, we can go one step
further and effectively reduce the dimension of the system, by approximating habitat-specific means
z̄ki and variances V k

i by the morph means z̄i and Vi, which leads to:

dz̄i
dt ≈ Vi v>i Siui +O(ε3). (17)

where
Si = ∂R

∂z

∣∣∣∣
z=z̄i

is the directional selection matrix. The effect of selection on the morph mean is thus scaled by the
morph variance, Vi, and by the selection gradient v>i Siui, which depends on (1) the marginal effect of
a change in the trait on the between-class transition rates rkj(z), evaluated at the morph mean, (2)
the relative quality of class k for morph-i individuals, measured by the reproductive value vki , and (3)
the relative quantity uki of class-k individuals among morph-i individuals. This is the multi-morph
extension of the classical expression for the class-structured selection gradient (Taylor, 1990; Rousset,
1999, 2004; Lehmann & Rousset, 2014; Lion, 2018a,b; Priklopil & Lehmann, 2020), which can be
recovered by noting that, in the single-morph case, fki = fi = 1, so that ui = f and vi = v.

5 Dynamics of morph variances
A classical quantitative genetics approach would typically focus on equations (16) and (17) under
the assumption of constant variances. However, this is not sufficient to understand how disruptive
selection may shape multi-morph trait distributions, and for this we need to turn to the dynamics of
the morph variances. As for the means, we first calculate the dynamics of the class-specific morph
variances, before using the variances of the RV-weighted morph distributions to obtain a simpler result.
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Figure 2: Illustration of the relaxation to RV space in a two-class model. The simulation is the same
as in figure S.3a, to which the reader is referred for additional details. The time derivatives dz̄A,1/dt
and dz̄B,1/dt are plotted (solid and dashed black lines respectively) and shown to converge towards
the prediction of the right-hand side of equation (16) (grey line).

5.1 Class-specific morph variances

In Appendix B, we show that the dynamics of the class-specific morph variances can be written as:

dV k
i

dt =
∑
j

uji
uki

[
(V j
i − V k

i + (z̄ji − z̄ki )2)rkj(z̄ji )

+2(z̄ji − z̄ki )V j
i

∂rkj

∂z

∣∣∣∣∣
z=z̄j

i

+1
2
(
Qji + (z̄ji − z̄ki )2V j

i − V j
i V

k
i

) ∂2rkj

∂z2

∣∣∣∣∣
z=z̄j

i

+O(ε5)

(18)

The terms on the first, second and third lines are respectively O(ε2), O(ε3) and O(ε4). The term on the
first line corresponds to the effect of demographic transitions between classes on variance. Basically it
tells us that, even in the absence of selection, changes in the morph variance in class k can be observed
if the morph distributions are different across classes (e.g. if the morph mean and variance in class j
differ from class k). The term on the second line represents the effect of directional selection on the
morph variance in class k, which will be greater when there is substantial phenotypic differentiation
between the focal class and the other classes. Finally, the term on the third line represents the effect
of disruptive selection on the morph variance, and depends on the fourth moments Qji and on the
morph means and variances. Note that, in the absence of class structure, the first two lines vanish
and we recover equation (33) in Sasaki & Dieckmann (2011).
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5.2 Dynamics of morph variances on RV space

As for the morph mean we can use reproductive values to derive an aggregate equation for the dynamics
of the morph variance, Vi. In its most compact form, it takes the form of a Price equation

dVi
dt ≈

dṼi
dt =

∑
j

∑
k

vki Cov
φj

i

(
(z − z̃i)2, rkj(z)

)
uji . (19)

where the covariance is calculated over the distribution φji (z, t). The oligomorphic approximation
allows us to further expand the covariance (see equation (20) in Appendix D) as

dVi
dt ≈ 2 (Vi)2

[
v>i Fiui + v>i Si (di ◦ ui)

]
+O(ε5). (20)

where the notation ◦ denotes the elementwise (Hadamard) product. The first-term between brackets
depends on the matrix

Fi = 1
2
∂2R
∂z2

∣∣∣∣∣
z=z̄i

It is the class-structured analog of equation (37) in Sasaki & Dieckmann (2011) and gives the net
effect of the curvature of the fitness functions rkj(z) on the dynamics of variance.

The second term between brackets depends on the directional selection matrix Si, and on the
vector di of phenotypic differentiations (z̄ji − z̃i)/Vi. The operation di ◦ ui returns a vector with
elements uji (z̄

j
i − z̃i)/Vi (1 ≤ j ≤ K). This second term represents the additional effect of directional

selection on the dynamics of morph variance. Intuitively, these two effects can be understood from
the decomposition of the morph variance into class-specific morph moments:

Ṽi =
∑
k

cki V
k
i +

∑
k

cki

[(
z̄ki

)2
− (z̃i)2

]

The first term shows that, when the class means are equal, the morph variance Ṽi is the weighted
average of the class-specific morph variances V k

i . The second term shows that, even when the class
variances V k

i are zero, substantial differentiation between classes (z̄ki 6= z̃i) can contribute to morph
variance. Hence, changes in the mean traits have a direct effect on the dynamics of the variance, which
is proportional to the strength of selection in each class (captured by the matrix Si) and the level of
phenotypic differentiation in each class, compared to the mean morph value (captured by the vector
di).

Note that the second term between brackets in equation (20) still depends on the class-specific
morph means, z̄ji . On the RV space, the phenotypic differentiation will typically have a quasi-
equilibrium value (Lion, 2018b) which we can express solely in terms of vi, ui, R(z̄i) and Si, leading
to a closed system at the morph level. In the next section, we provide such an expression in a two-class
model.

5.3 The two-class model

This general framework can be applied to the special, but important case of two-class models to gain
further insights on how stabilising and disruptive selection are affected by the class frequencies and
reproductive values.

Consider a population structured in two classes A and B. As shown in the general case, the
dynamics of morph means and variances are given by the following system of equations:

dz̄i
dt = Vi v>i Siui (21a)

dVi
dt = 2V 2

i

[
v>i Fiui +Di

]
(21b)
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where Di gives the effect of directional selection on the variance dynamics. For the two-class model,
this effect can be calculated as

Di = (cAi cBi )3/2√
rAB(z̄i)rBA(z̄i)

 ∂rAA

∂z

∣∣∣∣∣
z̄i

− ∂rBB

∂z

∣∣∣∣∣
z̄i

 ∂rAA

∂z

∣∣∣∣∣
z̄i

+ vBi
vAi

∂rBA

∂z

∣∣∣∣∣
z̄i

− ∂rBB

∂z

∣∣∣∣∣
z̄i

− vAi
vBi

∂rAB

∂z

∣∣∣∣∣
z̄i


(22)

Interestingly, equation (22) shows that directional selection will have a significant effect on the dy-
namics of variance if three conditions are met: (1) there is enough differentiation between the two
classes, as measured by the product of class reproductive values cAi cBi , (2) the slopes of the functions
rAA and rBB at the morph means are sufficiently different, and (3) the marginal reproductive outputs
of A and B individuals are sufficiently different. The latter condition is satisfied when the second
bracketed term is non-zero. Note that the ratios vBi /vAi and vAi /vBi can be interpreted as conversion
factors to evaluate the A and B descendants in the same currency.

In a two class-model, the class-reproductive values satisfy the following useful quasi-equilibrium
relationship:

cBi = vBi u
B
i =

rAB(z̄i)
(
uBi

)2

rBA(z̄i)
(
uAi
)2 + rAB(z̄i)

(
uBi
)2 = 1− cAi . (23)

In the next section, we show how equations (21)-(23) can be used to analyse a specific model of local
adaptation in two-habitat migration-selection models.

5.4 Moment closure

As typical of moment methods, the dynamics of morph variances (18) depend on higher-order moments,
notably the Qji ’s, which are the fourth central moments of the morph distribution in class j, i.e.
Qji =

∫
(z − z̄ji )4φji (z, t)dz. Hence, we need to close the system using a suitable moment closure

approximation. For unstructured populations, Sasaki & Dieckmann (2011) studied two moment closure
approximations, namely the Gaussian approximation and the house-of-cards approximation. In this
paper, we focus on the Gaussian approximation, and therefore assume that the morph distributions
φki (z) are normal. Biologically, this means that the total distribution of the trait can be viewed as
a weighted sum of normal distributions. Mathematically, this entails that Qji = 3(V j

i )2, which is
sufficient to close the system.

Together, equations (8), (9), (13) and (18) form the full oligomorphic approximation of the eco-
evolutionary dynamics. It can be used for instance to investigate how an initially unimodal distribution
may split into different modes as a consequece of class structure and frequency-dependent selection.
For reference, a summary of these equations is given in Box 1, and a summary of the equations using
the projection on RV space is given in Box 2.

6 Example 1: resource competition model
As an illustration of the method, we consider a population inhabiting two habitats, A and B, coupled
by migration and characterised by different fitness functions. We define mjk as the migration rate
from k to j and ρk(z) as the growth rate of individuals in habitat k, which is a function of a focal
trait z measuring competitive ability. With our notations, we have

rAA(z) = ρA(z)−mBA ,

rAB(z) = mAB ,

rBA(z) = mBA ,

rBB(z) = ρB(z)−mAB .

Within each habitat, competition between individuals depends on the competitive ability z. We
further assume that there is a quadratic cost to competitiveness and that each habitat is characterised
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by a value θk which minimises the cost. We thus write

ρk(z) = b− g(z − θk)2 − nk
∫
a(z − y)φk(y)dy

where b is the birth rate, g is the fecundity cost, θk is the optimum in habitat k, and the competition
kernel a(z − y) represents the effect of competition by an individual with trait y on a an individual
with trait z.

Importantly, the fitness functions ρk depend on the distributions φk(y, t). Following Sasaki &
Dieckmann (2011), we decompose this distribution into a sum of the distributions φ`(y, t) and, for
each of these distributions, we use a Taylor expansion of the competition kernel near y = z̄k` to express
the competition experienced by a focal individual in terms of the means of all the other morphs. We
obtain (Appendix S.3)

rAA(z) = b− g(z − θA)2 − nA
∑
`

fA` a(z − z̄A` )−mBA +O(ε2)

and a similar expression for habitat B. We can use this expression to calculate the quantities rkj(z̄i),
and the partial derivatives evaluated at z = z̄i, and plug these expressions in the equations of Box 1
to obtain the final oligomorphic approximation for this model.

A full analysis of the model is beyond the scope of this paper, but we show in figure 3 the
oligomorphic dynamics for a specific choice of parameters. Figure 3c shows that, starting from an
effectively monomorphic population (where the two morphs have the same mean values), disruptive
selection leads to the splitting of the population into a bimodal distribution after t ≈ 1000. Disruptive
selection is indicated by the explosion of morph variances at the same time. The population then
stabilises around a dimorphic equlibrium distribution with means z̄∗1 and z̄∗2 . Stabilising selection is
indicated by the decrease in variance after branching. Figure 3b further shows that the morphs have
different frequencies in each habitat (i.e. morph 1 is slightly more abundant in habitat B while morph
2 is slightly more abundant in habitat A), but tend to have similar values for the means and variances
in both habitats. This observation suggests that it may be interesting to find a simplified description
of the population at the morph level, by aggregating habitat-specific morph moments into a single
measure. This is the goal of the RV projection, and we will show its usefulness in the next section.

7 Example 2: local adaptation in a two-habitat mutation-selection-
migration model

As a proof-of-concept application, we use our approach to investigate how migration and selection
interplay to favour or hamper the generation of polymorphism in a population that can exploit two
habitats with different qualities. In particular, we show that the notion of habitat quality in poly-
morphic populations can be captured through the concept of morph-specific reproductive values we
introduced in the previous section.

7.1 A mutation-selection-migration model

As in our previous example, we consider a population inhabiting two habitats, A and B, coupled
by migration and characterised by different fitness functions, but we assume that competition is
independent of the focal trait. Our model is effectively the same as the one proposed by Meszéna
et al. (1997), Ronce & Kirkpatrick (2001), Débarre et al. (2013), and Mirrahimi & Gandon (2020),
with

ρk(z) = b− nk − g(z − θk)2. (24)

In contrast with most of these previous studies, we consider the possibility of asymmetric migration
rates (mAB 6= mBA).

In addition to the effects of selection, we also consider the effect of mutation on the eco-evolutionary
dynamics. We do so by assuming that mutations occur at rate µ and that the mutation effects follow
a distribution M with mean 0 (mutation has no directional effect) and variance σ2

M . Under these
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Figure 3: Oligomorphic dynamics of the resource competition model. (a) Dynamics of densities of
individuals nk in habitat A (solid line) and B (dashed line). (b) Dynamics of the morph frequencies
fki in habitat A (solid line) and B (dashed lines) for morph 1 (blue) and 2 (orange). (c) Dynamics
of the morph means z̄ki . (d) Dynamics of the morph variances V k

i . Parameters: b = 1, g = 0.1,
θA = 0 = 1− θB, mAB = mBA = 0.3, a(x) = 0.5 exp(−x2/8).

15

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.08.451558doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451558
http://creativecommons.org/licenses/by-nc-nd/4.0/


Box 1: Class-structured oligomorphic dynamics

To fix ideas, we collect in this box the full system of equations obtained under the oligomorphic
approximation. The (3M + 1)K variables are the class densities nk, the morph frequencies fki ,
the morph means z̄ki and the morph variances V k

i (1 ≤ i ≤M , 1 ≤ k ≤ K). We have

dnk
dt =

∑
j

∑
i

rkji (z̄ji )f
j
i n

j

dfki
dt =

∑
j

f j

fk

(
f ji r

kj(z̄ki )− fki
∑
`

f j` r
kj(z̄j` )

)

dz̄ki
dt =

∑
j

uji
uki

(z̄ji − z̄ki )rkj(z̄ji ) + V j
i

∂rkj

∂z

∣∣∣∣∣
z̄j

i


dV k

i

dt =
∑
j

uji
uki

(V j
i − V k

i + (z̄ji − z̄ki )2)rkj(z̄ji ) + 2(z̄ji − z̄ki )V j
i

∂rkj

∂z

∣∣∣∣∣
z̄j

i

+1
2
(
Qji + (z̄ji − z̄ki )2V j

i − V j
i V

k
i

) ∂2rkj

∂z2

∣∣∣∣∣
z̄j

i


with f j = nj/

∑
k n

k the fraction of individuals in class j and uji = f ji f
j/
∑
k f

k
i f

k the fraction of
morph-i individuals in class j. The system can be closed using a moment closure approximation
such as the Gaussian closure (Qji = 3(V j

i )2), and numerically integrated.

It is important to note that all the equations are coupled. In particular, the dynamics of the
means of morph i may depend on the means and frequcncies of the other morphs. For instance,
in the resource competition model described in the main text, we have:

∂rAA

∂z

∣∣∣∣∣
z̄i

= −2g(z̄i − θA)− nA
∑
`

fA` a
′(z̄Ai − z̄A` )

which shows that the competition experienced by morph i depends on the other morphs through
their frequencies fA` and mean trait values z̄A` .
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Box 2: Projection on RV space

By projecting on RV space, the dynamics of the system in Box 1 can be reduced to a system of
2M equations for the aggregate morph means z̄i and variances Vi (1 ≤ i ≤M).

On the slow time scale, we have

dz̄i
dt = Vi v>i Siui

dV̄i
dt = 2 (Vi)2

[
v>i Fiui +Di

]
where the matrices Si and Fi have elements ∂rkj

∂z

∣∣∣
z̄i

and ∂2rkj

∂z2

∣∣∣
z̄i

respectively, and Di represents
the effect of directional selection on the dynamics of variance.

On the fast time scale, the ecological variables can be calculated from the following quasi-
equilibrium relationships

0 = R(z̄i)ui = v>i R(z̄i)

0 =
∑
j

f j

fk

(
f ji r

kj(z̄i)− fki
∑
`

f j` r
kj(z̄`)

)

assumptions, mutation has no effect on the dynamics of the mean traits, but adds an extra term to
the dynamics of the morph variances, which is equal to the mutational variance VM = µσ2

M (Kimura,
1965; Lande, 1975; Sasaki & Dieckmann, 2011).

Together with the equations in Box 2, these expressions for the vital rates allow us to derive the
following equations for the dynamics of morph means and variances (Appendix S.2):

dz̄i
dt = −2gVi

[
z̄i − cAi θA + cBi θB

]
(25)

dVi
dt = −2gV 2

i

[
1− 4g

m
(cAi cBi )3/2 (θB − θA)2

]
+ VM (26)

where m = √mABmBA is the geometric mean of the dispersal rates, and the morph-specific class
reproductive values are given by their quasi-equilibrium expressions (equation (23)):

cBi = 1− cAi =
mAB

(
uBi

)2

mBA

(
uAi
)2 +mAB

(
uBi
)2 . (27)

Using these equations, we investigate three main questions: (1) What are the attractors of the eco-
evolutionary dynamics? (2) When does selection lead to a unimodal vs. bimodal equilibrium distri-
bution? and (3) What is the effect of habitat-specific mutation on the evolutionary outcome? Since
a full analysis of the model would be beyond the reach of this article, we focus on the most salient
features in the main text and briefly consider additional technicalities in Appendix S.2.

7.2 Evolutionary attractors

From equation (25), we see that the morph means stabilise when

z̄i = cAi θA + cBi θB. (28)

It is important to note that, because of the quasi-equilibrium approximation, the class reproductive
values are also functions of z̄i, so that equation (28) is only implicit. Nonetheless, the biological
implication is that the potential attractors for the dynamics of the morph means correspond to the
reproductive-value-weighted mean of the habitat optima. Hence, the outcome of selection for a given
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morph depends on the relative difference in quality between habitats, measured by cBi − cAi . When
cBi > cAi , the morph mean will be biased towards the optimum of habitat B, whereas the opposite will
be observed for cBi < cAi . In the following, we fix θA = 0 = 1− θB, without loss of generality.

The most important result of the model is that, when the mean migration rate is sufficiently
high, the eco-evolutionary dynamics settle on an unimodal distribution, while bimodal distributions
can be generated if the mean migration rate is below a threshold mc (figure 4a). Simulations of
the full model, without the oligomorphic approximation, show that our reproductive-value-weighted
oligomorphic approximation can accurately predict both the unimodal and bimodal endpoints (figure
4a).

At a unimodal distribution, the class reproductive values of the different morphs are equal (e.g.
cB1 = cB2 = c if we start with 2 morphs), so there is effectively a single morph in the population with
mean trait value z̄ = c (figure 4c). In contrast, if different morphs have distinct class reproductive
values (e.g. cB1 6= cB2 ), the eco-evolutionary dynamics converge towards a bimodal equilibrium distri-
bution, where the morphs have different means (z̄1 = cB1 for morph 1 and z̄2 = cB2 for morph 2), and
occur with different frequencies in the two habitats. The trait distributions in each habitat therefore
have two peaks, one around z̄1 and one around z̄2, the heights of the peaks being determined by the
morph frequencies fki and the densities nA and nB (figure 4b). Using our formalism, it is possible to
analytically calculate the position of each morph. For m < g/2, we obtain:

z̄∗1 = cB1 = 1
2 + 1

2

√
1− 4m2

g2 , (29a)

z̄∗2 = cB2 = 1
2 −

1
2

√
1− 4m2

g2 . (29b)

This is the same expression as obtained by Débarre et al. (2013) for symmetric migration, except
that our expression depends on the mean migration rate m = √mABmBA. Note that, even with
asymmetric migration, the equilibrium is symmetric as z̄∗1 = 1 − z̄∗2 . For completeness, we note that
the oligomorphic analysis predicts bistability when m < mc, with some initial conditions leading to
unimodal equilibrium distributions (Appendix S.2), although the bimodal distribution appears to be
the more robust evolutionary outcome (see also Mirrahimi & Gandon (2020) for a global stability
analysis).

7.3 Local adaptation

At the bimodal equilibrium, the two morphs have different frequencies in the two habitats and therefore
the habitat-specific distributions are distinct (figure 4b). The level of habitat differentiation in mean
traits provides a measure of local adaptation (Débarre et al., 2013) and can be calculated as

D = z̄B − z̄A = (fB1 − fA1 )(z̄1 − z̄2), (30)

which shows that, at equilibrium, local adaptation depends (1) on the difference in morph frequencies
between the two habitats, and (2) on the difference between the class reproductive values of the two
morphs. In our model, this can be calculated as:

D∗ = 1− 1
g

(
fB

fA
mAB + fA

fB
mBA

)
(31)

which simplifies to D∗ = 1− 2m/g for symmetric migration, as found in Débarre et al. (2013). Higher
migration thus leads to lower local adaptation.

7.4 Habitat differentiation and disruptive selection

When does the interplay between migration and selection leads to unimodal vs bimodal equilibrium
trait distributions? To answer this question, we turn to the dynamics of morph variances (equation
(26)), which provides a useful interpretation of evolutionarily stability in terms of reproductive values.
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Indeed, ∆i = 1−4cAi cBi is a measure of differentiation in habitat quality, as measured by reproductive
values: it reaches its maximal value, 1, when cBi = 0 or cBi = 1, and is zero when the habitats have
equal qualities (cAi = cBi = 1/2). In the absence of mutation (VM = 0), selection on morph i is
therefore stabilising if habitat differentiation is above a threshold determined by the ratio between
migration (m) and selection (g):

∆i > 1−
(2m
g

)2/3
(32)

Note that, form > g/2, this is always satisfied, but with a lower mean migration rate, stability depends
on the magnitude of habitat differentiation. Hence, for m < g/2, disruptive selection is possible and
may lead to the splitting of an initially unimodal distribution into two peaks.

Equation (26) further shows that the dimorphic attractor (z̄∗1 , z̄∗2) is evolutionarily stable when
m < g/2 and unstable otherwise. However, there is a critical value mc < g/2 above which the bimodal
equilibrium loses its demographic stability and one of the two morphs goes extinct (figure S.5a).
Hence, for m > mc, the only possible evolutionary outcome is a unimodal distribution. For m < mc,
multistability is possible, where the system can converge towards unimodal or bimodal distributions
depending on initial conditions (figure 4a).

7.5 Mutation-selection-migration balance

With mutation and stabilising selection, the morph variances can settle at a mutation-selection equi-
librium. From equation (26), the equilibrium variance is then given by

V ∗i =
√√√√ VM

2g
[
1− 4g

m (cAi cBi )3/2
] (33)

The numerator is the effect of mutation on variance, while the denominator gives the effect of selection.
When only one habitat is present (e.g. cAi = 1 and cBi = 0), the morph variance at equilibrium is√
VM/2g, which is equation (17) in Débarre et al. (2013). For the bimodal attractor, both morphs

have the same equilibrium variance:

V ∗1 = V ∗2 =
√√√√ VM

2g
(
1− 4m2

g2

) (34)

It is straightforward to generalise this result to the case where the two habitats have different mutation
rates, leading to distinct habitat-specific mutational variances V A

M and V B
M . Then, VM = cAi V

A
M +

cBi V
B
M in equation (33), so that the effect of mutation takes the form of a reproductive-value-weighted

average mutational variance. In this case, each morph has a different equilibrium variance, which
can be analytically calculated using equation (29). Figure 5a shows that this accurately predicts the
equilibrium values of morph variances under mutation-selection balance.

As mutation increases, the accurary of the oligomorphic approximation is expected to decrease, as
high mutation will tend to generate broader morph distributions. Nonetheless, figure 5b shows that
our analytical prediction of the differentiation D = z̄B − z̄A remains good even for relatively large
values of the mutation variance VM (see Appendix S.2 for a more detailed discussion).

8 Discussion
We have developed a novel theoretical framework to model the eco-evolutionary dynamics of poly-
morphic, class-structured populations. Our analysis makes two key contributions. First, we extend
the recently developed oligomorphic approximation (Sasaki & Dieckmann, 2011) to class-structured
populations. Since class structure is a major feature of natural biological populations, this allows the
method to be applied to a broad range of ecological scenarios, taking into account individual differ-
ences in state including age, spatial location, infection or physiological status, and species. Second,
we combine the oligomorphic approximation with recent theory on reproductive values to obtain a
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Figure 4: Bimodal vs. unimodal equilibrium distributions. Figure (a) shows how the equilib-
rium distribution changes when mAB = 0.8 is fixed and mBA varies. For simplicity, we only show the
dimorphic solution in the bistability region. The vertical dotted line represents the value mBA ≈ 1.06
at which the dimorphic equilibrium loses its demographic stability and one of the two morphs goes
extinct. The analytical predictions using the projection on RV space are also shown for the mean
(dashed lines) ± standard deviation (dotted lines). The white dots show the results of numerical
simulations of the full model, without the oligomorphic approximation. Figures (b) and (c) show the
equilibrium trait distributions and dynamics of mean traits in habitat A (solid line) and B (dashed
line) obtained by numerical integration of a 2-morph oligomorphic approximation for BA = 0.4 (b) or
mBA = 1.4 (c). The dotted lines indicate the value of the class reproductive value of habitat B for
morphs 1 (blue) and 2 (orange), computed from the oligomorphic approximation. Parameter values:
b = 1, g = 2, mAB = 0.8, VM = 10−6.
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Figure 5: Effect of mutation. (a) Effect of habitat-specific mutation. The top panel shows the
dynamics of the variances of morph 1 (blue) and 2 (orange) which converge to mutation-selection
equilibrium values, which are accurately predicted by the reproductive-value-weighted formula (33)
(dotted lines) with VM = cAi V

A
M+cBi V B

M , V A
M = 5·10−6, V B

M = 10−6. The bottom panel shows the effect
of the ratio V A

M/V
B
M on the variances V A

i (solid line) and V B
i (dashed line) for morphs 1 (blue) and

2 (orange). The white dots give the results of simulations of the full model without the oligomorphic
approximation. (b) Effect of the magnitude of mutational variance on the mean habitat differentiation
D = z̄B − z̄A at equilibrium (black line). The dashed line gives the analytical prediction of equation
(31), the white dots the simulations results, the blue and orange lines give the morph-specific habitat
differentiation z̄Bi − z̄Ai . Parameters in all panels: b = 1, g = 2, mAB = 0.8, mBA = 0.4.
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lower-dimensional approximation of the eco-evolutionary dynamics of multi-morph structured popu-
lations. The combination of these two approximations allows us to obtain compact analytical expres-
sions for the dynamics of multimodal trait distributions in structured populations under density- and
frequency-dependent selection. These analytical results are biologically insightful as they highlight
how the quality and quantity of individuals in different classes affect the eco-evolutionary dynamics.

At a general level, our theoretical framework lies at the intersection of population genetics, quanti-
tative genetics and adaptive dynamics. First, as in population genetics, it predicts how the frequencies
of interacting morphs change over time, but explictly takes into account eco-evolutionary feedbacks.
Second, we also describe the dynamics of the mean and variance of the trait distribution of each morph.
This is reminiscent of moment methods typically used in quantitative genetics (Barton & Turelli, 1987;
Turelli & Barton, 1990; Barton & Turelli, 1991), but our approach effectively extends these tools to
multimodal distributions, frequency-dependent selection, and a broad range of ecological scenarios.
Third, while our result for the dynamics of the mean takes the form of Lande’s univariate theorem
(Lande, 1976, 1979, 1982; Barfield et al., 2011), we also track the dynamics of genetic variance and
describe how initially unimodal distributions can split into different modes due to frequency-dependent
selection. This effectively bridges the gap between quantitative genetics and adaptative dynamics to
provide a more complete understanding of the evolution of quantitative traits.

Our approach addresses the criticism of the very restrictive assumptions on mutation that are
made in the adaptive dynamics literature and broadens the scope of classic quantitative genetics
theory to examine the dynamics of multimode distributions and a wider range of ecological feedbacks.
Classical quantitative genetics methods are typically restricted to unimodal character distributions.
However multimodal distributions are a very common outcome when frequency dependence causes
disruptive selection, as often occurs when ecological feedbacks are taken into account in evolutionary
models. The possibility to handle disruptive selection has been a landmark of adaptive dynamics, but
it relies on a restrictive assumption of rare mutations and small standing variance in the populations.
Furthermore, most applications of adaptive dynamics focus on initially monomorphic populations,
but the dynamics after evolutionary branching become less tractable. Our oligomorphic analysis will
give equivalent results to adaptive dynamics in monomorphic populations, but makes the analysis of
multimode populations, after branching, much easier, and it also allows us to take into account the
effect of mutations and of substantial genetic variance at the population level.

While these technical advances were already present in Sasaki & Dieckmann (2011)’s original
paper, our extension to class structure makes our analysis directly applicable to a broad range of
biological scenarios where individuals differ because of non-genetic factors such as age, physiological
status, or spatial location. A drawback of this increased realism is that it inflates the number of
ecological and genetic variables we need to track. We therefore apply recent theory on reproductive
values (Lion, 2018a,b; Priklopil & Lehmann, 2020) to simplify the oligomorphic analysis and obtain
a compact description of how the morph-level trait distributions change over time when there are
demographic transitions between classes. The key idea is to define a weighted trait distribution that
gives us a way of examining how selection acts on a particular morph across all the classes (Fisher,
1930; Taylor & Frank, 1996; Frank, 1998; Rousset, 2004; Lehmann & Rousset, 2014; Lion, 2018a). For
the dynamics of the mean trait of a morph, the result takes the form of the structured extension of
Lande’s theorem (Barfield et al., 2011), but we also provide a description of the dynamics of the morph
variance. Application of the method to the simplified two-class case gives insight into how stabilizing
and disruptive selection are impacted by class frequencies and reproductive values and shows when
directional selection will impact disruptive selection. As such we provide a very general tractable
framework for a more complete eco-evolutionary analysis of class-structured models.

In addition to these theoretical developements, we apply our approach to the classic two-habitat
migration-selection model in order to illustrate its use in a concrete biological problem. We examined
how migration and selection interplay to generate or prevent polymorphism when a population is
using two habitats that differ in quality. The model is based on Ronce & Kirkpatrick (2001) and
Débarre et al. (2013), but we also examine asymmetric migration rates and examine the effect of
habitat-specific mutation on evolutionary outcomes. We define a clear relationship between migration
and selection that defines when disruptive selection is possible and show that our reproductive-value
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weighted oligomorphic approximation can accurately predict the numerical simulations of the full
system. With the addition of mutation, the approach accurately predicts the equilibrium value of
morph variances under-mutation selection balance. In addition we show that while mutation has no
direct effect on morph means, since it impacts variances it can have an impact on the quantitative
evolutionary outcome. This is because it impacts the rate of evolution and therefore in bistable
regions mutation rates may determine whether disruptive selection occurs. Overall, the application
of our approach to this specific model illustrates the accuracy of our approximations and allows us to
build on previous analyses.

We expect our approach will allow us to deepen our understanding of the processes that generate
and maintain diversity in traits. We illustrate the application of the approach in a two-habitat
model, but this can be broadened to examine fundamental processes such as stage structure, species
interactions, and speciation. For instance, the approach can be used to determine the time required
until a population diversifies under frequency-dependent disruptive selection, which, for asexually
reproducing species, is the waiting time until adaptive speciation. Additional insights will come from
both ecological extensions – such as assortative mating – and in particular genetic extension – such
as multi-locus inheritance, recombination, diploidy, and random genetic drift. We might expect the
impact of diploidy to be even more important in multi-modal populations.

At a conceptual level, our approach is very relevant to the current revival of interest on the time
scales of ecological and evolutionary processes, as it can be used to examine the role of ‘fast evolution’
when this is fueled by a large standing variation at the population level. In addition there is the
potential to examine non-equilibrium outcomes such as those that arise during repeated epidemics
driven by antigenic escape (Sasaki et al., 2021) or seasonality (Lion & Gandon, 2021).

To sum up, we think our analytical approach will allow for a better understanding of the role of
ecological feedbacks, frequency- and density-dependent selection in nature, and has the potential to
facilitate a tighter integration between eco-evolutionary theory and empirical data. At a technical
level, our approach moves the field on from either focusing on unimodal character distributions, often
taken in models of quantitative genetics theory, or on negligible within-morph variance, which is often
assumed in models of adaptive dynamics. At a biological level, it has considerable potential to advance
our understanding of the ecological factors driving the evolution and maintenance of diversity, which
remains an important empirical and theoretical challenge in multiple fields and contexts.
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Appendix A: Oligomorphic approximation
From equation (5) in the main text, it is straightforward to derive the dynamics of the within-class
densities φk(z, t) = nk(z, t)/nk(t). We obtain

dφk(z)
dt =

∑
j

[
rkj(z)φj(z, t)− r̄kjφk(z, t)

] f j
fk

(A.1)

To derive the oligomorphic approximatin for our class-structured population model, we proceed as in
equation (6) of Sasaki & Dieckmann, 2011 and define the dynamics of the frequencies fki so that, for
each z, the contribution of morphs to dφ(z)/dt is proportional to their contribution to φ(z). We have

dfki φki (z)
dt = fki φ

k
i (z)

φk(z)
dφk(z)

dt (A.2)

Integrating over z and using equation (A.1) yields
dfki
dt = fki

∑
j

f j

fk

∫
rkj(z)φ

j(z)
φk(z)φ

k
i (z)dz − fki

∑
j

r̄kj
f j

fk
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To simplify this equation, we use the following important assumption:

φj(z)
φk(z) = f ji φ

j
i (z)

fki φ
k
i (z)

(A.3)

which leads to
dfki
dt =

∑
j

f j

fk

(
f ji r̄

kj
i − fki r̄kj

)
(A.4)

With only one class, we recover equation (7) in Sasaki & Dieckmann (2011).
Similarly, to calculate the dynamics of φki (z), we write

dφki (z)
dt = φki (z)

φk(z)
dφk(z)

dt − φki (z)
(

1
fki

dfki
dt

)
Using equations (A.1), (A.3) and (A.4) then yields after some rearrangements:

dφki (z)
dt =

∑
j

f ji f
j

fki f
k

[
φji (z)rkj(z)− φki (z)r̄kji

]
(A.5)

With a single class, we recover equation (8) in Sasaki & Dieckmann (2011).

Appendix B: Dynamics of class-specific morph moments
Equation (A.5) can be multiplied by z or (z− z̄ki )2 and integrated to obtain the dynamics of the morph
means and variances respectively. For the morph means, we obtain:

dz̄ki
dt =

∑
j

f ji f
j

fki f
k
Cov
φj

i

(
z, rkj(z)

)
+
∑
j

f ji f
j

fki f
k
r̄kji (z̄ji − z̄ki ) (B.1)

where the covariances are taken over the distributions φji (z, t) and take the form

Cov
φj

i

(
z, rkj(z)

)
=
∫

(z − z̄ji )(rkj(z)− r̄kji )φji (z)dz.

Equation (B.1) is a morph-specific version of equation (3) in Lion (2018a). Using the Taylor expansion
(6) in the main text, we have

Cov
φj

i

(
z, rkj(z)

)
=
∫
ξji

ξji ∂rkj∂z

∣∣∣∣∣
z=z̄j

i

+ 1
2
(
(ξji )2 − V j

i

) ∂2rkj

∂z2

∣∣∣∣∣
z=z̄j

i

φji (z)dz
= V j

i

∂rkj

∂z

∣∣∣∣∣
z=z̄j

i

+ 1
2T

j
i

∂2rkj

∂z2

∣∣∣∣∣
z=z̄j

i

+O(ε4) (B.2)

where T ji is the third central moment of φji (z), which we neglect in the following (assuming φji is
symmetric). We then have

dz̄ki
dt =

∑
j

f ji f
j

fki f
k

(z̄ji − z̄ki )rkj(z̄ji ) + V j
i

∂rkj

∂z

∣∣∣∣∣
z=z̄j

i

+ 1
2(z̄ji − z̄ki )V j

i

∂2rkj

∂z2

∣∣∣∣∣
z=z̄j

i

+O(ε4)

Keeping only terms up to second order in ε, we obtain equation (13) in the main text.
For the morph variances, defined as V k

i =
∫

(ξki )2φki (z)dz, we have, using equations (A.5) and (6)

dV k
i

dt =
∑
j

f ji f
j

fki f
k

(ξki )2

rkj(z̄ji ) + ξji
∂rkj

∂z

∣∣∣∣∣
z=z̄j

i

+ 1
2(ξji )2 ∂

2rkj

∂z2

∣∣∣∣∣
z=z̄j

i

φji (z)dz
−V k

i

rkj(z̄ji ) + 1
2V

j
i

∂2rkj

∂z2

∣∣∣∣∣
z=z̄j

i

+O(ε5).
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We can further simplify with the following relationships:∫
(ξki )2φji (z)dz =

∫
(ξji + z̄ji − z̄ki )2φji (z)dz = V j

i + (z̄ji − z̄ki )2∫
(ξki )2ξji φ

j
i (z)dz =

∫
(ξ3
i + 2(z̄ji − z̄ki )(ξji )2 + (z̄ji − z̄ki )2ξji )φ

j
i (z)dz = T ji + 2(z̄ji − z̄ki )V j

i∫
(ξki )2(ξji )2φji (z)dz =

∫
(ξ4
i + 2(z̄ji − z̄ki )(ξji )3 + (z̄ji − z̄ki )2(ξji )2)φji (z)dz = Qji + 2(z̄ji − z̄ki )T ji + (z̄ji − z̄ki )2V j

i

This yields equation (18) in the main text, again using the assumption that the morph distribution
φji is symmetric so that T ji = 0.

Appendix C: Dynamics of population-level morph moments
The derivations in appendix B yield dynamical equations for the class-specific morph moments. De-
pending on the question of interest it may be useful to focus on the population-level morph moments,
averaged over all classes. To do so, we introduce the following average distribution:

φi(z) =
∑
k

φki (z)uki

where uki = fki f
k/fi and fi = ∑

k f
k
i f

k is the total frequency of morph i in the population. Integrating
over z leads to a relationship between morph means: z̄i = ∑

k z̄
k
i u

k
i , from which the following equation

can be derived
dz̄i
dt =

∑
j

ujiCov
φj

i

(
z,
∑
k

rkj(z)
)

+
∑
j

uji

(∑
k

r̄kji

)
(z̄ji − z̄i) (C.1)

This is the morph-specific equivalent of equation (2) in Lion (2018a), and an oligomorphic approxi-
mation of equation (C.1) can be derived using approximation (6). A similar equation can be derived
for the dynamics of the morph variance, Vi =

∫
(z − z̄i)2φi(z)dz.

Appendix D: Projection on RV space
In equation (C.1), the dynamics of z̄i depends on the moments of the class-specific distributions φji (z).
Our goal here is to find a meaningul way to summarise the dynamics using only the moments of the
population-level morph distribution φi(z).

There are two equivalent ways to do this. The first approach applies the method of Lion (2018b) at
the morph level, and uses a quasi-equilibrium approximation of the phenotypic differentiations z̄ki − z̄i.
This is summarised in Appendix S.1. The second, simpler approach is to calculate the moments of
the reproductive-value-weighted distribution, as in Lion (2018a), but applied at the morph level. The
time-dependent reproductive values satisfy equation (12), and the RV-weighted morph distribution is
φ̃i(z) = ∑

k c
k
i φ

k
i (z) where cki = vki u

k
i . Following Lion (2018a), we obtain the following Price equation:

dz̃i
dt =

∑
j

∑
k

vki Cov
φj

i

(
z, rkj(z)

)
uji (D.1)

So far, equation (D.1) is valid irrespective of the shape of the morph distribution. However, if the
morph distribution is sufficiently narrow, we can approximate covariance using equation (B.2).

Both the QE and RV approaches lead to the following equation

dz̃i
dt =

∑
j

V j
i

∑
k

vki
∂rkj

∂z

∣∣∣∣∣
z=z̄j

i

uji +O(ε3). (D.2)

Hence, for narrow morph distributions, the morph mean and the RV-weighted morph mean have the
same dynamics on the slow manifold characterised by Rn = Rf = Riui = v>i Ri = 0.
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Importantly, the RHS of equation (D.2) still depends on the class-specific moments z̄ji and V j
i .

However, after relaxation on the RV space, the quantities z̄ki − z̃i and V k
i − Ṽi will typically be O(ε2)

and O(ε4) respectively under the oligomorphic approximation. Hence, to leading order, we can replace
the habitat-specific morph means and variances by the corresponding moments of the RV-weighted
distribution. This substitution thus introduces a small error, but it will be quantitatively acceptable as
long as the morph variances remain small. This will notably be the case near evolutionary endpoints
under stabilising selection. With this last approximation, we obtain equation (25) in the main text.

We can also calculate the dynamics of the morph variances, either using a quasi-equilibrium ap-
proach (as shown in Appendix S.2 for a two-class model), or by calculating the dynamics of the
RV-weighted morph variances Ṽi. This latter approach yields the folowing Price equation

dṼi
dt =

∑
j

∑
k

vki Cov
φj

i

(
(z − z̃i)2, rkj(z)

)
uji .

For narrow morph distributions, this can be approximated as

dṼi
dt ≈

∑
j

∑
k

vki
Qji − (V j

i )2

2
∂2rkj

∂z2

∣∣∣∣∣
z=z̄j

i

uji + 2
∑
j

V j
i

∑
k

vki
∂rkj

∂z

∣∣∣∣∣
z=z̄j

i

(z̄ji − z̃i)uji +O(ε5) (D.3)

With the Gaussian closure approximation Qji = 3(V j
i )2 and again using z̄ki − z̃i = O(ε2) and V k

i − Ṽi =
O(ε4), we obtain

dṼi
dt ≈ 2V 2

i

1
2
∑
j

∑
k

vki
∂2rkj

∂z2

∣∣∣∣∣
z=z̃i

uji +
∑
j

∑
k

vki
∂rkj

∂z

∣∣∣∣∣
z=z̃i

(z̄ji − z̃i)uji

+O(ε5) (D.4)

which can be rewritten in matrix form as equation (20) in the main text.
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Appendix S: Supplementary Material

S.1 Projection on RV space: quasi-equilibrium approach

Let us define ui the vector with elements fki fk/fi, Ui = diag(ui), Ci the matrix with elements
Cov
φj

i

(
z, rkj(z)

)
, and di the vector of morph-specific scaled phenotypic differentiation (with elements

dki = (z̄ki − z̄i)/σi where σi =
√
Vi is the standard deviation of the distribution of morph i). We can

then write equation (C.1) as
dz̄i
dt = 1>Ciui + σi1>RiUidi (S.1)

which has the same form as equation (15) in Lion (2018b), but is morph-specific. Similarly, the
dynamics of di can be put in the form:

d(σidi)
dt = BiCiui + Ai(σidi) (S.2)

which has the same form as equation (A2) in Lion (2018b). Hence, if we assume, as in Lion (2018b),
that the unimodal morph distributions are tightly clustered around the mean (which is the crux of
the oligomorphic approximation), we can follow the same approach as in that paper, and derive a
quasi-equilibrium approximation for di. This eventually yields:

dz̄i
dt ≈ v>i SiΩiui +O(ε3) (S.3)

where v>i and ui are calculated as the left and right eigenvectors of Ri, keeping only the O(1) terms,
Ωi = diag(V 1

i . . . V
K
i ) and the matrix Si has elements ∂rkj/∂z evaluated at z = z̄ji . To leading order,

we can replace z̄ji and V j
i by z̄i and Vi (because both z̄ji − z̄i and V j

i − Vi are at least O(ε)) to obtain
equation (17) in the main text.

S.2 A two-habitat model

In this appendix, we carry out an explicit analysis of a specific two-habitat model to revisit the results
of Débarre et al. (2013). As in that paper, we consider a population of individuals distributed over two
habitats, A and B, coupled by migration. Each habitat is characterised by a habitat-specific optimum
(θA and θB, respectively). The transition rates between classes are then

rAA(z) = b− nA − g(z − θA)2 −mBA

rAB(z) = mAB

rBA(z) = mBA

rBB(z) = b− nB − g(z − θB)2 −mAB

where b is the fecundity rate and g is the fecundity cost. We use quadratic cost functions for simplicity,
so that the cost is minimal at the habitat’s optimum. Also, in contrast to Débarre et al. (2013), we
consider asymmetric migration rates, with mjk the migration rate from habitat k to habitat j (see
also Mirrahimi & Gandon (2020)). Note that we assume migration rates do not depend on the focal
trait, which will lead to simplifications as the partial derivatives of rkj(z) will vanish for j 6= k.
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S.2.1 Oligomorphic approximation

Using the general equations derived in the main text, we obtain the following equations for the
oligomorphic dynamics

d
dt

(
nA

nB

)
=
(∑

i f
A
i r

AA(z̄Ai ) mAB

mBA
∑
i f

B
i r

BB(z̄Bi )

)(
nA

nB

)
+O(ε2) (S.4a)

dfAi
dt = fAi

[
rAA(z̄Ai )−

∑
`

fA` r
AA(z̄A` )

]
+ nB

nA
mAB

[
fBi − fAi

]
+O(ε2) (S.4b)

dfBi
dt = fBi

[
rBB(z̄Bi )−

∑
`

fB` r
BB(z̄B` )

]
+ nA

nB
mBA

[
fAi − fBi

]
+O(ε2) (S.4c)

dz̄Ai
dt = V A

i

∂rAA

∂z

∣∣∣∣∣
z=z̄A

i

+ fBi n
B

fAi n
A
mAB(z̄Bi − z̄Ai ) +O(ε3) (S.4d)

dz̄Bi
dt = V B

i

∂rBB

∂z

∣∣∣∣∣
z=z̄B

i

+ fAi n
A

fBi n
B
mBA(z̄Ai − z̄Bi ) +O(ε3) (S.4e)

dV A
i

dt = 1
2
[
QAi − (V A

i )2
] ∂2rAA

∂z2

∣∣∣∣∣
z=z̄A

i

+ fBi n
B

fAi n
A
mAB

[
V B
i − V A

i + (z̄Bi − z̄Ai )2
]

+O(ε5) (S.4f)

dV B
i

dt = 1
2
[
QBi − (V B

i )2
] ∂2rBB

∂z2

∣∣∣∣∣
z=z̄B

i

+ fAi n
A

fBi n
B
mBA

[
V A
i − V B

i + (z̄Ai − z̄Bi )2
]

+O(ε5) (S.4g)

together with the approximations

rkk(z̄ki ) = b− wk(z̄ki )−mk − nk (S.5a)
∂rkk

∂z

∣∣∣∣∣
z=z̄k

i

= −w′k(z̄ki ) (S.5b)

∂2rkk

∂z2

∣∣∣∣∣
z=z̄k

i

= −w′′k(z̄ki ) (S.5c)

where wA(z) = g(z − θA)2, wB(z) = g(z − θB)2, mA = mBA and mB = mAB

Reproductive values This system can be numerically solved, but we can get some further sim-
plifications using reproductive values. For a two-class model, class reproductive values satisfy at
quasi-equilibrium

cBi = mAB(fBi fB)2

mAB(fBi fB)2 +mBA(fAi fA)2 = 1− cAi (S.6)

where the morph and class frequencies are calculated using the O(1) terms of equations (S.4a)-(S.4c).

Morph means Using equations (S.3) and (D.1), it is straightforward to derive the following equation
for the dynamics of the morph mean, z̄i, and the RV-weighted morph mean z̃i. We obtain

dz̄i
dt = dz̃i

dt = cAi V
A
i

∂rAA

∂z

∣∣∣∣∣
z=z̄A

i

+ cBi V
B
i

∂rBB

∂z

∣∣∣∣∣
z=z̄B

i

+O(ε3) (S.7)

If we only want to keep O(ε2) terms, it is sufficient to replace V A
i and V B

i by Vi, the morph variance,
and z̄Ai and z̄Bi by the morph mean z̄i. (See below for an explicit justification.) We then obtain for
our model:

dz̄i
dt = −Vi

[
cAi u

′
A(z̄i) + cBi u

′
B(z̄i)

]
+O(ε3) ≈ −2gVi

[
z̄i − cAi θA − cBi θB

]
(S.8)
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Figure S.1: Illustration of the relaxation to RV space in a two-class model. The simulation is the same
as in figure S.3a, to which the reader is referred for additional details. The morph differentiation z̄B,1−
z̄A,1 (black) is shown to converge towards the value predicted by the quasi-equilibrium approximation
(S.9) (grey line). The inset shows a close-up of the dynamics.

An explicit derivation of equation (S.7) can also be obtained by calculating the dynamics of z̄Bi − z̄Ai
from equations (S.4d)-(S.4e) and assuming this phenotypic differentiation is a fast variable (Lion,
2018b). This yields the following quasi-equilibrium approximation

z̄Bi − z̄Ai ≈
fAi f

AfBi f
B

mAB(fBi fB)2 +mBA(fAi fA)2

V B
i

∂rBB

∂z

∣∣∣∣∣
z=z̄B

i

− V A
i

∂rAA

∂z

∣∣∣∣∣
z=z̄A

i

 (S.9)

which can be written using equation (S.6) as

z̄Bi − z̄Ai ≈
√

cAi c
B
i

mABmBA

V B
i

∂rBB

∂z

∣∣∣∣∣
z=z̄B

i

− V A
i

∂rAA

∂z

∣∣∣∣∣
z=z̄A

i

 (S.10)

Plugging the resulting expression into equations (S.4d) and (S.4e) yields

dz̄Ai
dt = dz̄Bi

dt = cAi V
A
i

∂rAA

∂z

∣∣∣∣∣
z=z̄A

i

+ cBi V
B
i

∂rBB

∂z

∣∣∣∣∣
z=z̄B

i

+O(ε3) (S.11)

which entails, assuming that the morph and class frequencies are calculated on their quasi-equilibrium
manifold,

dz̄i
dt = dz̃i

dt = dz̄Ai
dt = dz̄Bi

dt
Equation (S.10) shows that z̄Bi − z̄Ai = O(ε2), so that z̄Ai = z̄Bi = z̄i+O(ε2). This justifies that we can
replace the class-specific morph means by the morph mean in equation (S.7). We then obtain equation
(25) in the main text. Figure S.1 shows that the differentiation between morph means z̄B,1 − z̄A,1
quickly converges to a small value which is well predicted by the quasi-equilibrium approximation.
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Morph variances Similarly, we can derive the dynamics of the difference in morph variances from
equations (S.4f)-(S.4g). With Gaussian closure approximation (such that Qki = 3(V k

i )2) and using
equation (S.6), we obtain after some rearrangements the following quasi-equilibrium approximation:

V B
i − V A

i ≈
√

cAi c
B
i

mABmBA

(V B
i )2 ∂

2rBB

∂z2

∣∣∣∣∣
z=z̄B

i

− (V A
i )2 ∂

2rAA

∂z2

∣∣∣∣∣
z=z̄A

i

− (cBi − cAi )(z̄Bi − z̄Ai )2 (S.12)

Plugging this into equations (S.4f) and (S.4g) yields, again after some rearrangements

dV A
i

dt = dV B
i

dt = cAi (V A
i )2 ∂

2rAA

∂z2

∣∣∣∣∣
z=z̄A

i

+ciB(V B
i )2 ∂

2rBB

∂z2

∣∣∣∣∣
z=z̄B

i

+2
√
cAi c

B
i mABmBA(z̄Bi − z̄Ai )2 (S.13)

and using equation (S.10) finally yields

dV A
i

dt = dV B
i

dt =cAi (V A
i )2 ∂

2rAA

∂z2

∣∣∣∣∣
z=z̄A

i

+ cBi (V B
i )2 ∂

2rBB

∂z2

∣∣∣∣∣
z=z̄B

i

+ 2

(
cAi c

B
i

)3/2

√
mABmBA

V B
i

∂rBB

∂z

∣∣∣∣∣
z=z̄B

i

− V A
i

∂rAA

∂z

∣∣∣∣∣
z=z̄A

i

2 (S.14)

which again implies
dVi
dt = dṼi

dt = dV A
i

dt = dV B
i

dt
Another route to this result is to start with the dynamics of the RV-weighted variance, given by

equation (20). This gives for our model

dṼi
dt ≈ c

A
i (V A

i )2 ∂
2rAA

∂z2

∣∣∣∣∣
z=z̄A

i

+cBi (V B
i )2 ∂

2rBB

∂z2

∣∣∣∣∣
z=z̄B

i

+2cAi (z̄Ai −z̃i)V A
i

∂rAA

∂z

∣∣∣∣∣
z=z̄A

i

+2cBi (z̄Bi −z̃i)V B
i

∂rAA

∂z

∣∣∣∣∣
z=z̄B

i

(S.15)
(recall that vki uki = cki ). Noting that z̄Ai − z̃i = cBi (z̄Ai − z̄Bi ) and z̄Bi − z̃i = cAi (z̄Bi − z̄Ai ), and using
equation (S.10) finally yields

dṼi
dt =cAi (V A

i )2 ∂
2rAA

∂z2

∣∣∣∣∣
z=z̄A

i

+ cBi (V B
i )2 ∂

2rBB

∂z2

∣∣∣∣∣
z=z̄B

i

+ 2

(
cAi c

B
i

)3/2

√
mABmBA

V B
i

∂rBB

∂z

∣∣∣∣∣
z=z̄B

i

− V A
i

∂rAA

∂z

∣∣∣∣∣
z=z̄A

i

2 (S.16)

From equation (S.12) we see that V B
i −V A

i = O(ε4), so that V A
i = V B

i = Ṽi+O(ε4). The errors made
by approximating the class-specific variances by Ṽi in equation (S.16) will therefore be of higher-order
than the leading-order terms.

S.2.2 Quadratic functions

For the model with quadratic functions, equations (S.7) and (S.16) simplify to
dz̄i
dt = −2gVi

[
z̄i − cAi θA − cBi θB

]
(S.17)

dVi
dt = −2gV 2

i

[
1− 4g√

mABmBA

(
cAi c

B
i

)3/2
(θB − θA)2

]
(S.18)

Equation (S.17) shows that at equilibrium morph means are equal to the reproductive-value weighted
average of habitat optima, cAi θA + cBi θB. The corresponding equilibra are stable if dVi/dt < 0, which
is equivalent to √

mABmBA

4g >
(
cAi c

B
i

)3/2
(S.19)

where we have set θA = 0 = 1− θB without loss of generality.
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S.2.3 Solutions

We consider that the population is composed of two morphs (1 and 2). We can thus write the dynamics
of the frequencies of morph 1 in habitats A and B as follows:

0 = (fA1 (1− fA1 )g(z̄1 − z̄2)(z̄1 + z̄2) +mAB
fB

fA
(fB1 − fA1 ) (S.20)

0 = (fB1 (1− fB1 )g(z̄1 − z̄2)(z̄1 + z̄2 − 2) +mBA
fA

fB
(fA1 − fB1 ) (S.21)

Multiplying the first equation by fA/(mABf
B) and the second by fB/(mBAf

A), then taking the sum,
gives

0 = g(z̄1 − z̄2)
[
fAfA1 (1− fA1 )

mABfB
(z̄1 + z̄2) + fBfB1 (1− fB1 )

mBAfA
(z̄1 + z̄2 − 2)

]
This is satisfied either if z̄1 = z̄2 which corresponds to a single-morph equilibrium, or if the term
between brackets is zero, which leads to a dimorphic equilibrium

Dimorphic equilibrium We start with the dimorphic case, which is simpler to analyse. The term
between brackets yields

fB1 (1− fB2 )
fA1 (1− fA1 )

= z̄1 + z̄2
2− z̄1 − z̄2

mBA

mAB

(
fA

fB

)2

Using the fact that z̄i/(1− z̄i) = cBi /c
A
i = (mAB/mBA)(fBi fB/(fAi fA))2, we can simplify this equality

as
z̄1z̄2

(1− z̄1)(1− z̄2) =
(

z̄1 + z̄2
2− z̄1 − z̄2

)2

which can be rearranged as
(z̄1 − z̄2)2(1− z̄1 − z̄2) = 0

Hence, because z̄1 6= z̄2 for the dimorphic equilibrium, the morph means must satisfy z̄1 + z̄2 = 1.
Plugging this condition into the dynamics of morph frequencies, then solving for fA1 and fB1 and
calculating cB1 yields

z̄1 = cB1 = 1
2 −

g(1− 2z̄1)
2
√

4mABmBA + g2(1− 2z̄2
1)

Solving for z̄1 finally yields, for √mABmBA < g/2

z̄1 = 1
2 −

1
2

√
1− 4mABmBA

g2 = 1− z̄2 (S.22)

which, using equation (S.18), is evolutionarily stable if √mABmBA < g/2.
Equation (S.22) can be used to calculate the morph frequencies (see companinon Mathematica

notebook). We also obtain the following expressions for the equilibrium densities

nA = b−mBA + mABmBA

g

nB = b−mAB + mABmBA

g

For symmetric migration, we recover the results in Table 1 of Débarre et al. (2013).

Because the dimorphic equilibrium is characterised by the two morphs having different frequencies
in the two habitats, the habitat-specific trait distributions are distinct. We can characterise these
equilibrium distributions by calculating their moments (see companion notebook):
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Figure S.2: Dynamics of habitat-specific moments: the means (a), variances (b) and third moments
(c) of the trait distributions in habitat A (solid lines) and B (dashed lines) and shown to converge to
the values predicted by the analytical formulae (dotted horizontal lines). Parameters as in figure 4b
in the main text.

• the mean trait in habitats A and B (and the differentiation D = z̄B − z̄A)

z̄A = fA1 z̄1 + (1− fA1 )z̄2 = mABf
B

gfA

z̄B = fB1 z̄1 + (1− fB1 )z̄2 = 1− mBAf
A

gfB

• the global mean trait

z̄ = fAz̄A + fB z̄B = fB + mABf
B −mBAf

A

g

where the first term is the mean of the two optima (fAθA + fBθB = fB) and the second term
is the deviation caused by the migration-selection balance. For symmetric migration, we have
z̄ = fB = 1/2.

• the variance in habitat A in the absence of mutation-selection balance (i.e. assuming V A
i = 0 at

equilibrium)

V A = (z̄1 − z̄A)2fA1 + (z̄2 − z̄B)2(1− fA1 ) = mAB
fAfBg −mAB(fB)2 −mBA(fA)2

(fAg)2

• the third moment in habitat A in the absence of mutation-selection balance (i.e. assuming
V A
i = 0 at equilibrium), assuming the morph distribution is not skewed (e.g. TAi = 0)

TA = (z̄1 − z̄A)3fA1 + (z̄2 − z̄B)3(1− fA1 ) = fAg − 2fBmAB

fAg
V A

Note that, for symmetric migration, we recover the results of Débarre et al. (2013) (column 2 in their
Table 1). In figure S.2, the dynamics of the moments of the trait distributions in habitats A and B
are presented and compared with the analytical predictions.

Single-morph equilibria In the single-morph case, we have only one morph with frequencies fA1 =
fB1 = 1. The equilibrium densities and morph mean can be calculated from the following system of
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equations:
dnA
dt =

(
b− nA − gz̄2

1 −mBA

)
nA +mABn

B = 0

dnB
dt =

(
b− nB − g(z̄1 − 1)2 −mAB

)
nB +mBAn

A = 0

z̄1 = mAB(nB)2

mAB(nB)2 +mBA(nA)2

where the latter equation simply states that the mean trait is equal to the class reproductive value
cB1 .

The system can only be fully solved numerically, except for symmetric migration where at least
one solution (z̄1 = 1/2 and nA = nB = b − g/4) can be analytically calculated. Depending on the
region of parameter space (and in particular the values of the migration rates) there is typically either
one or three solutions of the system.

Note that, in the limit wheremAB = mBA = m, we have vA1 = vB1 = 1 and therefore z̄1 = cB1 = 1/2.
The “symmetric monomorphic” singularity found by Débarre et al. (2013) thus corresponds to the
case where both habitats have equal reproductive values. As found by Débarre et al. (2013), this
solution is evolutionarily stable if m > g/2, which can be checked using condition (S.18).

Bistability For some parameters values, the system can exhibit several convergent and evolution-
arily stable points, notably the dimorphic equilibrium and one or two single-morph equilibria. The
endpoint of the eco-evolutionary dynamics is then determined by the initial conditions. This bistabil-
ity is illustrated in figure S.3 for a specific example, and the full bifurcation diagrams of the model for
mAB = 0.8 are shown in figures S.4. Note however that, as already found by Débarre et al. (2013),
the basin of attraction of the unimodal equilibrium is relatively narrow so that a little mutation is
sufficient to push the dynamics towards the bimodal equilibrium. This explains why the simulations
of the full model (the black dots in figures S.4a and S.4b) typically converge towards the bimodal
equilibrium when it exists.

(a) Dimorphic equilibrium
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Figure S.3: Illustration of the bistable dynamics of the model for sufficiently low values of the geometric
mean of the migration rate, m = √mABmBA. The dynamics of the mean trait of morph 1 (blue) and
2 (black) in habitat A (solid lines) and B (dashed lines) are shown, either leading to a polymorphic
equilibrium (left panel) or to a monomorphic equilibrium (panel b). The only difference between the
two simulations is the initial trait value of the first morph in habitat A, which is xA1 (0) = 0.4 in
panel (a), and xA1 (0) = 0.5 in panel (b). Other initial conditions: nA(0) = nB(0) = 1, fki (0) = 1/2
(for i = 1, 2 and k = A,B), xA2 (0) = 0.34, xB1 (0) = 0.2, xB2 (0) = 0.7, V A

1 (0) = V B
1 (0) = 0.002,

V A
2 (0) = V B

2 (0) = 0.001. Parameters: mAB = 0.8, mBA = 1, g = 2, b = 1.

S.2.4 Box 1 vs. Box 2

How accurate is it to replace the equations in Box 1 by the projection of RV space (Box 2)? Figure S.4
shows that the quantitative match is very good, except in a small region of parameter space between
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(b) Single-morph equilibria
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Figure S.4: Bistability. Figures (a) and (b) give the bifurcation diagrams for the mean traits. Open
shapes give the predictions of a two-morph oligomorphic approximation for the dimorphic (circles,
panel b) and single-morph (diamonds, panel c) solutions, for both morphs 1 (blue) and 2 (orange).
The gray lines represent the analytical expressions 1/2 ±

√
1− 4m2/g2/2, which are shown on both

panels (b) and (c) for convenience. The results of the full model, without the oligomorphic approx-
imation, are presented using black dots. On panel (b), the black lines give the predictions of the
oligomorphic approximation (solid lines represent evolutionarily stable, and dashed lines evolution-
arily unstable solutions). In all panels, the vertical dotted line represents the value mBA ≈ 1.06
at which the dimorphic equilibrium loses its demographic stability and one of the two morphs goes
extinct. Parameter values: b = 1, g = 2, mAB = 0.8, VM = 10−6.

mAB = 0.8 and mBA = 1, where the RV projection does not accurately predicts the single-morph
solution. This corresponds to a point where migration is close to symmetric and the single-morph
solution actually becomes a repellor. Thus the dynamics converge towards a point where selection
is disruptive but a dimorphism cannot persist. As shown in figure S.5b, this causes the build-up of
subtantial differentiation between the morph means in habitats A and B, at which point the morph-
centred reproductive-value-weighted oligomorphic approximation breaks down.

S.2.5 Effect of mutation

In figure S.6, we show how the mutational variance affects the equilibrium trait distributions in habitat
A (top panel) and B (middle panel), and the morph frequencies (bottom panel). There is a sharp
change in behaviour around VM ≈ 10−3, which corresponds to the oligomorphic approximation break-
ing down when the morph variances become too large and collide: we then shift from a dimorphism
with two distinct morphs (distinct frequencies of morph 1 and 2 in each habitat, but the morph means
are the same in each habitat z̄Ai = z̄Bi = z̄i) to a case where one morph suddenly goes extinct, but this
morph has a distinct mean in each habitat (i.e. z̄A1 6= z̄B1 ). However, the simulations of the full model
do not predict this pattern, but rather than the model always converges towards a bimodal distribu-
tions with two peaks, albeit with slightly wider variances when VM is larger. Since the oligomorphic
approximation relies on morph variances (i.e. the width of the peaks) being small enough, this is an
expected behaviour of our approach. Nonetheless, the oligomorphic approximation remains accurate
for relatively large mutational variance.
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Figure S.5: This figure gives some additional results which are helpful to better understand figure
S.4 Panel (a) gives the corresponding equilibrium values of the frequencies of morphs 1 (blue) and 2
(orange) for the single-morph (diamonds) and two-morph (circles) equilibria. Panel (b) represents the
dynamics of the mean trait in habitat A (solid line) and B (dashed line) predicted by the single-morph
oligomorphic approximation for mAB = mBA = 0.8. In all panels, the vertical dotted line represents
the value mBA ≈ 1.06 at which the dimorphic equilibrium loses its demographic stability and one of
the two morphs goes extinct. Parameters as in figure 4.

S.3 A two-habitat resource-competition model

In this appendix, we extend the previous migration-habitat model to add trait-mediated resource
competition. The transition rates between classes become

rAA(z) = b− nA
∫
a(z − y)φA(y, t)dy − g(z − θA)2 −m

rAB(z) = m

rBA(z) = m

rBB(z) = b− nB
∫
a(z − y)φB(y, t)dy − g(z − θB)2 −m

where a(·) is the competition kernel. In the case where only one habitat is present, this corresponds
to the model studied by Sasaki & Dieckmann (2011).

Deriving the dynamical equations

In this model, the dynamics of morph means and variances are also described by equations (S.7) and
(S.16), but we use the oligomorphic approximation to calculate the derivatives of the rates rAA(z)
and rBB(z). As in Sasaki & Dieckmann (2011), we first Taylor-expand the competition kernel around
y = z̄j` to obtain

a(z − y) = a(z − z̄j` ) + a′(z − z̄j` )(y − z̄
j
` ) + 1

2a
′′(z − z̄j` )(y − z̄

j
` )

2 +O(ε3)

Multiplying by f j` φ
j
`(y, t) and summing over ` yields

a(z−y)φj(y, t) =
∑
`

f j` a(z−z̄j` )φ
j
`(y, t)+

∑
`

f j` a
′(z−z̄j` )(y−z̄

j
` )φ

j
`(y, t)+

1
2
∑
`

f j` a
′′(z−z̄j` )(y−z̄

j
` )

2φj`(y, t)+O(ε3)

Integrating over y, we obtain:∫
a(z − y)φj(y, t)dy =

∑
`

f j` a(z − z̄j` ) + 1
2
∑
`

f j` V
j
` a
′′(z − z̄j` ) +O(ε3)
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(a) Trait distribution in habitat A
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(b) Trait distribution in habitat B
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(c) Morph frequencies
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Figure S.6: Effect of mutation. The density distribution in habitats A (panel (a)) and B (panel (b)),
and the frequencies of morph 2 in each habitat (panel (c); A: solid, B: dashed) are shown as a function
of the mutational variance VM (log scale). When VM increases, the variance of the distributions
increases. There is a threshold at VM ≈ 10−3 above which the oligomorphic approximation breaks
down.
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We can then write the vital rates as

rAA(z) = b− nA
∑
`

fA` a(z − z̄A` )− g(z − θA)2 −m+O(ε2)

rBB(z) = b− nB
∑

fB` a(z − z̄B` )− g(z − θB)2 −m+O(ε2)

and the partial derivatives:

∂rAA

∂z

∣∣∣∣∣
z=z̄A

i

= −nA
∑
`

fA` a
′(z̄Ai − z̄A` )− 2g(z̄Ai − θA) +O(ε2)

∂2rAA

∂z2

∣∣∣∣∣
z=z̄A

i

= −nB
∑
`

fA` a
′′(z̄Bi − z̄B` )− 2g +O(ε2)

with similar expressions for the partial derivatives in habitat B. We can then use these expressions in
equations (S.4) to obtain the general oligomorphic approximation of the resource competition model.
This is how the numerical simulations in figure 3 in the main text were performed.
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