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Abstract 
Protein complexes are groups of two or more polypeptide chains that join together to build noncovalent networks 
of protein interactions. A number of means of computing the ways in which protein complexes and their members 
can be identified from these interaction networks have been created. While most of the existing methods identify 
protein complexes from the protein-protein interaction networks (PPIs) at a fairly decent level, the applicability of 
advanced graph network methods has not yet been adequately investigated. In this paper, we proposed various 
graph convolutional networks (GCNs) methods to improve the detection of the protein functional complexes. We 
first formulated the protein complex detection problem as a node classification problem. Second, the Neural 
Overlapping Community Detection (NOCD) model was applied to cluster the nodes (proteins) using a complex 
affiliation matrix. A representation learning approach, which combines the multi-class GCN feature extractor (to 
obtain the features of the nodes) and the mean shift clustering algorithm (to perform clustering), is also presented. 
We have also improved the efficiency of the multi-class GCN network to reduce space and time complexities by 
converting the dense-dense matrix operations into dense-spares or sparse-sparse matrix operations. This 
proposed solution significantly improves the scalability of the existing GCN network. Finally, we apply clustering 
aggregation to find the best protein complexes. A grid search was performed on various detected complexes 
obtained by applying three well-known protein detection methods namely ClusterONE, CMC, and PEWCC with the 
help of the Meta-Clustering Algorithm (MCLA) and Hybrid Bipartite Graph Formulation (HBGF) algorithm. The 
proposed GCN-based methods were tested on various publicly available datasets and provided significantly better 
performance than the previous state-of-the-art methods. The code and data used in this study are available from 
https://github.com/Analystharsh/GCN_complex_detection  
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Glossary 
GCN - Graph Convolutional Network 
PPI - Protein-Protein Interaction 
MCLA - Meta-Clustering Algorithm 
NOCD  - Neural Overlapping Community Detection 
HBGF - Hybrid Bipartite Graph Formulation 
PSO - Particle Swarm Optimization 
OS - Overlapping Score 
NMI - Normalized Mutual Information 
RNA - Ribonucleic Acid 
TKC - Total Known Complexes 
TPC - Total Predicted Complexes 
PMC - Predicted Matched complexes 
KMC - Known Matched Complexes 
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1. Introduction 
Proteins are responsible for the growth and development of all species. The majority of the functions in the 
cellular systems of living beings are not caused by the individual protein nodes. Instead, many protein nodes take 
part in performing cellular functions. These similar protein nodes are known as protein complexes or protein 
communities. The overwhelming majority of biological processes within cells are controlled by proteins; thus, 
proteins control appropriate cell functionality. Cells are required to respond to several stimuli. The cellular 
response is a complex procedure involving the assignation of particular tasks to specific proteins; for any function, 
a specific type and number of proteins will be needed. For this reason, biologists have moved from examining the 
relationships between structure and function in individual protein families to making intensive studies of complete 
cellular networks [1]. For complete comprehension of the function of a protein, it must be examined in the light of 
those partners with which it interacts and the complex to which it belongs. It is generally recognized that protein 
complexes comprise groups of two or more interacting polypeptide chains [2]. Being able to detect such 
complexes has a significant impact as they are central to biological processes and create the framework for the 
network of protein-protein interactions (PPIs). Protein complex formation is responsible for antigen-antibody 
interaction and transportation, gene expression control, cell cycle control, signaling, differentiation, protein 
folding, transcription, translation, and inhibition of enzymes [2]. Thus, building or destroying various protein 
complexes causes the initialization, modulation, or termination of several biological processes [3]. Gene mutations 
can cause a considerable quantity of protein complex abnormalities [4], [5]. Subsequently, this may influence how 
proteins interact with other partners. In particular, it may modify the ways in which different proteins interact, and 
in certain instances, it may also initiate self-interaction [4]. These modifications are small but have significance as 
they are allied to significant numbers of alterations in self-functionality, which can assist us to achieve a better 
understanding of ways to engender a resolution. Additionally, knowledge of protein complexes can increase 
knowledge of various forms of the disease. Much research has demonstrated that genetic disease is caused by 
proteins with similar functional interactions [2], [6]. Using data extracted from PPI assist researchers in the 
discovery of inter-gene evolutionary relationships that can guide them to unique protein complexes, leading to the 
discovery of unique genes related to particular diseases [4]. Additionally, protein complexes are making significant 
changes in terms of the creation of new drug therapies [7]. This is because they play a significant part in 
physiological function, which makes them superior to standard in vitro methods of analyzing therapeutic agents 
[7]. The investigation of protein complexes may reveal previously undiscovered pathways and proteins, new 
methods for controlling diseases, and new ways of classifying genes. All of these elements combine to allow for the 
development and understanding of the targeting, identification, and retardation of disease progression.  
 
Many previous successful methods have been put forward for the detection of protein complexes from PPI 
networks which can be divided into the following seven categories: 
 

1. A local neighborhood density search approach, focusing on the discovery of dense subgraphs inside the 
input network, including MCODE [8], DPClus [7], ProRank [9], [10], ProRank+ [11], CMC [12], PROCOMOSS 
[13] and PEWCC [14], NCMine [15], Core&Peel [16], SPICi [17] and non-cooperative sequential game [18]. 

2. Local search approaches based on cost, focusing on the extraction of modules from interaction graphs 
through the partition of the graphs into linked subgraphs employing cost functions for the guidance of 
searches towards the optimal partition, including RNSC [19], ModuLand [20], and STM [21]. 

3. Approaches employing Flow Simulation, focusing on the imitation of ways in which information spreads 
through a network, including MCL [22] and RW [6]. 

4. Approaches based on statistics, relying on the employment of statistical concepts for clustering proteins, 
e.g. how many shared neighbors pair of proteins have, and on notions of referential attachments for 

module members with other elements within the module; this includes SL [23], idenPC-MIIP [24], idenPC-

CAP [25] and Farutin [2]. 
5. Stochastic search methods based on population employed to develop algorithms used to detect 

communities and networks including CGA [26], IGA [7], and EHO-MCL [27]. 
6. Approaches based on modularity, topological structure, overlapping information, and GO annotations, 

including CFinder [28] and [29], ClusterONE [30], and SE-DMTG [31]. 
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7. Graph-based clustering methods, which includes statistical-based measures methods such as [2] which 
uses the concept of statistical significance to measure the strength of the relationship between two nodes 
(proteins), which requires prior estimation of the p-value. Cost-based Local search (CL) [32], Population-
based Stochastic search (PS) [26] and [33], Local neighborhood Density search (LD), [34] and [30]. 

 
While all of the methods detailed above can identify protein complexes at a fairly accurate level, in this paper, we 
introduce four major contributions to improve the detection of the protein complexes from the PPI network. These 
contributions are as follow: 
 

 Contribution 1: we employ the node classification approaches [35] to classify nodes (proteins) into classes 
(complexes). First, the interaction matrix (adjacency matrix) and degree matrix are prepared from a given 
PPI network. Second, the identity matrix is used as a feature of the nodes. Based on all these inputs, three 
versions of GCN [36] were employed. These models are multi-class GCN classification methods with 2𝑁 
label size (𝑁 is the number of complexes), multi-class GCN classification with label size 𝐾 (𝐾 is the number 
of possible combinations of the labels in the respective datasets), and multi-label GCN classification 
method. All these classification methods provided the protein complex labels for all the nodes in the 
network. These models not only detect non-overlapping communities but also are self-sufficient in the 
definition itself to detect overlapping complexes [37]. 

 

 Contribution 2: GCN approaches are further advanced by proposing efficient matrix operations inside 
GCN layers. It leads to the decrement in the time and space complexities required to implement, train, 
and infer the GCN approaches conveniently. The dense matrices involved in the GCN model, such as 
feature, adjacency, and degree matrices are turned into the compressed sparse row (CSR) matrix format 
[38]. It removes the redundant operations from the existing GCN architectures.  

 

 Contribution 3: Two learning representations were proposed for complex detection. The first approach 
NOCD GCN method [39] uses the generative model to learn the community affiliation matrix from the 
node features and adjacency matrix. It requires modeling the loss function in terms of negative likelihood 
involving the Bernoulli Poisson (BP) method. The second approach extracts feature from the existing pre-
trained GCN model and use these feature embedding to form clustering with mean shift algorithm [40].  

 

 Contribution 4: A clustering aggregation process [41] has been proposed, which takes all the clustering 
from different methods without knowing which one is the best and produces the optimal clustering. A 
grid search has been performed with the Meta-Clustering Algorithm [42] and Hybrid Bipartite graph 
formulation (HBGF) [43] algorithm. 

 
 

2. Methods 

2.1. Datasets 

2.1.1. Human and Mouse datasets 
The interaction networks of these datasets are extracted from the BioGrid interaction database [44]. These 
datasets provide PPI networks of two species “Homo sapiens” and “Mus musculus” popularly known as human and 
mouse, respectively. These raw datasets are pre-processed by removing duplicate nodes/interaction edges and 
merging all the available PPIs for particular species. The Human PPI network contains 21,644 protein nodes and 
338,923 interactions, while the Mouse PPI contains 21,420 protein nodes and 20,679 interactions. The CORUM 
reference complexes dataset [45] which includes 623 “Mouse” related reference complexes and 2,645 “human” 
related complexes were used to evaluate the performance of the proposed methods. 
 

2.1.2. Yeast PPI datasets:  
In addition, two popular datasets Collins and Gavin datasets [46] were also considered in this study. Gavin dataset 
is extracted by calculating socio-affinity index in all yeast PPI networks from the database, as proposed by original 
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authors. If this term is greater than 5, then that PPI is considered. If not, then it is not included. On the other side, a 
different metric (purification enrichment test) is used to retain the Collins dataset. 
 

2.2. Developing the multi-class GCN classification model 
Inspired by the recent promising results achieved by applying graph-based learning techniques for detecting 
communities in graphs [47], we employ the GCN [48] to classify proteins into complexes. The method starts by 

creating an adjacency matrix 𝐴̂ of shape 𝑁 × 𝑁 (where 𝑁 is the number of nodes. In this case, if two nodes are 
connected in the input graph, then the corresponding entry in the adjacency matrix is presented as 1 or 0 
otherwise. Therefore, the input feature matrix 𝐹1 is considered as an identity matrix of shape 𝑁 × 𝑁, which 
presents the features for each node in the absence of explicit node features. The input adjacency matrix is formed 

by adding the feature matrix  𝐹1 and 𝐴̂ to add self-connection of each node in the adjacency matrix (𝐴 = 𝐴̂ + 𝐹1). 

This input feature matrix is then normalized [36] as 𝑍 = 𝐷−1/2𝐴 𝐷−1/2. In this case, each graph neural network 
layer will consist of its weight matrices 𝑊𝑖. The 𝑊1for example is the weight matrix of shape 𝑁 × 512 for the first 
GCN layer [48]. We can then obtain the matrix 𝐾 by multiplying the feature matrix 𝐹1 by weight matrix 𝑊1 (𝐾 =
𝐹1𝑊1) . Further, the matrix 𝐾 is multiplied by 𝑍 to obtain 𝑃 (𝑃 = 𝑍𝐾). Which then passed to the ReLU activation 
function 𝐹2 = 𝑅𝑒𝐿𝑈(𝑃). This output is again passed to another GCN layer with a weight matrix 𝑊2 of shape 512 ×
𝐿 as a feature matrix for the next layer, where 𝐿 is the length of each node label. This process is repeated using 𝐹2, 
𝑊2, 𝐴, and 𝐷. 
 

The label matrix 𝑌 for all the nodes in the input graph is prepared by inspecting the possible number of 
combinations 𝐾 for nodes belonging to one or more complexes. In this way, each label is formed as one hot 
encoder of the length equal to the number of such possible combinations for the particular dataset. Finally, the 

output 𝐹3 obtained from the second GCN layer is passed to the row-wise softmax function 𝑌̂ = 𝜎(𝐹3) where 𝜎 is 

row-wise Softmax function. With the help of 𝑌 and 𝑌̂, the presented GCN is trained with the loss function defined 

as categorical cross-entropy 𝐿 = 𝐻(𝑌, 𝑌̂), where 𝐻(. : . ) represents categorical cross-entropy, 𝑌 and 𝑌̂ are the 
ground truth label matrix and predicted outcome matrix, respectively. The weighted matrices 𝑊1 and 𝑊2 are 
updated during the training using multiple epochs.  

 
To extend the method to handle multi-label classification, instead of the softmax function, we used the sigmoid 
function after the second GCN layer, and the loss function was also changed into a class-wise summation of binary 

cross-entropy. Therefore, the loss function will be 𝐿 = ∑ (𝐵𝐶(𝑌𝑐𝑖
, 𝑌̂𝑐𝑖

))𝑐𝑖∈𝐶  where 𝐶 is the set of all classes, and 𝑐𝑖  is 

class 𝑖 of the set 𝐶 and BC is the binary cross-entropy. During the training time, this loss function was used to 
calculate the gradient, while Adam optimizer was used to update the weights 𝑊1 and 𝑊2. Finally, the values > 0.5 
are converted into 1, otherwise converted into 0. These steps are illustrated in Figure 1. 

 

 
 

Figure 1: Overview of the multi-class GCN node classification 
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2.2.1. Explicit node features 
In our experiments, we have primarily used Identity matrix as feature embedding. Apart from this, we have also 
tried a custom feature matrix. The RNA-RNA interaction networks and RNA-protein interaction networks [49] were 
used to build the feature matrix. For the node classification task, the adjacency matrix and feature matrix are 
required as input. The process of obtaining the feature matrix (feature embedding ) from the mentioned two extra 
networks is as follows: 
 

 The RNA-RNA interaction networks are clustered using greedy modularity [50]. In this case, almost all the 
RNA nodes can be clustered into three big groups. Therefore, the feature length for every node is 
assigned to 3. It is one hot encoder with a length of 3. Entry 1 in this feature embedding represents the 
inclusion of the relationship with corresponding RNA clusters, while entry 0 represents the non-inclusion 
of that RNA-RNA cluster. The Girvan-Newman [51] yielded one big cluster (~ 55600 nodes out of 56000 
nodes in total) 

 The RNA-RNA clusters are labeled with unique IDs, 

 Every protein was labeled as per the RNA clusters from which they are connected in the RNA-Protein 
network. Generally, it is in sparse matrix form as most of the entries of this feature matrix are zeros. 

 Use these node feature embedding as a feature matrix.   
 

2.3. Representation Learning Approaches 
One of the limitations of GCN manipulations is the computational cost. The process includes large and 
sparse matrix addition, matrix inversion, matrix multiplication, etc., and therefore, the use of dense matrices 

causes high computational costs. To address this issue we first represented the sparse matrix using the 

compressed sparse row (CSR) matrix format [52]. 

2.3.1. The Neural Overlapping Community Detection - GCN method 
In this section, we describe the probabilistic generative GCN model. A model which does not require any label for 

the training purpose. It simply takes the graph adjacency matrix and node feature matrix as inputs. Then, it uses 

Neural Overlapping Community Detection (NOCD) model [53] to learn the connectivity among the nodes 

(protein) and optimize the weights accordingly. It is a completely unsupervised method that relies on the 

probabilistic modeling of the output. This output is termed as complex affiliation matrix F. So the problem boils 

down to the 𝑝(𝐴|𝐹) estimation, where A is the adjacency matrix. If the complex affiliation matrix is prior, entries in 

the adjacency matrix can be sampled as, 𝐴𝑢𝑣~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝑒−𝐹𝑢𝐹𝑣
𝑇

), where 𝑢 and 𝑣 are two nodes. In this case, 

the higher value of the 𝐹𝑢𝐹𝑣
𝑇 indicates the higher chances of 𝑢 and 𝑣 are connected and be in the same 

community. All the settings are kept the same as the multi-class GCN classification method, but the row-wise 

softmax function is changed to the element-wise Relu activation after the second GCN layer. The other two 

differences in the GCN architectures are as follow: 

 The dropout layer is used in the last GCN layer 

 The 𝐿2 regularization is applied to both weight matrices in the network 
 The batch normalization layer is also added to the first GCN layer 

In this case, the output here is complex affiliation matrix F, not 𝑌̂, which uses labels to perform the training. 

Therefore, the negative likelihood of the proposed model can be written as: 

−𝑙𝑜𝑔 𝑝(𝐴|𝐹) = − ∑ log (1 − 𝑒−𝐹𝑢𝐹𝑣
𝑇

(𝑢,𝑣)∈𝐸 ) + ∑ 𝐹𝑢𝐹𝑣
𝑇

(𝑢,𝑣)∉𝐸   (1) 

To reduce the effect of non-edges (sparse effect), we selected only a certain number of non-edges to 

balance the estimation. This new term is written as follows: 

𝐿 = −𝐸(𝑢,𝑣)~𝑃𝐸
[log(1 − 𝑒−𝐹𝑢𝐹𝑣

𝑇
)] + 𝐸(𝑢,𝑣)~𝑃𝑁

[𝐹𝑢𝐹𝑣
𝑇]   (2) 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.07.451457doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451457
http://creativecommons.org/licenses/by-nc/4.0/


Where 𝑃𝐸   and 𝑃𝑁  indicate the uniform distribution over edges and non-edges. By minimizing this loss function, we 
can optimize the weights of the hidden layer of the GCN. The hidden layer has a size of 512 (Figure 2).  
 

 
 

Figure 2: Overview of the NOCD GCN model. 

 

2.3.2. GCN feature extraction and unsupervised feature learning 
In this step, we extracted features for all the nodes in the datasets from the last layer of the multi-class GCN 
classification model (before applying the row-wise softmax function) pre-trained on the Human and Mouse 
datasets.  
 
The length of each of the feature vectors is equals to the number of complexes present in that particular dataset. 
Once these features are retrieved, we applied several unsupervised algorithms, which do not require prior 
information about the number of clusters. 
 
One of such algorithms is the mean shift algorithm. This algorithm accepts the node features, estimates the 
number of clusters, and assigns nodes to clusters. The kernel that was used in this experimental work is the 

flat/uniform kernel. In this case, the kernel (𝑢) =
1

2ℎ
{
1, ||𝑢|| ≤ 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , where 𝑢 is the data point and ℎ is the 

bandwidth of the kernel. This algorithm identifies dense regions by using the following kernel density estimation 
(KDE) function: 
 

𝑓𝑘(𝑢) =
1

𝑛ℎ𝑑
∑ 𝐾 (

𝑢−𝑢𝑖

ℎ
)𝑛

𝑖=1    (3) 

 

Where 𝑛 is the total number of data points, and 𝑢𝑖  is an 𝑖𝑡ℎ data point. First, this algorithm finds dense regions 
with predefined bandwidth. Second, it determines the mean of the data points in that region. It shifts its centroid 
toward the mean point. The second step is repeated until the shifting of centroids stops. It is also called 
the convergence of the mean shift algorithm. In this way, it computes the optimal number of clusters. 

 

2.3.3. Meta-Clustering Algorithm (MCLA) 
The objective of this algorithm is to combine clusters obtained from different clustering techniques. It also 
provides the association confidence estimation of all the instances (or data points). MCLA uses hyperedges [54] as 
the starting vertices. In this case, the hyperedges are the members of the indicator matrix (consider indicator 

matrix as a set of column vectors) 𝐻𝑙 . It maps the labels of all the clustering into corresponding binarized column 
vectors. The number of hyperedges, in this case, depends on the number of clusters. If the number of clusters is 
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𝑘1, 𝑘2, … , 𝑘𝑝 then ∑ 𝑘𝑙𝑝
𝑙=1  presents the total number of hyperedges. Here, 𝑘𝑙 denotes the number of clusters in 𝑙𝑡ℎ 

clustering, and 𝑝 denotes the number of clusterings. These indicator matrices can be collectively written, as 𝐻 =
(𝐻1, 𝐻2, … , 𝐻𝑝). It is also called the adjacency matrix of the hypergraph. Each of the column vectors of the 

hypergraph adjacency matrix is a specific hyperedge. Each row of the indicator matrix 𝐻𝑙  represents the 
corresponding labels of clustering 𝑙. The  key  concept  of  the  MCLA  is  to  combine  similar  hyperedges and form  
meta-hyperedges.  Later the instances (objects) are assigned to each of these meta-hyperedges based on  the  
association  membership  values. Steps for the MCLA are the following: 
 

1. Forming meta-graph from hyperedges 
2. Transforming meta-graph into meta-clusters 
3. Creating meta-hyperedges 
4. Object association contest among meta-hyperedges 

 

2.3.4. Hybrid Bipartite Graph Formulation (HBGF) 
The Hybrid Bipartite Graph Formulation treats clusters and data points as its basic entities. The first step in this 
algorithm is to create a bipartite graph and then partition the graph to obtain optimized clustering with optimal 
clusters. Each part of the partitioned bipartite graph represents the consensus cluster. For clustering 
(𝐶1, 𝐶2, … , 𝐶𝑛 ), a bipartite graph can be represented with 𝐺(𝑉, 𝐸). Here, 𝑉 represents the set of instances 
(𝑣1, 𝑣2, … , 𝑣𝑛), clustering (𝐶1, 𝐶2, … , 𝐶𝑛 ), and 𝐸 represents the edges between the nodes. The edges are 
undirected, and every node in the graph has an edge with the other nodes. Each edge has a weight 𝑊(𝑖, 𝑗) 
associated with it. Here, 𝑖 and 𝑗 represent the nodes. Edge weight between nodes 𝑖 and 𝑗 is defined as given in 
Equation 4. 
 

 W(𝑖, 𝑗) = {
0, 𝑖𝑓 𝑒𝑖𝑡ℎ𝑒𝑟 𝑖 𝑎𝑛𝑑 𝑗 𝑏𝑜𝑡ℎ 𝑎𝑟𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑜𝑟 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
1, 𝑖𝑓 𝑖 𝑖𝑠 𝑎 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑎𝑛𝑑 𝑗 𝑖𝑠 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡 𝑜𝑟 𝑣𝑖𝑐𝑒 𝑣𝑒𝑟𝑠𝑎

 (4) 

 
 

2.4. Evaluation Measures 

2.4.1. Test Accuracy and Subset Accuracy 
To measure the node classification accuracy, one hot encoder is used as the label for all the nodes. Value 1 
denotes the activation of the corresponding class, while value 0 depicts the deactivation of corresponding classes. 
The predicted outcome for a sample is called predicted matched only if both the outcome and label have one at 
the same place. If the total number of labels in the test set are 𝑈, and the total predicted matched sample 

outcomes are 𝑉, then the test accuracy (TA) is defined as 𝑇𝐴 =
𝑉

𝑈
. However, in the case of multi-label classification, 

a method such as a subset accuracy [55] can be used.  
 

2.4.2. Hamming loss and Hamming score 
Hamming loss (HL) and Hamming score (HS) [56] were also used and they can be calculated as follow: 
 

𝐻𝐿 =
1

𝑛𝐿
∑ ∑ (𝑆(𝑦𝑗

𝑖 , 𝑦̂𝑗
𝑖))𝐿

𝑗=1
𝑛
𝑖=1  (4) 

 

𝑆(𝑦𝑗
𝑖 , 𝑦̂𝑗

𝑖) = {
1, 𝑖𝑓 𝑦𝑗

𝑖 ≠ 𝑦̂𝑗
𝑖 

0, 𝑖𝑓 𝑦𝑗
𝑖 = 𝑦̂𝑗

𝑖
 (5) 

 
𝐻𝑆 = 1 − 𝐻𝐿    (6) 

 

Here 𝑦𝑗
𝑖  denotes the value of class 𝑗 of label 𝑖, while 𝑦̂𝑗

𝑖  denotes the class 𝑗 of the predicted outcome of 

sample 𝑖. L is the label size and 𝑛 is the number of labels.  
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2.4.3. Precision, Recall, and F-measure 
The overlapping score between the ground truth complex 𝑃 and predicted complex 𝑄 is defined as: 
 

𝑂𝑆(𝑃, 𝑄) =
|𝑃∩𝑄|2

|𝑃||𝑄|
  (7) 

 
In this case the threshold for 𝑂𝑆(𝑃, 𝑄) is set as 0.2 [57]. It denotes that if the value of the overlapping score 
between 𝑃 and 𝑄 is 0:2, then both are matching each other. The Precision and Recall [58], [59] are defined as: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝐾𝑀𝐶|

|𝑇𝑃𝐶|
 and 𝑅𝑒𝑐𝑎𝑙 =

|𝑃𝑀𝐶|

|𝑇𝐾𝐶|
 (8) 

 
Where TKC is the Total Known Complexes, TPC is the Total Predicted Complexes, PMC is the number of 
Predicted Matched complexes, and KMC is the number of Known Matched Complexes. The F -Measure is 
calculated as follows: 
 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (9) 

 
 
 

3. Experimental work and Results 

3.1. Protein classification approaches 
In this experimental work the Collins, Human, and Mouse datasets are used. The loss function was minimized 
through Adam optimizer with an initial learning rate of 0:01. The number of epochs is 200. The simple multi-class 
GCN classification model in which the length of each label is 2𝑁   provided the test accuracy of 84.26% with 80:20 
train and test data ratio on Collins dataset, where 𝑁 is the total number of complexes (N = 10 for our experiment). 
The multi-label classification model provided the performance metrics with 100 communities, with Hamming Loss, 
Hamming Score, and Subset Accuracy of 0.0136, 0.9864, and 0.1554, respectively. To improve the performance, a 
modified version of the multi-class GCN method was used which offers greater flexibility in terms of the number of 
communities as well space and time complexities (please refer to section 2.2). In this case, the model was able to 
achieve 0.676 precision, 0.837 recall, and 0.748 F-score on Human dataset.  
 

3.2. Representation Learning Approaches 
In this experimental work, we aim to address the scarcity issue. The NOCD GCN model is implemented on 50 
communities with the hidden size of 512, the weight decay is 1e-3, the learning rate is kept to 1e-4, the dropout 
rate is 0.05, the batch size is selected 20000. The number of epochs, in this case, was 200. The results of the NOCD 

GCN model on the Mouse dataset are presented in Table 2.  

 
Table 1: Performance metrics of NOCD GCN model on Mouse dataset. 

Metrics Value 

NMI 0.404 
Matched predicted complexes 23 

Total predicted complexes 50 
Matched known complexes 30 

Precision 0.60 
Recall 0.46 

F-measure 0.52 

 
As described in section 2.2, customized feature matrix has been constructed and NOCD GCN model has been 
applied using this feature matrix. On top 10 complexes of Human dataset, NMI score has been recorded as 0.5. 
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NMI score started decreasing as we increase the number of complexes. For top 100 complexes, NOCD GCN 
method with customized feature matrix achieved NMI score of 0.105 on Human dataset. 
 
Representation learning with the feature extracted through the pre-trained GCN from the Mouse and Human 
datasets has been performed with the clustering algorithm mean shift. The results of this feature learning 
algorithm are provided in Table 2.  
 
The number of epochs, in this case, was 400 and the hidden sizes 512 are selected for this process. The remaining 
settings were kept the same as the multi-class GCN classification experimental work. It is quite clear to notice that 
the proposed approach for clustering proteins (nodes) outperformed all the state-of-the-art clustering algorithms. 
Hence, proving the effectiveness of the proposed approach. 
 
 
Table 2:Overall performance comparison of (GCN + mean-shift) model with state-of-the-art methods on Human and Mouse 
datasets. 

Method PMCa TPCb KMCc Precision Recall F-measure 

Human       
GCN + mean-shift (ours) 844 1128 1381 0.523 0.748 0.616 

idenPC-CAP [25] 1784 5504 1767 0.324 0.668 0.436 
idenPC-MIIP [24]  391 1019 811 0.384 0.307 0.341 

NCMine [15] 2387 14401 1240 0.166 0.469 0.245 
Core&Peel [16] 2923 13084 1559 0.223 0.589 0.324 
ClusterONE [30] 373 924 638 0.404 0.241 0.302 

SPICi [17] 485 1899 978 0.256 0.370 0.302 
CMC [12] 6443 53734 1942 0.120 0.734 0.206 
MCL [22] 375 2676 652 0.140 0.247 0.179 

 
Mouse       

GCN + mean-shift (ours) 121 139 167 0.357 0.871 0.506 
idenPC-CAP [25] 421 1696 324 0.248 0.520 0.336 
idenPC-MIIP [24] 105 403 146 0.261 0.234 0.247 

NCMine [15] 408 3127 303 0.130 0.486 0.206 
Core&Peel [16] 368 2563 238 0.144 0.382 0.209 
ClusterONE [30] 170 1006 152 0.169 0.244 0.200 

SPICi [17] 121 457 195 0.265 0.313 0.287 
CMC [12] 143 862 188 0.166 0.302 0.214 
MCL [22] 120 1098 192 0.109 0.308 0.161 

 

aPMC = Predicted Matched complexes, bTPC = Total Predicted Complexes, cKMC = Known Matched Complexes 

 
 
Both MCLA and HBGF algorithms require a prior estimation of the number of clusters. Thus, we performed a grid 
search using the HBGF and MCLA to get the optimal number of clusters. Gavin dataset is used in this case to test 
this approach. First, three classical protein complex detection techniques (CMC [12], ClusterONE [30], and PEWCC 
[14]) were used to detect clusters in Gavin PPI dataset. The number of clusters yielded using the three techniques 
were 124, 243, and 206, respectively. After applying the MCLA and HBGF algorithms on the detected clusters using 
grid search from 60 complexes to 250 complexes. The best performances (MCLA method with 237 complexes and 
HBGF method with 66 complexes) are shown in Table 3. 
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Table 3: Performance metrics using MCLA and HBGF models 

 MCLA HBGF MCL [22] ClusterONE [30] PEWCC [14] 

Precision 0.82 0.6 0.122 0.83 0.71 

Recall 0.33 0.68 0.121 0.337 0.49 

F-Measure 0.47 0.64 0.121 0.48 0.58 

 

 
 

4. Discussion and Conclusion 
In this paper, we introduced two GCN-based approaches to detect protein complexes in several benchmarked PPI 
datasets. The first approach is a multi-class GCN classification method and the second is a multi-label GCN 
classification method. The proposed approaches have overcome the detection accuracy and inefficiency in 
comparison to existing graph and density-based clustering approaches. We have also incrementally shown the 
improvements by changing the GCN method from a simple multi-class to multi-label classification problem and 
then improvised the multi-class GCN method.  
 
Following the incremental improvements, we have proposed a sparse matrix operations-based GCN methodology. 
The efficiency of the time complexity in operations between the sparse and the dense matrices has also been 
compared. Then, we solved the problem of complex detection in an unsupervised manner. The NOCD model and 
(GCN feature extractor + mean shift clustering) method have been proposed. The performance of both approaches 
has been evaluated. The effectiveness of the proposed representation learning approach has been demonstrated 
on Human and Mouse datasets, in which it is shown to outperform the state-of-the-art methods when applied to 
detect the protein complexes. We have also shown the effect of the inclusion of explicit node features to the  
NOCD GCN method. Furthermore, assembling yielded clusters (complexes) by using the MCLA and HBGF 
algorithms has shown great potential. In the future, more complex detection methods can be added to the three 
shown in this experimental work to improve the precision and recall scores further. 

 
Besides leveraging the advantages of the GCN, the proposed approaches were able to detect small complexes in 
which most of the state-of-the-art methods struggled to detect (as shown in Figure 3). For example, the proposed 
approaches accurately detected human complexes such as EXT1/EXT2 complex [60] [61], SUFU/GLIS3 complex, 
and NELF complex.  
 

 
Figure 3: Samples of small human complexes detected 100% accurately by the proposed approaches which are hard to be 
detected by other methods. 
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Moreover, in this study, we used an identity matrix and a small length of customized feature vectors for providing 
node features. The length of the feature embedding can be further increased with the help of the topological 
features present in the neighborhood of the protein nodes. It forms the robust feature matrix for GCN operation, 
which might yield even better performance metrics. 

 
A thorough investigation of the feature clustering algorithm has not been done in this research work. Mean shift 
algorithm has been selected from the pool of algorithms, which includes the Optics and affinity propagation 
method. Other techniques could also be tested and they may perform even better than the mean-shift algorithm. 
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