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Abstract  

The insular cortex has been identified as a promising target in brain-based therapies for 

Tobacco Use Disorder, and has three major sub-regions (ventral anterior, dorsal anterior, and 

posterior) that serve distinct functional networks. How these subregions and associated networks 

contribute to nicotine dependence has not been well understood, and therefore was the subject of 

this study. Forty-seven individuals (24 women; 18-45 years old) who smoked cigarettes daily 

rated their dependence using the Fagerström Test for Nicotine Dependence (FTND), abstained 

from smoking overnight (~12 h), and underwent resting-state functional MRI. Correlations 

between dependence and resting-state functional connectivity (RSFC) of the major insular sub-

regions were evaluated using whole-brain-corrected voxel-wise analyses and post-hoc region-of-

interest (ROI) analyses. Dependence was analyzed both as a unitary (FTND total score) and 

bivariate construct – two FTND factors (“morning smoking” and “daytime smoking”). 

Dependence was negatively correlated with connectivity of both the right dorsal and left ventral 

anterior insula with the left precuneus, and with connectivity of the left posterior insula to the left 

putamen. In post-hoc analyses, dependence correlated negatively with connectivity between all 

anterior insula subregions and the left precuneus, and with bilateral posterior insula connectivity 

with the left posterior putamen. The latter finding was driven by “daytime smoking”. These 

results suggest an anterior-posterior distinction in functional insular networks associated with 

different dimensions of nicotine dependence, with greater dependence linked to weaker 

connectivity. They may inform therapeutic approaches involving brain stimulation that may elicit 

differential clinical outcomes depending on the insular subnetwork targeted.  

Keywords: Nicotine dependence, fMRI, insula, resting state functional connectivity 
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Introduction 

The use of combustible tobacco products continues to be a substantial global health 

problem, causing over 7 million or 1 in 10 deaths world-wide each year 1, 2. Among people who 

try to quit smoking independently, only 3 to 6 percent successfully stop for 6 to 12 months, with 

most failing within 8 days 3. Behavioral and pharmacological treatments for Tobacco Use 

Disorder (TUD) also have limited success 4-7, and the need for investigation of novel therapeutic 

strategies persists. Elucidating the neural mechanisms of nicotine dependence has the potential to 

advance the treatment of TUD 8, 9, particularly with brain-based approaches, such as targeted 

brain stimulation 10.  Knowledge of the neural systems underlying nicotine dependence is critical 

for guiding these treatments.  

The insula has been identified as a promising target for brain-based treatments for TUD 

11, 12, partly due to clinical evidence for its role in smoking behavior. Patients with insula lesions 

resulting from strokes have exhibited marked reduction in smoking 13-16. In stroke survivors, 

damage to the right insula resulted in smoking cessation when assessed one year after discharge 

from the hospital 16, and predicted even greater reduction in dependence when combined with 

damage to the basal ganglia 14.  

Neuroimaging studies have also indicated the importance of the insula in maintenance of 

cigarette smoking. Cortical thickness of insular sub-regions is negatively related to nicotine 

dependence 17-19 and cigarette craving 20. Resting-state functional connectivity (RSFC) has been 

used to assess neural systems involved in nicotine dependence 21, 22. Studies that focused on the 

anterior cingulate cortex (ACC) found a negative relationship between nicotine dependence and 

connectivity with the striatum 23-26, and a rodent study showed that insula-frontal connectivity 

moderates this negative association 27. Other RSFC studies showed an inverse relationship 
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between nicotine dependence and insula-ACC connectivity in humans 24, 28, 29.  

The insula has been subdivided into three sub-regions that serve distinct functions: dorsal 

anterior, ventral anterior, and posterior 30-32. While the posterior portion of the insula connects 

with sensorimotor integration areas (e.g., pre-motor, supplementary motor cortex), the anterior 

portion is functionally linked with limbic regions and is a key component of the “salience 

network”, which includes the ACC 33, 34. The anterior portion has generally been shown to serve 

cognitive and affective functions 35, 36. Further functional distinctions have been made between 

dorsal and ventral anterior insula connectivity along cognitive and affective domains, 

respectively 35, 37, 38. In addition, dorsal/ventral distinctions have been conceptualized as 

components of externally- and internally-oriented networks – specifically, the frontoparietal 

attention network and the default mode network, respectively 39, 40.  

Prior studies of RSFC have attempted to distinguish between connectivity of insular sub-

regions and smoking-related behavioral variables 24, 40-43, but only two of them examined RSFC 

of insula subregions with respect to nicotine dependence 24, 28. In one of these studies, analysis 

was restricted to the dorsal ACC after demonstration of a difference in anterior insula-ACC 

connectivity between people who smoked and those who did not; a negative correlation between 

dependence and anterior insula connectivity with the dorsal ACC was found 28. In the other 

study, individuals who smoked and had schizophrenia were compared with individuals who 

smoked but had no other psychiatric diagnosis 24. Both groups showed an inverse relationship 

between nicotine dependence and posterior insula-dorsal ACC connectivity. Despite this initial 

evidence for distinctions between circuits of insula subregions with respect to dependence, a 

comprehensive analysis of the contributions of the three major subregions is lacking, leaving 

open the possibility that RSFC of different insular subregions would be differentially related to 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451360


nicotine dependence. We therefore undertook a comprehensive analysis of correlations with 

connectivity patterns of these finer-grained subregions in a whole-brain analysis.  

The Fagerström Test for Nicotine Dependence (FTND) 44 is a widely used, validated 

assessment that is related to biological indices of smoking 45, 46. Neuroimaging studies that 

evaluate nicotine dependence with the FTND have used a unidimensional scoring system; 

however, psychometric studies have established that a two-dimensional (two factor) structure is 

more appropriate 47-51, with the first factor interpreted as “the degree of urgency to restore 

nicotine levels to a given threshold after nighttime abstinence” (“morning smoking”) and a 

second factor interpreted as “the persistence with which nicotine levels are maintained at a given 

threshold during waking hours” (“daytime smoking”) 51. To date, no neuroimaging studies have 

examined the neural circuitry underlying this bivariate structure of the FTND, which may 

provide a more nuanced understanding of nicotine dependence and the neural circuits that 

support it.  

In a group of 47 participants who smoked cigarettes daily, we examined the relationship 

between nicotine dependence and RSFC of the three major insular sub-regions (ventral anterior, 

dorsal anterior, and posterior) after overnight abstinence. Considering the literature, we 

hypothesized that dependence would be negatively correlated both with connectivity between 

anterior insula subregions and ACC, and with connectivity between the posterior insula and 

sensory-motor integration regions (e.g., supplementary motor area) (i.e., participants with greater 

connectivity would show less dependence). To determine the extent to which the two-factor 

structure reveals greater specificity with respect to the relationship between dependence and 

insula connectivity, we examined insula RSFC in relation to both the unidimensional scoring 

(FTND total score) and the two-factors. 
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Materials and Methods 

Overview of Experimental Design 

Functional magnetic resonance imaging (fMRI) data were collected during the resting 

state from adults who smoked cigarettes daily and maintained overnight abstinence before 

testing. The study was part of a larger investigation on the brain correlates of smoking behavior 

and took place between September, 2017 and February, 2020. Another report from that study is 

in press 52. The study was conducted at the Semel Institute for Neuroscience and Human 

Behavior at the University of California, Los Angeles (UCLA). All study procedures were 

approved by the UCLA Institutional Review Board. 

Participants  

One-hundred-seventy-nine participants were screened via online and print 

advertisements. They attended an intake session where they received a detailed explanation of 

the study procedures, provided written informed consent, and were screened for eligibility. Fifty-

one met all study criteria and completed all procedures. Inclusion criteria were as follows: age of 

18-45 years, generally good health, self-report of smoking at least 4 cigarettes per day for at least 

1 year, and urinary cotinine ≥100 ng/mL. Recent smoking history was verified during the intake 

session using a urine cotinine test (ACCUTEST Urine Cotinine Test, Jant Pharmacal Corp., 

Encino, CA, score ≥3, cotinine ≥100 ng/mL). Exclusion criteria were positive urine tests for 

drugs of abuse other than nicotine or tetrahydrocannabinol, consuming ≥10 alcoholic drinks per 

week, any current psychiatric disorder other than Tobacco Use Disorder as assessed via the Mini 

International Neuropsychiatric Interview (MINI) for DSM-553, 54, history of neurological injury, 

and using electronic cigarettes, cigars, snuff, or chewing tobacco >3 times a month.  
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Verification of Drug and Alcohol Abstinence 

On the testing day, overnight (~12 hours) abstinence from smoking was verified by a CO 

level of <10 ppm measured with the Micro+ Smokerlyzer® breath CO monitor (Bedford 

Scientific Ltd., Maidstone, Kent, UK). Abstinence from cocaine, opiates, benzodiazepines, and 

amphetamines was also verified with a five-panel urine drug test (Drugs of Abuse Test Insta-

view®, Alfa Scientific Designs Inc., Poway, CA). Alcohol abstinence was verified using a 

breathalyzer (Alco-Sensor FST®, Intoximeters, Inc., St. Louis, MO). Recent abstinence from 

cannabis use was verified with the Dräger DrugTest® 5000 saliva test (Dräger, Inc., Houston, 

TX).  

Self-report of Nicotine Dependence and Analysis Procedures 

Nicotine dependence was measured during the intake session using FTND 44. The 

standard total score was computed in addition to the two-factor solution. These factors have been 

established in the literature using exploratory factor analyses 47-50 and confirmatory factor 

analysis 51, indicating that the six items of the FTND comprise two factors with one item (time to 

first cigarette of the day) loading on both factors. The first factor included items 1, 3 and 5 of the 

FTND (FTND135) and is interpreted as encompassing “morning smoking”, and the second 

factor is composed of items 1, 2, 4 and 6 (FTND1246), and is interpreted as “daytime smoking” 

(see Supplementary Table 13 for FTND items). For each participant, we computed a weighted 

sum of the response to the items in each factor, with weightings based on the mean of the 

weights reported across previous studies 47-50. See supplementary materials for analysis details. 

We verified that FTND data from our 47 participants matched the two-factor structure 

determined in the literature on much larger samples. Rather than conducting a confirmatory 
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factorial analysis that requires a large number of observations, we performed the same factorial 

analysis method conducted in the study by Haddock et al. 48 on 4,042 smokers which used 

principal component analysis followed by a Varimax rotation. Results of this decomposition 

(Supplementary Table 13) showed that our data exhibited the same two-factor organization. 

Namely, FTND135 and FTND1246 explained 54% of the variance in our study and 51% in the 

study of Haddock et al. The average difference in item loading for FTND135 and FTND1246 

between both studies was 0.14 and 0.06, respectively. 

Scanning Protocol  

MRI data acquisition: 

All images were acquired on a 3-Tesla PRISMA (Siemens) MRI scanner using a 32-

channel head coil receiver. The resting state imaging protocol consisted of the continuous 

acquisition of 738 Echo-planar Image (EPI) volumes over a period of 9 minutes and 50 seconds. 

A multi-band accelerated EPI pulse sequence (factor 8) was used, allowing us to acquire 72 axial 

slices during a repetition time (TR) of 800 ms with a 104x104 matrix. Resolution was 2x2x2 

mm3, echo time (TE) was 37 ms, and the flip angle was 52 degrees. Participants were asked to 

keep their eyes open and to look at a black screen during the resting state scan. The structural 

T1-weighted images were obtained using a Magnetization Prepared Rapid Gradient Echo 

(MPRAGE) sequence with the following parameters: isovoxel 0.8 mm3, FOV = 240 × 256 mm2, 

TE = 2.24 ms, TR = 2400 ms; flip angle = 8°; 208 sagittal slices. 

MRI data pre-processing: 

Image preprocessing was mostly conducted with FSL (5.0.9). The initial stages included 

rigid body realignment to correct for head movements within each scanning run, skull removal, 

and non-linear registration to the Montreal Neurological Institute (MNI) template. A first motion 
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cleaning and noise reduction were performed using a 24-parameter linear regression model that 

included six motion parameters (3 translational dimensions along X, Y and Z axes and 3 

rotational dimensions: “pitch”, “roll” and “yaw”), the temporal derivatives of these parameters 

and the quadratic of all parameters 55. Mean frame displacement (FD) and the variance of signal 

change from the average signal (DVARS) of the raw images were estimated. A null sampling 

distribution of DVARS was used to identify frames with excessive variance at p < 0.05 56; 

frames with FD exceeding 0.45 mm were also flagged. These frames as well as the one located 

in time just prior (t-1) and two just after (t+1 and t+2) were included in a censoring temporal 

mask for data interpolation: a least-squares spectral decomposition of the uncensored data was 

performed to reconstitute data of the censored timepoints see methods in 57. The uncensored data 

defined the frequency characteristics of signals that then replaced the censored data. This step 

aimed at minimizing the contamination of the signal from the censored frames during frequency 

filtering. The interpolated signal was then demeaned, detrended and filtered using an ideal 

bandpass filter (0.009 – 0.08 Hz). Following band-pass filtering, the interpolated timepoints were 

finally censored. Participants with more than 50% frames censored (i.e., those with less than 5 

minutes of remaining resting state data) were excluded from the analysis. To reduce the 

contribution from non-neuronal noise in the data, the minimal number of principle components 

that explained at least 50% of the variance of mean signal extracted from white matter and 

cerebrospinal fluid were evaluated and regressed out from the signal aCompCor50, 58. Volumes 

were then spatially smoothed with a Gaussian filter using a 5-mm FWHM kernel. Each voxel 

was normalized to a mean value of 100 (SD=1) to transform the data to Pearson’s correlation 

coefficients (r). All analyses were performed on Linux (CentOS release 6.10) using FSL 

5.0.9, MATLAB 8.6, R (version 3.6.0). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451360


Resting-state fMRI seed-based analysis: 

To minimize bias, we used a statistically conservative voxel-wise whole-brain analytic 

approach rather than restricting to a priori-selected target regions or networks. On each of the 

two hemispheres of the brain three insula seeds, which encompassed ventral-anterior, dorsal-

anterior, and posterior aspects of the insula, were defined for RSFC analyses (Figure 1). To 

define the anterior insula, we compared anatomical landmarks from a probabilistic atlas 59 to 

functional connectivity-based parcellations of the insula 30, 32. From these studies, we defined the 

ventral anterior insula parcel as the anterior inferior insular cortex (which includes the apex, the 

limen, and the transverse gyrus). The dorsal anterior insula was defined as the anterior and 

middle short gyri. The precentral sulcus was used to segment the anterior from the posterior 

insula. Using these landmarks, we manually determined the anterior insular subdivisions (dorsal 

and ventral, left and right) from the MNI152 template. 

To evaluate the functional connectivity between the insula seeds and other brain regions 

during the resting state, the time series from each seed was extracted, and its first normalized 

eigen vector (mean=100, SD=1; to facilitate computation of Pearson’s r) was used as a regressor 

in an ordinary least squares linear regression analysis on every voxel (as implemented in film_gls 

in FEAT). The parameter estimates of the model, corresponding to the Pearson’s correlation 

coefficient (since data were previously normalized), were z-transformed to improve data 

normality.  

The resulting z-transformed images were used in multi-level mixed effects models for 

group analyses (FLAME1, FEAT) testing for the effect of nicotine dependence on functional 

connectivity for each seed. Specifically, two separate models were tested. The first model 

included the total score of the FTND as the independent variable of interest. The second model 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451360


examined separate effects of the two factors of the FTND: FTND135 (“morning smoking”) and 

FTND1246 (“daytime smoking”).  

To account for differences in motion during scanning between participants, the mean 

frame displacement value was included as a covariate in all models in addition to age. Results 

were cluster-corrected for multiple comparisons using a voxel-height threshold of p < 0.001 

(Z>3.1) and cluster threshold of p<0.05 as recommended per Eklund et al 60. The coordinates 

reported here correspond to the peak voxel within a given cluster in MNI coordinate space. All 

post-hoc tests on data extracted from statistical maps were conducted using R 61. For each 

participant, data were extracted and averaged from voxels within clusters that survived the 

cluster-correction threshold (voxel height = Z>3.1, cluster extent = P<0.05).    

Results 

Participant Characteristics 

Fifty-one adults who endorsed daily cigarette smoking completed overnight (~12 hours) 

abstinence from smoking. Of the 51 participants tested, four were excluded for excessive motion 

during fMRI, as revealed by the number of flagged volumes exceeding DVARS and/or FD 

thresholds after data preprocessing (>50%). The final sample included 47 individuals (24 female) 

with a mean age of 33.3 (SD=7.2) years. On average, they smoked 11.4 (SD=4.5) cigarettes per 

day with a smoking history of 8.1 (SD=6.0) pack years. Nicotine dependence varied from low to 

high levels (mean FTND total scores of 4.0, SD=2.0). Other participant characteristics, including 

ethnicity, race, alcohol, and cannabis consumption, are shown in Table 1. 

Nicotine dependence  

Testing the association of the FTND total score with functional connectivity between the 

insula seeds and the rest of the brain revealed negative relationships in all cases. Specifically, 
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FTND was negatively correlated with: (1) connectivity of the left ventral anterior insula 

(lvaInsula) and the precuneus (X=-12, Y=-70, Z=48; Figure 2A, B), (2) connectivity of the right 

dorsal anterior insula (rdaInsula) and a precuneus target with very similar coordinates (X=-10, 

Y=-72; Z=50) (Figure 2A, B, C), and (3) connectivity between the left posterior insula (lpInsula) 

seed and the left posterior aspect of the putamen (X=-28, Y=-12, Z=2) (Figure 3A, C, D). 

The second model, which tested for separate effects of the two FTND factors, revealed a 

negative relationship between “daytime smoking” (FTND1246) and connectivity of the lpInsula 

and the same left posterior putamen area found in analysis of the FTND total score (X=-30, Y=-

14; Z=2; Figure 3B, C, D). No other significant relationships were observed, including any with 

the “morning smoking” factor (FTND135).  

Post hoc analyses of associations with nicotine dependence  

The results presented above were determined in whole-brain voxel-wise analyses that 

involved a conservative correction for multiple comparisons. We noted the asymmetry of the 

insular seeds that yielded the patterns observed and aimed to explore the extent of this 

asymmetry using post-hoc region-of-interest analyses. Accordingly, we conducted region-of-

interest analyses testing for relationships between dependence and connectivity between all four 

anterior insula seeds (tested separately) and the left precuneus cluster as well as the two posterior 

insula seeds and the left putamen cluster. These analyses were conducted using the same two 

linear models – one with FTND total as independent variable and another with FTND135 and 

FTND1246. The results indicated that functional connectivity of all four anterior insula seeds 

(not only the rdaInsula and lvaInsula) with the precuneus was negatively correlated with the total 

FTND score at ps< 0.001 (Supplementary Tables 1-4) and that both left and right posterior insula 
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connectivity with the left posterior putamen had the same modulatory pattern (ps < 10-5) 

(Supplementary Tables 5 and 6).  

The test of the two-factor model indicated that, similar to findings for lpInsula, rpInsula 

connectivity with the left posterior putamen was also modulated by the “daytime smoking” 

factor (FTND1246) (p<2x10-6) (Supplementary Tables 7 and 8). Connectivity of all anterior 

seeds of the insula with the precuneus showed significant negative relationships with both 

factors, except for the rvaInsula (p=0.08) (Supplementary Tables 9-12). Table 2 summarizes 

these post hoc results. 

Discussion 

This study showed that nicotine dependence was negatively correlated with two distinct 

functional connectivity patterns across different insular subregions. Taken together, the 

combined results of a priori whole-brain and post-hoc region-of-interest analyses indicated that 

nicotine dependence is associated with connectivity of the anterior insula and the right precuneus 

and with connectivity of the posterior insula and the left posterior putamen. Moreover, when 

examining two separate aspects of dependence (as defined by the two-factor model), anterior 

insula-right precuneus connectivity was related to both “morning smoking” and “daytime 

smoking” whereas posterior insula-left putamen connectivity was only related to “daytime 

smoking.” Thus, different dimensions of dependence apparently are related to connectivity of 

separate insular subregions. 

This separation of anterior vs. posterior insula functional connectivity is somewhat 

consistent with functional distinctions observed along the anterior/posterior insula axis 

(affective-cognitive/sensorimotor, respectively) 35. Although we hypothesized a relationship 

between dependence and connectivity of anterior insula subregions with limbic regions and 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451360


components of the salience network (i.e. ACC), we found a relationship with connectivity to the 

precuneus, a region that is not included among limbic or salience network structures but is 

involved in cognitive and affective function. The precuneus has been associated with self-

referential processing, empathy, and episodic memory retrieval 62, and has a central role in the 

default mode network 63-65. In studies of substance use, the precuneus is among the primary brain 

regions activated during smoking cue-induced neural reactivity, as indicated by meta-analyses 66. 

Precuneus activation during presentation of smoking- and alcohol-related cues is positively 

associated with nicotine and alcohol dependence, respectively 67. Moreover, in individuals who 

smoke cigarettes, anterior insula-precuneus connectivity, a similar connectivity pattern to that 

observed in the current study,  was correlated with cue-induced craving 68. Combined with these 

findings from prior studies, those presented here suggest a role for the interaction of the 

precuneus with the anterior insula in maintenance of nicotine dependence, especially aspects that 

involve self-referential processes.  

The relationship between nicotine dependence and posterior insula-left posterior putamen 

connectivity is consistent with the view that the insula supports an embodied experience of 

addiction via integration of interoceptive signals 69, in light of the role of the posterior insula in 

interoception 70-72 and evidence for  a role of the putamen in habitual stimulus-response 

associations 73. A study of stroke patients comparing those with basal ganglia lesions (including 

the putamen), and those with both insula and basal ganglia lesions, showed that patients with 

both lesions had a greater disruption of smoking after their stroke than patients with basal 

ganglia lesions alone 14, providing evidence for the relevance of insula-basal ganglia interactions 

in maintaining dependence. Our functional connectivity finding is also supported by a structural 

connectivity study that mapped insular subregions to subcortical regions, indicating that of the 
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subcortical regions tested (thalamus, amygdala, hippocampus, putamen, globus pallidus, caudate 

nucleus, and nucleus accumbens), the putamen had the most connections with the posterior 

insula 74. Association of weaker posterior insula-left putamen functional connectivity with 

greater nicotine dependence is in line with meta-analytic findings of less engagement of striatal 

regions in response to smoking-related and non-smoking reward-related cues with greater 

nicotine dependence 75. The latter findings suggest that weak posterior insula-putamen 

connectivity may also be related to disrupted reward-related responses in the striatum.  

This study is the first to examine neuroimaging markers of nicotine dependence with 

respect to the widely established two-factor characterization of dependence measured using the 

FTND. That posterior insula-left putamen connectivity uniquely correlated with the “daytime 

smoking” factor, and not “morning smoking”, suggests that this functional circuit especially 

serves persistence in maintaining nicotine levels throughout the day. Given that some of the 

items included in this factor may be considered as assessments of self-control (e.g., “Do you find 

it difficult to keep from smoking in places where it is not allowed?”), weakened connectivity of 

this circuit may lead to disruption of interoceptive signals that support self-control behavior. The 

relationship between anterior insula-precuneus connectivity and both factors suggests that this 

functional circuit is important for multiple dimensions of dependence.  

Our results are only partially consistent with previous insula RSFC studies of nicotine 

dependence, which focused on the ACC and found significant associations involving the ACC. A 

previous study of non-deprived young participants (15-24 years of age) found a negative 

relationship between anterior insula-ACC connectivity and nicotine dependence 28; but ACC was 

selected as the connectivity target post-hoc, based on an analysis that compared anterior insula 

connectivity of individuals who did or did not smoke and found greater connectivity with the 
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ACC as a primary group difference. Another study similarly found a negative association 

between dependence and insula-ACC connectivity 29, but it used the whole, bilateral insula as a 

seed, eliminating the possibility of differentiating effects of insular subregions. Lastly, a third 

study found a negative relationship between nicotine dependence and connectivity between the 

posterior insula and ACC in individuals with schizophrenia and also those without psychiatric 

diagnoses 24. It is possible that the current study did not find significant results involving the 

ACC because we used a whole-brain voxel-wise approach, with strict multiple comparison 

correction, to determine which connectivity targets across the whole brain were associated with 

dependence. Another reason for the absence of a positive finding regarding the ACC may be our 

use of rigorous motion-cleaning approaches 57, 76, 77, which are considered essential for removing 

artifacts in the data that may lead to spurious correlations 78.  

Brain stimulation has been considered as a promising therapy for smoking cessation 79, 80, 

and studies targeting the insula  have demonstrated mixed success in affecting smoking-related 

variables, such as craving and withdrawal 10-12. By highlighting the relevance of two insular 

functional connectivity patterns, which are weaker in strength in those who have greater nicotine 

dependence, we provide additional relevant targets for future stimulation studies. For example, 

stimulation studies may not only choose to target anterior and posterior insula, but also the right 

precuneus and left posterior putamen, with the aim of increasing the strength of the relevant 

functional connectivity patterns identified in the current study.  

The current study is limited in that it cannot determine whether weak insular connectivity 

is a cause or consequence of nicotine dependence although pre-clinical studies have suggested a 

potential causal role of insular connectivity on dependence. In a data-driven study of rats, Hsu et 

al. 81 showed that an insular-frontal network module was predictive of later nicotine dependence. 
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However, it remains to be determined if a similar finding will emerge from longitudinal human 

studies, such as the Adolescent Brain Development Study (ABCD) study 82. 

 Overall, this study provides evidence for the association of nicotine dependence with 

weak functional connectivity of distinct insula subregions, namely, anterior insula-right 

precuneus and posterior insula-left putamen. This regional dissociation within the insula 

highlights the heterogeneity of the insula with respect to neural processes involved in 

maintenance of smoking and suggests multiple potential targets for brain-based therapies that 

address nicotine addiction.   
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Table 1. Participant Characteristics (n=47) 
___________________________________________  
Sex (F/M)    n=24 / n=23 
 
Ethnicity 

Hispanic/Latino (12.8%)  
Non-Hispanic/Latino (83%) 
Unknown (4.3%) 

 
Race 

African-American (23.4%) 
Asian (2.1%) 
Caucasian (59.6%) 
Mixed (8.5%) 
Pacific Islander (4.3%) 
Unknown (2.1%) 

 
    Mean (SD) 

Age (years)     33.3  (7.2) 

Nicotine Dependencea   4.0 (2.0) 
Tobacco / current use,  
     cigarettes/day   11.4  (4.5) 
Tobacco / lifetime exposure,  
     pack-years    8.1  (6.0) 
Alcohol consumption (drinks/week) 

n=24 (>1 drink / week)  4.3 (1.99) 
Cannabis consumption (grams/week),   

n=13 (>1 gram / week)  3.92 (5.19)   
__________________________________________ 
aFagerström Test of Nicotine Dependence 
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Table 2. Summary of post-hoc region of interest analyses of the right precuneus and left 

putamen for testing contra-lateral insula seeds. Results of each post-hoc linear model is presented 

in Supplementary Tables 1-12. 

  Right precuneus 

Insula seed 
FTND 
Total 

“Morning 
Smoking”a 

“Daytime 
Smoking”b 

left ventral anterior insula *** * ** 
left dorsal anterior insula *** * * 
right ventral anterior insula *** *   
right dorsal anterior insula *** ** * 

     Left putamen 

Insula seed 
FTND 
Total 

“Morning 
Smoking”a 

“Morning 
Smoking”a 

left posterior insula ***   *** 
right posterior insula ***   *** 
* = p<0.05, ** = P<0.01, *** = P<0.001 
a “Morning Smoking” was associated with FTND items 1, 3, and 5  
b “Daytime Smoking” was associated with FTND items 1, 2, 4, and 6 
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Figure legends 

 

Figure 1. Insula sub-regions used as seeds for resting state functional connectivity analyses. Red 

– ventral anterior insula, Blue – dorsal anterior insula, Green – posterior Insula. 

 

Figure 2. Relationship between nicotine dependence (FTND total score) with anterior 

insula-precuneus connectivity. A. Thresholded statistical maps indicating functional 

connectivity of left ventral anterior (hot colors) and right ventral dorsal (cool colors) with a 

cluster in the left precuneus correlating with FTND total score (voxel threshold: Z>3.1, cluster 

threshold: P<0.05). Brain images are presented in neurological convention (right=right). B. 

Scatterplots of data extracted from the left precuneus cluster from individual participants are 

shown along with linear fits to illustrate the negative direction of the relationship between FTND 

and functional connectivity.  

 

Figure 3. Relationship between nicotine dependence with posterior insula-left putamen 

connectivity. Thresholded statistical maps indicating functional connectivity of left posterior 

insula with a cluster in the left posterior putamen correlating with (A) FTND total score and (B) 

the “daytime smoking” factor (FTND1246) from the two-factor model of FTND (voxel 

threshold: Z>3.1, cluster threshold: P<0.05). C. Scatterplots of data extracted from the left 

putamen clusters from individual participants are shown along with linear fits to illustrate the 

negative direction of the relationship between the FTND measures and functional connectivity.  
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Figures 

 

Figure 1  
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Figure 2 
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Figure 3 
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