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Abstract 28 

The resting-state human brain is a dynamic system that shows frequency-specific 29 

characteristics. Coactivation pattern (CAP) analysis has been recently used to identify 30 

recurring brain states sharing similar coactivation configurations. However, whether 31 

and how CAPs differ across different sub-frequency bands are unknown. In the current 32 

study, in addition to the typical low-frequency range (0.01 - 0.08 Hz), the spatial and 33 

temporal characteristics of CAPs in four sub-frequency bands, slow-5 (0.01 - 0.027 Hz), 34 

slow-4 (0.027 - 0.073 Hz), slow-3 (0.073 - 0.198 Hz), and slow-2 (0.198 - 0.25 Hz), 35 

were studied. Six CAP states were obtained for each band., The CAPs from the typical 36 

frequency range were spatially largely overlapped with those in slow-5, slow-4 and 37 

slow-3 but not with those in slow-2. With the increase of frequency, the CAP state 38 

became more unstable and resulted in an overall shorter persistence. The spatial and 39 

temporal characteristics of slow-4 and slow-5 were further compared, because they 40 

constitute most power of the resting-state fMRI signals. In general, slow-4 showed 41 

stronger coactivations or co-deactivations in subcortical regions, while slow-5 showed 42 

stronger coactivations or co-deactivations in large-scale cortical networks such as the 43 

dorsal attention network. Lastly, frequency-dependent dynamic alterations were also 44 

observed in schizophrenia patients. Combining the information obtained from both 45 

slow-5 and slow-4 increased the classification accuracy of schizophrenia patients than 46 

only using the typical range. In conclusion, our results revealed that the spatial and 47 

temporal characteristics of CAP state varied at different frequency bands, which could 48 

be helpful for identifying brain alterations in schizophrenia. 49 

 50 

Keywords: co-activation patterns, dynamics, frequency-specific, schizophrenia 51 

 52 

1. Introduction 53 

The human brain is a dynamic system, and the resting-state functional 54 

connectivity (RSFC) has been proved to be temporally varied (Chang and Glover 55 

2010). The conventional dynamic functional connectivity (dFC) approach segments 56 
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the time-series using sliding-window and calculates the interregional Pearson 57 

correlation within each window (Chang and Glover 2010; Hutchison et al. 2013). 58 

Moreover, recurring connectivity configurations across windows could be grouped as 59 

FC-states (Allen et al. 2014). These FC-states were found to be related to cognitive 60 

and physiological states such as vigilance (Wang, Ong, et al. 2016), self‐generated 61 

thought (Marusak et al. 2017), eyes open and closed (Weng et al. 2020), and also 62 

disease alterations (Guo et al. 2019; Li, Dong, et al. 2020; Damaraju et al. 2014). 63 

However, the choice of window length and window shape remained to be optimized 64 

(Zalesky and Breakspear 2015; Shakil, Lee, and Keilholz 2016), and the temporal 65 

resolution is also relatively low as the recommended window length is about 30-50 66 

seconds (Hutchison et al. 2013). 67 

Instead of estimating brain states using the sliding-window dFC maps, brain 68 

states can also be identified based on recurring coactivation patterns (CAPs) from 69 

each single frame (Liu and Duyn 2013). The CAP analysis was first performed using 70 

a seed-based approach and a threshold was needed to select the suprathreshold frames 71 

(Liu and Duyn 2013), then it was extended to a seed-and-threshold-free approach 72 

(Liu, Chang, and Duyn 2013). Comparing with sliding-window dFC maps, CAPs are 73 

more direct measurements of brain activities without any statistic or mathematic 74 

calculation. It also has a better temporal resolution and does not require predefined 75 

parameters such as window length, as the analytical unit of CAP analysis is a single 76 

volume. Besides, our previous study has shown the robustness of CAPs across several 77 

technique flexibilities and independent cohorts, and reproducible alterations were also 78 

obtained between schizophrenia patients and healthy controls (Yang et al. 2021). 79 

Recently, CAP analysis has been used to study the altered brain dynamics in patients 80 

with depression (Kaiser et al. 2019) and Alzheimer’s disease (Ma et al. 2020). In 81 

addition, Li and colleagues concatenated a set of task activation maps from the 82 

Human Connectome Project, and they identified robust anti-correlated functional 83 

networks (default network) across multiple tasks (Li, Dahmani, et al. 2020), 84 

suggesting that CAP analysis could also be utilized in task fMRI. 85 
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Besides the temporal dynamics contained in the resting-state fMRI blood oxygen 86 

level dependent (BOLD) signals, frequency-dependent information also exists. 87 

Previous resting-state fMRI studies mainly focused on the low-frequency oscillation 88 

(LFO) which fluctuates at the typical low-frequency band (0.01 – 0.08/0.1 Hz), as the 89 

LFO is thought to reflect the intrinsic neuronal fluctuations (Biswal et al. 1995). 90 

Although the higher frequency fluctuations are regarded as physiological noise such 91 

as respiration-induced and cardiac noise (Cordes et al. 2001), RSFC above 0.1 Hz and 92 

the potential physiological significance of high-frequency BOLD signal (Chen and 93 

Glover 2015) is under debate. To measure the effects of neural activity in different 94 

frequency bands, the frequency range was generally subdivided into four sub-95 

frequency bands, including slow-5 (0.01 - 0.027 Hz), slow-4 (0.027 - 0.073 Hz), slow-96 

3 (0.073 - 0.198 Hz) and slow-2 (0.198 - 0.25 Hz) based on previous 97 

electrophysiological (Buzsaki and Draguhn 2004) and fMRI studies (Zuo et al. 2010). 98 

Inhomogeneous spatial amplitude of low-frequency fluctuations (ALFF) distribution 99 

between slow-4 and slow-5 were observed (Zuo et al. 2010). Furthermore, frequency-100 

specific ALFF changes have been found in disease groups such as mild cognitive 101 

impairment (Han et al. 2011), Parkinson’s disease (Hou et al. 2014) and depression 102 

(Wang, Kong, et al. 2016) between slow-4 and slow-5. Besides, frequency-specific 103 

effects have also been widely reported in functional connectivity (Gohel and Biswal 104 

2015), regional homogeneity (ReHo) (Yu et al. 2016), and brain networks (Xue et al. 105 

2014). These findings indicate the underlying frequency-dependent brain activity and 106 

frequency-specific disease alterations. While for CAPs, whether and how would the 107 

spatial and temporal characteristics change with the frequency band is unknown and 108 

remains to be explored. 109 

Schizophrenia is a mental disorder with globally altered brain functions, and the 110 

aberrant brain dynamics found in schizophrenia patients (SZ) have the potential to be 111 

the biomarker to reveal the complex pathology of this disease (Du et al. 2017; 112 

Kottaram et al. 2018). The abnormal dynamic brain graphs (Yu et al. 2015) and 113 

network reconfigurations have also been identified in SZ (Reinen et al. 2018). Our 114 
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previous study has shown the altered CAP state dynamics of SZ patients were not 115 

only involved with the triple-network, but also extend to other primary and high-order 116 

networks (Yang et al. 2021). Besides the dynamic brain changes, SZ patients also 117 

showed frequency-specific alterations in several aspects, including ALFF (Yu et al. 118 

2014; Gohel et al. 2018; Meda et al. 2015; Hare et al. 2017), ReHo (Yu et al. 2013), 119 

BOLD variability (Zhang, Yang, and Cai 2020), as well as functional connectivity 120 

(Wang et al. 2017; Han et al. 2017). Furthermore, Zou and colleagues distinguished 121 

schizophrenia patients from healthy controls using the dFC estimated at different 122 

frequency bands (Zou and Yang 2019), and Luo et al. found that SZ showed distinct 123 

dFC strength alterations in slow-4 and slow-5 (Luo, He, et al. 2020), these results 124 

suggest the underlying frequency-specific dynamic alterations in psychosis. Based on 125 

the above findings, SZ patients may also be affected by frequency-specific CAP 126 

alterations that need further investigations. 127 

The purpose of this study is to test whether the frequency-dependent effects can 128 

be observed using coactivation patterns. Specifically, the typical range (0.01 – 0.08 129 

Hz) and four sub-frequency bands from slow-5 to slow-2 were analyzed, and CAP 130 

analysis was performed in each frequency band separately. Then, the spatial and 131 

temporal characteristics varied with frequency bands were evaluated, and particularly 132 

the results of slow-4 and slow-5 were statistically compared, as these two sub-133 

frequency bands are within the typical low-frequency range and have been widely 134 

studied in previous studies. Finally, the frequency-dependent CAPs were applied to 135 

schizophrenia patients, and the frequency-specific disease alterations were studied in 136 

this work. 137 

 138 

2. Materials and methods 139 

2.1 Participants 140 

All participants were scanned at the Department of Medical Imaging, Wuxi 141 

People's Hospital, Nanjing Medical University. Four subjects were excluded due to 142 

the large headmotion. As shown in Table 1, 69 schizophrenia patients (35 males/34 143 
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females, 46.06 ± 10.96 years) and 97 healthy controls (56 males/41 females, 40.36 ± 144 

14.77 years) remained for the current study. Positive and Negative Syndrome Scale 145 

(PANSS) was performed for all schizophrenia patients to evaluate their symptom 146 

severity. This research was approved by the Medical Ethics Committee of Wuxi 147 

Mental Health Center, Nanjing Medical University (study number: 148 

WXMHCIRB2012LLKY001), and was conducted in accordance with the Declaration 149 

of Helsinki guidelines. The written informed consent was obtained from all 150 

participants. 151 

 152 

Table 1. The demographic information for the WuXi cohort 153 

WuXi 
All - HC  
(n = 97)  

Matched - HC  
(n = 69)  

SZ  
(n = 69)  

P value 

Age 40.36 ± 14.77 45.84 ± 11.89 46.06 ± 10.96 0.9112a) 
Gender (M \ F) 56 \ 41 35 \ 34 35 \ 34 1b) 

Disease duration  - - 19.84 ± 10.96 - 
PANSS positive - - 20.06 ± 4.59 - 
PANSS negative - - 23.78 ± 3.84 - 
PANSS general - - 41.67 ± 5.27 - 

PANSS total - - 85.51 ± 9.50 - 
Data are expressed as mean ± SD (SD: standard deviation). 154 
Abbreviations: PANSS, Positive and Negative Syndrome Scale. 155 
a) two-sample t-test; b) chi-square cross-table test. 156 

 157 

2.2 fMRI Data Acquisition 158 

Three-dimensional T1-weighted images and resting-state fMRI scans were 159 

collected using a 3.0 T Magnetom TIM Trio (Siemens Medical System). Structural 160 

MRI images were acquired using a 3D-MPRAGE sequence with the following 161 

parameters: TR/TE = 2530/3.44 ms, flip angle = 7°, FOV = 256 mm, matrix 162 

size = 256 × 256, voxel size = 1 × 1 × 1 mm3, slice thickness = 1 mm and slice number 163 

= 192. Resting-state fMRI data were obtained using a single-shot gradient-echo echo-164 

planar-imaging sequence, with TR/TE = 2000/30 ms, flip angle = 90°, FOV = 220 mm, 165 

matrix size = 64 × 64, voxel size = 3.4 × 3.4 × 4 mm3, slice thickness = 4 mm, slice 166 

number = 33, and 240 volumes were collected for each subject. 167 

 168 
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2.3 Data Preprocessing 169 

All structural and functional MRI images were preprocessed using DPABI 170 

(http://rfmri.org/dpabi). The T1-weighted images were first coregistered to the 171 

functional images, and then segmented into gray matter, white matter and 172 

cerebrospinal fluid by using DARTEL. For the resting-state fMRI images, the first 5 173 

time points were removed to avoid instability of the scanner, and the remaining 174 

images were realigned to correct the head movement. Framewise displacement (FD) 175 

was calculated for each subject (Di and Biswal 2015), and subjects with maximum 176 

translation or rotation FD greater than 2 mm or 2° were excluded from further 177 

analysis. The fMRI images were normalized to the Montreal Neurologic Institute 178 

(MNI) space using the deformation field maps obtained from the T1 segmentation, 179 

and resampled to 3 × 3 × 3 mm3. The mean white matter, cerebrospinal fluid and 180 

global signal, and 24 head motion parameters (Friston et al. 1996) were regressed 181 

from the time series. The time series was further detrended and temporal filtered. 182 

Besides the typical filtering bandpass (0.01 - 0.08 Hz), another four sub-bands 183 

including slow-5 (0.01 - 0.027 Hz), slow-4 (0.027 - 0.073 Hz), slow-3 (0.073 - 0.198 184 

Hz) and slow-2 (0.198 - 0.25 Hz) were employed separately based on the previous 185 

study (Zuo et al. 2010). Finally, all images were smoothed using an 8 mm FWHM 186 

Gaussian kernel. 187 

Similar to our previous study, the mean BOLD time series was extracted from 188 

408 ROIs separately (Yang et al. 2021), which includes 400 cortical regions (Schaefer 189 

et al. 2018) and 8 subcortical regions (bilateral caudate nucleus, putamen, globus 190 

pallidus and amygdala) from the AAL template (Tzourio-Mazoyer et al. 2002). The 191 

400 cortical regions belong to 7 networks, including the visual network (VN), 192 

somatomotor network (SMN), dorsal attention network (DAN), ventral attention 193 

network (VAN), limbic network, fronto-parietal network (FPN) and default mode 194 

network (DMN). 195 

 196 

2.4 Coactivation Pattern Analysis 197 
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The coactivation pattern (CAP) analysis is a data-driven method based on the k-198 

means clustering, and it is supposed to identify recurring whole-brain coactivation 199 

states. The same analysis pipeline from our previous work (Yang et al. 2021) was 200 

used to detect the CAP states in different frequency bands. 201 

In brief, there were 235 volumes for each subject, and each volume was 202 

characterized by the activation level of 408 ROIs. The time series of each ROI was 203 

first normalized using z-score independently, and the absolute value of Z indicates the 204 

activation deviation from its baseline. Then, K-means clustering was performed based 205 

on all volumes from the 97 HC subjects, and volumes sharing similar coactivation 206 

profiles were grouped into the same CAP state. The spatial map of each CAP was 207 

obtained by averaging across volumes belonging to the state, and divided by their 208 

standard deviation to generate a Z-map (Liu and Duyn 2013). Pearson correlation was 209 

used to measure the spatial similarity between volumes and CAP states. As for the SZ 210 

subjects, their volumes were assigned to the obtained CAP state with the highest 211 

spatial similarity. The cluster number K was tested from 2 to 21, and the silhouette 212 

score (Rousseeuw 1987) was used to determine the cluster number. Our previous 213 

work identified six robust CAP states in the typical range (H. Yang et al., 2021). We 214 

found six clusters were also suitable for the four sub-frequency bands, and their 215 

silhouette score curves were shown in Supplementary Figure S1. 216 

 217 

2.5 CAP state temporal dynamic measures 218 

The temporal dynamic properties among the six CAP states were evaluated using 219 

four CAP metrics at the individual level. Fraction of time represents the proportion 220 

of time occupied by one state. Persistence describes the average dwell time, and 221 

Counts records the frequency of one state that occurs across the scan. In addition to 222 

these state dominances that capture the inner-state dynamics, the transition 223 

probability between states was also measured and presented in the supplementary 224 

materials. 225 

 226 
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2.6 Statistical Analysis 227 

For comparisons within the HC group, all 97 HC subjects were analyzed, and for 228 

comparisons between SZ and HC, only age- and gender-matched HC subjects were 229 

included (69 HC and 69 SZ). For the demographic data, two-sample t-test was used to 230 

compare the age difference between SZ and HC, and chi-square cross-table test was 231 

used to test their gender difference. 232 

In this study, the spatial and temporal characteristics of CAPs in slow-5 (0.01 - 233 

0.027 Hz) and slow-4 (0.027 - 0.073 Hz) were further compared, as they constitute 234 

most power of the typical low-frequency range (0.01 – 0.08 Hz). For the CAP results 235 

within the HC group, the six CAPs of slow-5 and slow-4 were compared at the ROI 236 

level using paired t-test, and Bonferroni correction was used to correct the multiple 237 

comparisons (p < 0.05/408) for each state. To better illustrate the 408 ROIs’ group 238 

averaged activation level in slow-4 and slow-5 (the first two columns in Figure 4), 239 

boxplots were plotted for the six CAPs, and the 408 ROIs were categorized into the 240 

seven networks. As for the temporal dynamic measures, the CAP matrices were 241 

compared between slow-5 and slow-4 using paired t-test, and p values were false-242 

discovery rate (FDR) adjusted. Besides, the between-state temporal differences were 243 

also examined using paired t-test in slow-4 and slow-5 separately, and Bonferroni 244 

correction was performed. 245 

Furthermore, the CAP dynamic differences between SZ and HC in slow-5 and 246 

slow-4 were studied, and the group × frequency interaction effects were estimated 247 

using a two-way repeated-measures analysis of variance (ANOVA) with age and 248 

gender as covariates, and FDR correction was performed to account for the multiple 249 

comparisons. For post hoc comparisons, two-sample t-test (with age and gender 250 

controlled) was performed to clarify the group differences, and paired t-test was used 251 

to detect the frequency effects. FDR correction was performed across all post hoc 252 

tests. 253 

 254 

2.7 Classification Analysis 255 
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To further investigate that whether combining slow-5 and slow-4 contains more 256 

information and improves the classification accuracy of schizophrenia patients than 257 

just using the typical range, eight classification models have been built using temporal 258 

or spatial features from typical range, slow-5, slow-4 separately, and combined slow-5 259 

and slow-4. In this study, we used a similar classification model and feature selection 260 

strategy with our previous work (Yang et al. 2020), and the details were illustrated in 261 

the supplementary materials. 262 

 263 

3. Results 264 

3.1 Spatial and temporal properties of CAPs at different frequency bands 265 

The CAP analysis was performed in all 97 HC subjects in the typical range and 266 

four sub-frequency bands (slow-5 to slow-2) separately. As shown in Figure 1, typical 267 

intrinsic high-order (e.g., FPN and DMN) and primary networks (e.g., VN and SMN) 268 

can be observed in the typical range, slow-5, slow-4 and slow-3. While some of them, 269 

particularly the high-order networks disappeared in slow-2, for instance, the DMN 270 

and FPN cannot be found in any state in slow-2. Pearson correlation was calculated 271 

between each pair of states to quantify the CAPs spatial similarities between the 272 

typical range and the other four frequency bands (Figure 2). All six CAP states 273 

showed high spatial one-to-one correspondence between slow-4 and the typical range, 274 

as can be observed from the diagonal of the matrix (Figure 2B), followed by slow-5 275 

and slow-3. As for slow-2, only State 2 and State 3 were similar to the typical range. 276 

The absolute value of activation amplitude of each ROI indicates the deviation 277 

from its baseline activation level (Z value = 0), and was defined as activation 278 

deviation in this work. A larger activation deviation means a stronger positive 279 

activation or stronger negative deactivation. For example, compared with other brain 280 

areas, regions within the visual network exhibited stronger positive activation in State 281 

1, and stronger negative deactivation in State 2. Hence, we said that State 1 and State 282 

2 showed larger activation deviation in the visual network, and the visual network was 283 

the dominant network for State 1 and State 2. 284 
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In our previous study, the six CAP states were grouped into three pairs (State 1 285 

and State 2, State 3 and State 4, State 5 and State 6) in the typical range, and the 286 

paired CAP states were characterized by opposite coactivation profiles. In the typical 287 

range, State 1 and State 2 were mainly dominated by VN, FPN and DMN, State 3 and 288 

State 4 were mainly dominated by SN, SMN and DMN, and State 5 and State 6 were 289 

mainly dominated by FPN, DAN and DMN. The between-state spatial similarity 290 

matrix was measured for each sub-frequency band independently in this study, and 291 

the spatially opposite CAP pairs can also be observed in the four sub-frequency bands 292 

(supplementary Figure S2). For instance, State 3 and State 4 belong to an opposite 293 

CAP-pair. The DMN was activated, and the SMN and SN were deactivated in State 3, 294 

while the DMN was deactivated, and the SMN and SN were activated in State 4. 295 

 296 

 297 

Figure 1. The spatial patterns for the six CAP states in different frequency bands. The 298 

first column shows the six CAP states in the typical range, and the six states were 299 

grouped into three pairs with opposite coactivation profiles. The following four 300 
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columns show the six CAP states from slow-5 to slow-2. For each ROI, the Z-value 301 

means the degree of activation deviation from its baseline. The warm color indicates a 302 

relatively stronger BOLD response than its baseline amplitude, and vice versa for the 303 

cold color. 304 

Abbreviations: DAN, dorsal attention network; DMN, default mode network; FPN, 305 

fronto-parietal network; SN, salience network; SMN, somatomotor network. 306 

 307 

 308 

Figure 2. The CAP spatial similarity between the typical range and four sub-309 

frequency bands. Pearson correlation was calculated to measure their spatial 310 

similarity, and the colorbar shows the R-value. 311 

 312 

The temporal dynamics in the typical range and four sub-frequency bands were 313 

then compared and shown in Figure 3. The mean fraction of time was comparable 314 

across the six CAP states for all frequency bands, around 15% to 20%. As for the 315 

persistence, with the decrease of frequency bands from slow-2 to slow-5, each state 316 
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persisted longer before it transfers to another state. For slow-2 and slow-3, each state 317 

would only persist for about 2 seconds, and increased to about 5 seconds for slow-4 318 

and 12 seconds for slow-5. The persistence of the typical range was between slow-4 319 

and slow-5, which was around 6 seconds. On the contrary, counts (occurrences of 320 

state) decreased with the decrease of the frequency band. 321 

 322 

 323 

Figure 3. The state temporal dominances (fraction of time, persistence and counts) in 324 

the typical range and four sub-frequency bands. The error bar shows the standard 325 

error. 326 

 327 

3.2 Specific spatial and temporal characteristics of CAPs in slow-4 and slow-5 328 

To further investigate that, within the typical low-frequency range (0.01 - 0.08 329 

Hz), whether the two popular studied sub-frequency bands (slow-4 and slow-5) 330 

showed frequency-specific spatial and temporal characteristics, the spatial maps and 331 

CAP dynamics were statistically compared within the HC group. As described in the 332 

supplementary Figure S5, for the six CAP states between slow-4 and slow-5, one-to-333 
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one correspondence can be established based on CAPs’ spatial similarity. As the six 334 

states were grouped into three pairs with opposite coactivation patterns (State 1 and 2, 335 

State 3 and 4, State 5 and 6), similar regions showed frequency-specific activation 336 

differences for the paired states, hence we only showed half of the results (Figure 4), 337 

and the remained results were described in the supplementary Figure S6. To make the 338 

naming rule consistent with our previous results based on the typical range (Figure 1), 339 

the three states were still named as FPN-DMN-VN, SN-SMN-DMN and FPN-DAN-340 

DMN. The group averaged activation levels of the seven networks in slow-4 and 341 

slow-5 were also shown in the last column of Figure 4. 342 

It can be observed that, State 1 and 2 were characterized by large activation 343 

deviation in the VN in both slow-4 and slow-5, then followed by SN and FPN. 344 

Compared with slow-5, slow-4 showed larger activation deviation in the bilateral 345 

middle frontal gyrus (FPN), and less activation deviation in the bilateral insula (SN) 346 

and dorsal attention network (DAN) in both State 1 and 2. Slow-4 also exhibited less 347 

anterior DMN activation in State 2. As for State 3 and 4, they were dominated by the 348 

SN, SMN and DMN in both slow-4 and slow-5, and slow-4 showed less activation 349 

deviation in the DMN and FPN. Besides, slow-5 was also dominated by the DAN, 350 

hence stronger activation deviation in the DAN was observed in slow-5. Finally, State 351 

5 and 6 showed large DAN and FPN activation deviation in both slow-4 and slow-5, 352 

while slow-5 was also dominated by the SMN. In general, slow-5 showed an overall 353 

stronger activation deviation in the SMN, FPN and VN, and slow-4 showed a stronger 354 

activation deviation in the DMN. 355 
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 356 

Figure 4. The frequency-specific effects between slow-4 and slow-5 within the HC 357 

group. The results of three states were presented, as the six CAP states were grouped 358 

into three pairs, and similar results were found within the pair. The first two columns 359 

show the cortical coactivations, and the color of each ROI indicates the activation 360 

deviation from its baseline level (Z-value). Paired t-test was performed for each state 361 

separately, and Bonferroni correction was used at the ROI level. The colorbar shows 362 

the T-value, and regions with P < 0.05 (FWE corrected) were presented in the third 363 

column. The last column shows the activation level of the seven networks in slow-4 364 

and slow-5, and each point represents an ROI’s group averaged activation level from 365 

all 97 HC subjects. 366 

Abbreviations: DAN, dorsal attention network; DMN, default mode network; FPN, 367 

fronto-parietal network; SN, salience network; SMN, somatomotor network. 368 

 369 

In addition, frequency-specific activation differences have also been found in 370 

several subcortical regions after FDR correction (p < 0.005, FDR adjusted). Slow-4 371 

exhibited an overall stronger subcortical activation deviation than slow-5 (Figure 5). 372 

Particularly, slow-4 showed stronger activations at the bilateral basal ganglia (caudate 373 

nucleus, putamen and globus pallidus) in State 6, stronger deactivations at the right 374 

caudate nucleus and globus pallidus in State 5, stronger activations at the bilateral 375 
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amygdala in State 4, and stronger deactivations at the bilateral caudate nucleus, 376 

putamen and amygdala in State 3. Nevertheless, weaker deactivations at bilateral 377 

globus pallidus and left putamen were also found in slow-4 in State 1. 378 

 379 

 380 

Figure 5. The subcortical activation differences between slow-4 and slow-5 within 381 

the HC group. The first two rows show the coactivations of the eight subcortical 382 

regions, and the color of each ROI indicates the activation deviation from its baseline 383 

level (Z-value). Paired t-test was performed for six states separately, and FDR 384 

correction was used at the ROI level. Regions with P < 0.005 (FDR adjusted) were 385 

presented in the last row, and the colorbar shows the T-value. 386 

 387 

Next, the CAP temporal dynamics in slow-4 and slow-5 within the HC group 388 

were quantitatively compared using a paired t-test (supplementary Figure S7A). 389 

Compared with slow-5, all six states showed significantly shorter persistence and 390 

more counts in slow-4. More fraction of time in State 3 and State 4, and less fraction 391 

of time in State 5 and State 6 were observed in slow-4. In addition, the variation of 392 

fraction of time between the six states was also evaluated in slow-4 and slow-5 393 

separately (supplementary Figure S7B). No between-state difference was found in 394 
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slow-5, that each state occupied about 15% - 17% of the time. However, significant 395 

between-state differences were found in slow-4, e.g., State 3 and 4 showed more 396 

fraction of time (about 20 %) than the other four states, and State 6 accounted for the 397 

least amount of time. 398 

 399 

3.3 Frequency-specific CAP dynamic alterations in SZ 400 

The CAP differences between SZ and HC have been examined in the typical 401 

range before (Yang et al. 2021), then the frequency-specific alterations in slow-4 and 402 

slow-5 were further studied in this work. Two-way repeated-measures ANOVA was 403 

performed to estimate the main effects and interaction effects between group and 404 

frequency. 405 

Significant group main effects were found in several states. SZ showed decreased 406 

fraction of time in State 1 and State 2, and increased fraction of time in State 3 and 407 

State 4. SZ also showed deceased persistence in State 2 and State 6, and increased 408 

persistence in State 3 and State 4. Finally, deceased counts in State 1 and State 2, and 409 

increased counts in State 3 and State 4 were observed in SZ. Significant frequency 410 

main effects on fraction of time were also found. Fraction of time increased in State 3 411 

and State 4 and decreased in State 5 in slow-4. For persistence and counts, significant 412 

frequency main effects were obtained in all six states. As described before, higher-413 

frequency (slow-4) CAPs showed shorter persistence and more counts than lower-414 

frequency (slow-5). The detailed statistic results were presented in Supplementary 415 

Table S4. 416 

Significant frequency-group interaction effects were found on fraction of time (P 417 

= 0.0014, F = 11.0473) in State 3, persistence in State 3 (P = 0.0084, F = 7.38) and 418 

State 4 (P = 4.48 × 10-4, F = 13.61), and counts in State 6 (P = 0.0465, F = 4.11). For 419 

post hoc results, we mainly reported the group differences. SZ showed increased 420 

fraction of time in State 3 in both slow-4 (P = 0.0058, T = 2.93) and slow-5 (P = 6.23 421 

× 10-6, T = 4.90) than HC. Besides, SZ also showed increased persistence in both 422 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.07.04.451042doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.04.451042
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

State 3 (P = 0.0052, T = 3.00) and State 4 (P = 1.04 × 10-4, T = 4.18) in slow-5 than 423 

HC. No group difference was obtained in either slow-4 or slow-5 on counts. 424 

 425 

 426 

Figure 6. The post hoc results of repeated two-way ANOVA, only the results with 427 

significant interaction effects were compared. Between-group differences were 428 

compared using two-sample t-test, and between-frequency differences were compared 429 

using paired t-test. Age and gender were controlled for between-group comparisons, 430 

and FDR correction was performed to correct the multiple comparisons. Error-bar 431 

shows the standard error. * indicates p < 0.05 with FDR correction. 432 

 433 

As for the classification results, the ROC (receiver operating characteristic) 434 

curves and their AUC (Area Under Curve) values were shown in Figure 7. Generally, 435 

the spatial features resulted in a higher classification accuracy than the temporal 436 

features, and combining slow-5 and slow-4 would increase the AUC than only using 437 

the typical range. The best classification results were obtained by combining the 438 

spatial features from both slow-5 and slow-4, with AUC = 0.9630, Accuracy = 439 

0.8913, Sensitivity = 0.8986 and Specificity = 0.8841. The detailed results can be 440 

found in Supplementary Table S5 and Table S6. 441 

 442 
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 443 

Figure 7. The ROC curves and AUC values of classification results based on the (A) 444 

temporal features and (B) spatial features in the typical range, slow-5, slow-4 445 

separately and combined slow-5 with slow-4. 446 

 447 

4. Discussion 448 

This work systematically investigated the frequency-specific coactivation patterns 449 

across slow-2 to slow-5 and compared their spatial and temporal characteristics with 450 

the results obtained from the typical range. Particularly, slow-4 and slow-5 were 451 

further compared within healthy subjects, and the frequency-specific CAP dynamic 452 

alterations in schizophrenia patients were studied. Generally, both the high-order and 453 

primary networks can be observed across slow-5 to slow-3 except slow-2, and the 454 

CAP state persisted shorter and occurred more frequently at a higher frequency band. 455 

In addition, stronger subcortical coactivations and co-deactivations were observed in 456 

slow-4, while large-scale function networks such as DAN showed stronger 457 

coactivations and co-deactivations in slow-5. Furthermore, schizophrenia patients 458 

showed frequency-specific alterations in slow-4 and slow-5, and combining slow-4 459 

and slow-5 increased the classification accuracy. 460 

 461 

4.1 Spatial and temporal properties of CAPs at different frequency bands 462 

The coactivation patterns in the typical range (0.01 - 0.08 Hz) have been 463 

demonstrated in our previous study (Yang et al. 2021), and the four sub-frequency 464 

bands were further studied in this study. Compared with the typical range, slow-5 465 
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(0.01 - 0.027 Hz), slow-4 (0.027 - 0.073 Hz) and slow-3 (0.073 - 0.198 Hz) showed 466 

similar spatial patterns, which were characterized by typical functional networks. 467 

Consistent with previous studies (Huang et al. 2020; Zhang et al. 2020), opposite CAP 468 

pairs were also found in the sub-frequency band, suggesting the antagonistic 469 

relationships between these intrinsic networks widely exist at different sub-frequency 470 

bands. However, the CAP states in slow-2 (0.198 - 0.25 Hz) were unlike that of the 471 

typical range, brain regions belonging to the same network were not coactivated 472 

together or mixed with other networks. A previous study has found that slow-2 mainly 473 

oscillates within white matter rather than grey matter (Zuo et al. 2010). Gohel and 474 

Biswal (Gohel and Biswal 2015) evaluated the seed-based correlation maps from 475 

slow-5 to slow-1, and they found the spatial extent of slow-2 was significantly 476 

reduced compared with slow-5/4/3. Together, these findings indicate the attenuated 477 

intrinsic functional associations in slow-2. The reason might be that the resting-state 478 

brain and intrinsic functional networks were mainly activated at the low-frequency, 479 

and there were also more physiological noises at the higher frequency (Cordes et al. 480 

2001; Chen and Glover 2015). 481 

As for the CAP dynamics, persistence and counts changed monotonically with 482 

the increased frequency band. Particularly, persistence decreased, and counts 483 

increased for all the six states from slow-5 to slow-2, suggesting that the higher 484 

frequency led to unstable state maintenance. First, the higher frequency could cause 485 

more frequent BOLD fluctuations, hence the volume-to-volume state maintenance 486 

would decrease, and the between-state transition would increase. As the fraction of 487 

time was similar across different frequency bands, shorter persistence would lead to 488 

more counts. Besides, the higher frequency BOLD signal involved more noises 489 

(Cordes et al. 2001; Chen and Glover 2015), which might affect the coactivation 490 

profile and result in more between-state transitions, and shorten the persistence. 491 

 492 

4.2 Specific spatial and temporal configurations of CAPs in slow-4 and slow-5 493 
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Previous studies have found that the neural oscillations of the human brain are 494 

frequency-dependent. Particularly, large-scale functional networks (e.g., DMN and 495 

FPN) integrate remote brain regions with long-distance interactions (Salvador et al. 496 

2005), and these functional processes are primarily achieved by a lower-frequency 497 

band (Buzsaki and Draguhn 2004; Penttonen, Buzsáki, and Systems 2003). On the 498 

contrary, subcortical regions are spatially compact and dominated by local neural 499 

activities (Salvador et al. 2005), and these short-range connections work in a higher-500 

frequency band (Buzsaki and Draguhn 2004). 501 

In our results, generally the whole-brain spatial patterns of the six CAP states in 502 

slow-4 and slow-5 were similar to the typical range, which were characterized by the 503 

coactivation or co-deactivation of large-scale intrinsic networks, while frequency-504 

specific coactivation profiles were still found between slow-4 and slow-5. Stronger 505 

DAN, DMN and FPN activation deviations were observed in slow-5 in several CAP-506 

states. Especially, DAN showed larger activation deviation in slow-5 across State 1 to 507 

State 4, suggesting the activity of DAN mainly fluctuates at the lower frequency band. 508 

Slow-5 showed stronger DMN activation deviation in State 3 and 4, and stronger 509 

anterior DMN activation in State 2. Previous studies have also found greater 510 

ALFF/fALFF in several DMN regions in slow-5 (Han et al. 2011; Wang, Kong, et al. 511 

2016). Subcortical regions showed larger activation deviations in slow-4 for most 512 

CAP states, for instance, slow-4 showed stronger activation at bilateral basal ganglia 513 

in State 6, which was consistent with previous findings that stronger basal ganglia 514 

ALFF/fALFF in slow-4 (Zuo et al. 2010). The above results support the previous 515 

findings that large-scale functional networks are mainly mediated by lower-frequency 516 

connections, while higher-frequency activities are linked with subcortical systems 517 

(Buzsaki and Draguhn 2004; Han et al. 2011; Wang, Kong, et al. 2016). 518 

However, different compared with previous results, stronger FPN activation 519 

deviation has been observed in slow-4 in State 1 and 2, and stronger DMN activation 520 

deviation has been found in slow-4 in State 5 and 6. Furthermore, a few subcortical 521 

regions (globus pallidus and putamen) also showed weaker activation deviations in 522 
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slow-4 in State 1. It is worth noting that, previous conclusions were mainly drawn 523 

from static studies, while the frequency-specific properties might change dynamically, 524 

and the subcortical-related high-frequency band (0.3032–0.4545 Hz) studied before is 525 

(Salvador et al. 2005) even higher than slow-2 (0.198 - 0.25 Hz). While both slow-5 526 

(0.01 - 0.027 Hz) and slow-4 (0.027 - 0.073 Hz) still belong to the typical low-527 

frequency range (0.01 - 0.08 Hz), which might be the reason why the subcortical and 528 

large-scale networks were not always stronger in slow-4 or slow-4 across all states. 529 

Therefore, these results suggest that within the typical low-frequency range, although 530 

both slow-4 and slow-5 showed similar coactivation patterns, the large-scale networks 531 

and subcortical regions might still be mediated by different frequency bands at 532 

specific periods and brain states. 533 

As for the temporal domain, slow-4 showed significantly shorter persistence and 534 

more counts across all the six CAPs. Due to the long persistence and high within-state 535 

transition probability, fewer between-state transitions occurred in slow-5, suggesting 536 

the integration of large-scale networks requires sufficient time to maintain a relatively 537 

stable state and execute specific functions based on the lower-frequency signals. 538 

Besides, an unbalanced between-state fraction of time was found in slow-4 but not in 539 

slow-5 (Figure S7B). State 3 and 4 showed more fraction of time than the other four 540 

CAPs in slow-4, and State 5 and 6 showed the least fraction of time. Hence, slow-4 541 

showed a significantly increased fraction of time in State 3 and 4, and decreased 542 

fraction of time in State 5 and 6. The unbalanced between-state time allocation and 543 

more frequent between-state transitions together suggest the richer temporal dynamics 544 

in slow-4. 545 

 546 

4.3 Frequency-specific CAP differences between SZ and HC in slow-4 and slow-5 547 

Previous studies have shown that SZ patients are not only characterized by 548 

frequency-specific changes (Gohel et al. 2018; Yu et al. 2013; Zhang, Yang, and Cai 549 

2020) or temporal dynamic changes (Du et al. 2017; Kottaram et al. 2018), but also 550 

frequency-specific dynamic alterations (Zou and Yang 2019; Luo, He, et al. 2020). 551 
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Our previous study has demonstrated the altered CAP dynamics between SZ and HC 552 

in the typical range (Yang et al. 2021), and the frequency-specific alterations in SZ 553 

were further studied in the current work. In general, a similar trend of case-control 554 

differences across the six states was observed at both slow-4, slow-5 and the typical 555 

range. Consistent with the typical range, SZ patients showed less fraction of time in 556 

the FPN-DMN state (State 1 and 2) and more in the SN-DMN state (State 3 and 4) in 557 

both slow-4 and slow-5. The FPN, DMN and SN have been widely reported abnormal 558 

in psychiatric disorders as triple-network model (Manoliu et al. 2014; Menon 2011; 559 

Supekar et al. 2019), and our results further showed the altered triple-network 560 

dynamics in SZ patients exist in both slow-4 and slow-5. Besides, frequency-specific 561 

alterations were also found between slow-4 and slow-5. Particularly significant group-562 

frequency interactions in the SN-DMN state were obtained on all the three CAP 563 

dynamics (fraction of time, persistence and counts), and increased persistence in the 564 

SN-DMN state was only obtained in slow-5 but not in slow-4 nor the typical range. 565 

The reason might be that slow-5 was characterized by stronger DMN activation 566 

deviation in the SN-DMN state, and the more active spatial foundation provides richer 567 

temporal dynamics, enabling the discovery of more distinguished disease alterations. 568 

Furthermore, combining the features from both slow-4 and slow-5 have increased the 569 

diagnose accuracy of schizophrenia patients than only use the typical range. Previous 570 

studies have also shown the increased classification accuracy by combing slow-4 and 571 

slow-5 (Huang et al. 2019; Tian et al. 2020). Together, these results suggest that 572 

frequency-dependent dynamic information contains in multi-frequency bands, and 573 

could help to identify frequency-specific disease alterations. 574 

 575 

4.4 Limitations 576 

In this study, we used frequency divisions from slow-5 to slow-2 as was 577 

described by Buzsaki (Buzsaki and Draguhn 2004) and used by Zuo and colleagues  578 

(Zuo et al. 2010) in fMRI. Although, this method has been widely adapted in fMRI 579 

that uses unequal ranges of frequency bandwidths, recent studies have shown a 580 
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wavelet-based method with higher sensitivity and reproducibility to obtain the sub-581 

frequency bands (Luo, Wang, et al. 2020). Future studies should validate and compare 582 

the frequency-dependent CAPs obtained by wavelet transform and fast Fourier 583 

transform. Besides, the effects of physiological noises such as head movement, 584 

cardiac and respiratory motion were not fully studied. Although, subjects with large 585 

headmotion were excluded before the analysis, and the 24 headmotion parameters 586 

(Friston et al. 1996) were regressed from the BOLD signal, headmotion could still 587 

affect the dynamic functional connectivity (Nalci, Rao, and Liu 2019; Laumann et al. 588 

2017). Whether and how the headmotion would influence the spatial and temporal 589 

characteristics of CAPs remains further study. The cardiac and respiratory motions 590 

were not recorded during the scan, and have not been corrected from the time series 591 

using methods such as RETROICOR (Glover, Li, and Ress 2000). While slow-3 and 592 

slow-2 might be involved with these high-frequency noises, hence their effects on 593 

CAPs cannot be studied systematically in current work. 594 

 595 

5. Conclusions 596 

This study proved that the resting-state CAP states showed frequency-specific 597 

spatial and temporal characteristics. In summary, from slow-5 to slow-2, the spatial 598 

patterns varied from intrinsic functional networks to irregular configurations, and the 599 

CAP state became more unstable and frequently changed when the frequency band 600 

increased, which caused shorter persistence and more counts. Besides, our results 601 

supported that, the large-scale network integration relies more on lower-frequency 602 

oscillations (slow-5) and the subcortical regions activate more in a relative higher-603 

frequency band (slow-4), from a dynamic point of view. Finally, frequency-dependent 604 

dynamic changes in schizophrenia patients were also observed between slow-5 and 605 

slow-4. Our results could provide more information about the functional dynamic 606 

brain, and help to understand the frequency-specific pathological mechanisms of 607 

psychiatric disorders. 608 

 609 
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