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Abstract 19 

Outbreaks of bark beetles have decimated millions of hectares of conifer forest 20 

worldwide in recent years. The ability of these tiny 3-6 mm long insects to kill mature 21 

trees over a short period has been ascribed to two factors: (1) mass attacks on the host 22 

tree to overcome tree defenses and (2) the presence of fungal symbionts that support 23 

successful beetle development in the tree. While the role of pheromones in coordinating 24 

mass attacks has been well studied, the role of chemical communication in maintaining 25 

the fungal symbiosis is poorly understood. We previously demonstrated that Eurasian 26 

spruce bark beetles (Ips typographus) can recognize beneficial fungal symbionts of the 27 

genera Grosmannia, Endoconidiophora and Ophiostoma by their de novo synthesized 28 

volatile compounds. We hypothesized that the fungal symbionts of the bark beetles 29 

might metabolize spruce resin monoterpenes of the beetle’s host tree, Norway spruce 30 

(Picea abies), and that the volatile products could be used as cues by beetles for 31 

locating breeding sites with beneficial symbionts. Grosmannia penicillata and other 32 

fungal symbionts altered the profile of spruce bark volatiles by converting the major 33 

monoterpenes to oxygenated derivatives. Bornyl acetate was metabolized to camphor, 34 

and α- and β-pinene to trans-4-thujanol and other oxygenated products. Extensive 35 

electrophysiological measurements showed that bark beetles possess olfactory sensory 36 

neurons that are selective for these oxygenated symbiont metabolites. Compounds 37 

such as camphor and trans-4-thujanol attracted beetles at specific doses in olfactory 38 

experiments and stimulated the response of female beetles to a mixture of pheromones. 39 

Finally, the fungal symbiont was found to stimulate bark beetle tunneling on diets. 40 

Collectively, our results show that oxygenated metabolites of conifer monoterpenes 41 

produced by fungal symbionts are used by bark beetles as cues to find these essential 42 
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microbial symbionts. The oxygenated metabolites may aid beetles in assessing the 43 

presence of the fungus, the defense status of the host tree and the density of 44 

conspecifics at potential feeding and breeding sites. 45 

 46 
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Introduction 61 
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Herbivorous insects respond readily to airborne chemical cues, and many interactions 62 

between insects and their host plants are known to be mediated by volatile organic 63 

compounds [1–4]. In contrast, volatile signals between herbivorous insects and their 64 

symbiotic microbes have been less studied, aside from a few well-known examples 65 

including ambrosia beetles, termites, and the vinegar fly Drosophila melanogaster [5–8]. 66 

Yet, such signals could be as critical for insect success as their response to host plant 67 

cues. In some insect-microbe symbioses, microbes transform host plant metabolites 68 

creating volatile signals that are used by insects for food or brood site selection [7–10]. 69 

For example, yeasts vectored by D. melanogaster metabolize dietary phenolic 70 

antioxidants and release volatile phenolics that attract both larvae and adults to feed on 71 

antioxidant-rich foods [11]. Nevertheless, there is still comparatively little information 72 

about how microbial transformation of host plant chemicals influences insect-microbe 73 

symbioses, and whether the resulting metabolites represent honest signals of partner 74 

benefits.  75 

Microbial symbioses are especially characteristic of wood-boring insects such as bark 76 

and ambrosia beetles. Bark beetles have captured much attention recently because of 77 

their large-scale outbreaks in many parts of the world. In Europe, for example, the 78 

Eurasian spruce bark beetle (Ips typographus) has killed millions of hectares of spruce 79 

stands as a result of global warming and management practices that increase forest 80 

vulnerability to epidemic outbreaks [12–16]. Ips typographus feeds and raises broods in 81 

the phloem tissues of trees, which contain  high levels of terpene and phenolic defense 82 

chemicals [12,17]. This insect overcomes its unfavorable environment by mass attacks 83 

and by introducing a suite of microbes into the host, including the ectosymbiotic 84 
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ophiostomatoid fungi- Grosmannia penicillata, G. europhioides, Endoconidiophora 85 

polonica and Ophiostoma bicolor that cause blue staining of infected wood [18–22]. 86 

Although the exact benefit of fungal symbionts to I. typographus is not yet well 87 

understood, these necrotrophic fungi may exhaust host tree defenses, metabolize host 88 

defense compounds, and provide nutritional benefits to larvae and adults [23–26].  89 

Conifer oleoresins are a formidable defense against insects and pathogens, as they can 90 

poison and physically entrap invaders [27–30]. However, the volatile fraction of the 91 

resin, especially the monoterpenes, also plays a central role in the colonization of host 92 

trees by bark beetles [28,31,32]. After locating a suitable tree, pioneer male I. 93 

typographus oxidize the dominant host monoterpene α-pinene to cis-verbenol, which is 94 

used as an aggregation pheromone in combination with the de novo produced 2-methyl-95 

3-buten-2-ol to attract conspecifics for a mass attack [33–35]. In addition to bark beetle 96 

pheromones, several other oxygenated monoterpenes such as terpinene-4-ol, camphor, 97 

trans-4-thujanol and borneol have also been detected at the entrance holes of I. 98 

typographus galleries [36–39]. Interestingly, the phloem colonized by ophiostomatoid 99 

fungi around these galleries also produces large amounts of oxygenated monoterpenes 100 

compared to galleries without evident fungal growth [37]. However, the ecological 101 

functions of these oxygenated monoterpenes remain poorly understood. In our previous 102 

work, we showed that I. typographus bark beetles utilize de novo synthesized fungal 103 

volatiles to maintain their association with specific beneficial symbionts and also to 104 

avoid saprophytes [40]. However, it is unknown which volatiles are produced by these 105 

fungi when they colonize their native substrate i.e., the phloem and sapwood of the tree.  106 
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In this study, we investigated the volatile compounds emitted when fungal symbionts of 107 

I. typographus infect the bark of their Norway spruce (Picea abies) host trees. We show 108 

that these fungi dramatically alter the volatile monoterpene composition of spruce bark 109 

and demonstrate, using single sensillum recordings, that adult I. typographus can 1) 110 

perceive the fungal-produced monoterpenes and 2) are attracted to these compounds in 111 

behavioral bioassays. Our results indicate that bark beetles respond to symbiont 112 

biotransformation products of host tree metabolites and employ them to identify suitable 113 

sites for feeding and breeding.   114 

Results 115 

Bark beetles are attracted to volatiles from their symbiotic fungi grown on a 116 

spruce bark medium   117 

We first tested whether adult bark beetles were attracted to volatiles produced by the 118 

symbiotic fungus G. penicillata when grown on two different growth media, potato 119 

dextrose agar (PDA) and spruce bark agar (SBA). In laboratory trap bioassays, adult 120 

beetles were strongly attracted to volatiles emitted by G. penicillata grown on both PDA 121 

or SBA compared to their respective fungus-free agar controls (Fig 1) (PDA, z = 3.34, p 122 

= 0.001; SBA, z = 2.83, p = 0.005, Wilcoxon’s test). However, bark beetles showed a 123 

much stronger attraction towards G. penicillata grown on SBA over the same fungus 124 

grown on PDA (Fig 1D) (z = 4.28, p < 0.001, Wilcoxon’s test). This indicates that the 125 

volatile profile of this fungus grown on spruce bark agar is distinct and highly preferred 126 

by adult beetles compared to the volatile profile when grown on agar without spruce 127 

bark. Volatiles from several other bark beetle primary and secondary fungal symbionts, 128 
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such as E. polonica and G. europhioides, grown on SBA were also highly attractive to 129 

adult beetles, although not all bark beetle-associated fungi tested in this way emitted 130 

attractive volatile blends (S1 Fig).  131 

Symbiotic fungi alter the volatile profile of the bark  132 

To identify the differences between the volatile profiles of fungus-inoculated and fungus 133 

free bark, headspace volatiles were analyzed using gas chromatography-flame 134 

ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). 135 

Principal component analysis was performed using the total volatile profile from each 136 

treatment 4 d after the inoculations. PCA analysis revealed that the volatile profile of G. 137 

penicillata-inoculated bark is distinct from the uninoculated control and nearly 68 % of 138 

the variation in the volatile profiles was explained by the first two principal components 139 

(Fig 2A).  140 

To identify which compound groups were altered significantly due to fungal 141 

infection, we analyzed volatiles over a time course of 4 d, 8 d, 12 d and 18 d post 142 

inoculation with G. penicillata (Fig 2B, S3 Fig, S2, S3, and S5 Tables). In total, 79 143 

compounds comprising host tree and fungal volatiles were detected in all treatments 144 

and classified into different groups, namely aliphatic hydrocarbons (17 compounds), 145 

aromatics (2 compounds), monoterpene hydrocarbons (15 compounds), oxygenated 146 

monoterpenes) (26 compounds), sesquiterpenes (17 compounds) and spiroketals (3 147 

compounds). The proportion of total oxygenated monoterpenes gradually increased to 148 

dominate the volatile profile of G. penicillata-infected bark reaching a maximum at 18 d 149 

post inoculation (F(3,14) = 3.54, p = 0.04, ANOVA), while the proportion of total 150 
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oxygenated monoterpenes was unchanged in mock-inoculated controls (Fig 2B).  151 

Camphor was the major contributor to the overall increase of oxygenated 152 

monoterpenes, with the highest relative abundance after 18 d and a significant 153 

difference between time points (F(1,16) = 13.06, p = 0.002, ANOVA, Tukey’s test) (S5 154 

Table). The proportion of monoterpene hydrocarbons gradually decreased over the time 155 

course in both treatments (mock, F(3,7) = 11.6 , p = 0.004; G. penicillata, F(3,15) = 21.2, p 156 

< 0.001, ANOVA). The proportion of total sesquiterpenes also decreased significantly 157 

over time in G. penicillata infected bark (F(3,15) = 4.4, p = 0.02, ANOVA), but not in the 158 

mock-inoculated bark. When measuring emission rate (ng mg DW-1 h-1), the emission of 159 

total monoterpene hydrocarbons in the control and the G. penicillata treated bark plugs 160 

was not significantly different at 4 d post inoculation (Fig 2C, S2 Table). However, we 161 

found a dramatic increase in the emission rate of total oxygenated monoterpenes at this 162 

time point in spruce bark inoculated with G. penicillata compared to the fungus-free 163 

control (Fig 2D) (9-fold increase, t = 7.38, p = 0.004, Welch’s t-test). Out of 19 identified 164 

oxygenated monoterpenes in the bark inoculated with G. penicillata, a total of 15 165 

compounds significantly increased between control and fungus infected bark including 166 

camphor (Fig 2E) (S2 Table) (51-fold increase, t = 7.7, p = 0.004, Welch’s t-test), endo-167 

borneol (18 fold increase, t = 6.7, p = 0.001), isopinocamphone (3-fold increase, t = 6.8, 168 

p < 0.001), verbenone (2-fold increase, t = 4.3, p = 0.005) and bornyl acetate (3-fold 169 

increase, t = 3.7, p = 0.01). Measurements conducted on other I. typographus fungal 170 

symbionts also showed differences in the volatile composition of fungal-inoculated 171 

versus control bark (S2 Fig) with increases in the proportion of oxygenated 172 

monoterpenes over time (except for E. polonica) (S3 Fig, S4, S6 and S7 Tables).  173 
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Symbiotic fungi produce oxygenated monoterpenes from spruce monoterpene 174 

hydrocarbons and bornyl acetate 175 

To investigate whether a symbiotic fungus can metabolize the major spruce 176 

monoterpenes, PDA was enriched with 0.5 mg g-1 (-)-β-pinene, (-)-α-pinene or (-)-bornyl 177 

acetate. The amount of monoterpenes remaining in the medium after 4 d was estimated 178 

using GC/FID measurements from hexane extracts of agar plugs containing G. 179 

penicillata and a fungus-free control. Only the amount of (-)-bornyl acetate decreased 180 

significantly in G. penicillata-inoculated agar compared to fungus-free agar (Fig 2F) (t = 181 

-3.38, p = 0.003). The amounts of (-)-β-pinene and (-)-α-pinene did not differ between 182 

G. penicillata and fungus-free agar.  183 

Next, we quantified the G. penicillata metabolites of (-)-α-pinene, (-)-β-pinene 184 

and (-)-bornyl acetate after adding these three major spruce monoterpenes separately 185 

to PDA. (Fig 2G). The metabolic profiles of the fungus grown on either (-)-α-pinene- or (-186 

)-β-pinene-enriched agar were similar, expect that verbenone was produced by the 187 

fungus from (-)-α-pinene but not from (-)-β-pinene. The oxygenated monoterpene, 188 

terpinen-4-ol, was the major biotransformation product and (+)-isopinocamphone and 189 

(+)-trans-4-thujanol were the minor products produced from (-)-α-pinene and (-)-β-190 

pinene (S5, S6 Figs). The dominant oxygenated monoterpenes, camphor and endo-191 

borneol, were produced by G. penicillata from (-)-bornyl acetate (Fig 2G, bottom panel; 192 

S8 Fig), and their production coincided with the decrease of the precursor (Fig 2F). 193 

Similar results were obtained for the other fungal symbionts tested (S4-S8 Figs). These 194 

results collectively show that symbiotic fungi can dramatically alter the volatile profile of 195 

spruce bark by increasing the emission of oxygenated monoterpenes. 196 
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Bark beetles detect oxygenated monoterpenes through specialized olfactory 197 

sensory neurons (OSN) in their antennae  198 

To test if bark beetle antennal olfactory sensilla contain OSNs that detect the 199 

biotransformation products of monoterpenes, we challenged 231 olfactory sensilla with 200 

a test panel comprising 92 ecologically relevant compounds diluted in paraffin oil (1 µg 201 

µl-1) using single cell recordings (S1 Table). Only 23 (~10%) of the sensilla housed 202 

neurons that did not respond to any of the compounds from the odor panel although 203 

their OSNs showed spontaneous firing. We obtained odor-evoked responses with 204 

strong excitation (>120 Hz) from 198 OSNs and weak excitation (<50 Hz) from 10 205 

OSNs, allowing the grouping of these neurons into different classes based on their 206 

response profile. From initial screening experiments at a 10 µg dose on filter paper (to 207 

determine the maximum receptive range of OSNs), we identified and classified 20 208 

classes of OSNs. Three OSN classes responded primarily to fungal-produced 209 

oxygenated monoterpenes. We also identified neurons belonging to previously 210 

described OSN classes tuned to pheromones, host tree volatiles and non-host odorants 211 

([41]; S3 Fig) that are not further considered here.  212 

OSN classes tuned to fungal-produced oxygenated monoterpenes were 213 

identified in both the Am and Bm regions on the antennae (Fig 3A). One of these OSN 214 

classes responded most strongly to (+)-isopinocamphone, and this class was highly 215 

specific to oxygenated monoterpenes, especially ketones (Fig 3C, left panel). Apart 216 

from (+)-isopinocamphone, relatively strong responses were also elicited by (+)-217 

pinocamphone, (-)-isopinocamphone, (±)-pinocarvone, (±)-camphor, and (-)-218 

pinocamphone. (Fig 3C, left panel). Dose-response tests showed that this OSN class 219 
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was the most sensitive to (+)-isopinocamphone of all the compounds tested with 220 

responses evident at a dose of 100 pg. The responses to (+)-pinocamphone, (-)-221 

isopinocamphone, (±)-pinocarvone and (±)-camphor all appeared between 1 ng and 10 222 

ng doses (Fig 3D, left panel). Another OSN class with specific responses to fungal-223 

derived compounds responded most strongly to (+)-trans-4-thujanol and weakly to (±)-3-224 

octanol, (±)-1-octen-3-ol, (+)- and (-)-terpinen-4-ol, and (+)- and (-)-α-terpineol (Fig 3C, 225 

middle panel). This OSN showed a 1000-fold lower response threshold to (+)-trans-4-226 

thujanol compared to the next best ligands, the C8 alcohols (Fig 3D, middle panel). 227 

Finally, an OSN class responding strongly to verbenone,  α-isophorone and β-228 

isophorone, followed by weaker responses to (-)- and (+)-trans-verbenol, pinocarvone, 229 

and (-)-cis-verbenol (Fig 3C, right panel) was also found. Dose- response tests revealed 230 

that this neuron class responded the strongest to α-isophorone across most tested 231 

doses, followed by slightly weaker and similarly strong responses to both verbenone 232 

and β-isophorone (Fig 3D, right panel).  233 

A few previously characterized OSN classes for host tree monoterpenes, 234 

including the classes with primary responses to α-pinene, p-cymene, and Δ3-carene, 235 

respectively [41], showed varying secondary responses to some of the fungal-derived 236 

compounds tested here for the first time. For example, the α-pinene OSN class 237 

responded also to (+)-isopinocamphone, (-)-isopinocamphone and (±)-pinocarvone and 238 

weakly to (±)-camphor, (-)-myrtenol, trans-pinocarveol, carvone, borneol and (-)-239 

fenchone (S9A Fig). The p-cymene OSN class showed intermediate responses to (+)-240 

trans-4-thujanol and carvone (S9B Fig). Although the Δ3-carene OSN class showed 241 

high specificity towards Δ3-carene, ligands such as camphor and (-)-isopinocamphone 242 
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also elicited weak responses from this neuron class (S9C Fig). Collectively, single 243 

sensillum recordings indicated that bark beetles possess OSNs specific for detecting 244 

the oxygenated monoterpenes produced by their associated fungi, and these neurons 245 

do not respond to the respective hydrocarbon precursors. On the other hand, some 246 

oxygenated monoterpenes elicited variable responses in OSN classes responding 247 

primarily to monoterpene hydrocarbons 248 

Oxygenated monoterpenes produced by fungal symbionts attract bark beetles 249 

Our previous trap bioassays showed that volatiles from G. penicillata grown on spruce 250 

bark agar were strongly attractive to adult beetles (Fig 1C). Therefore, we asked how 251 

the addition of pure monoterpenes to the spruce bark agar could influence the behavior 252 

of beetles towards G. penicillata. Our bioassay revealed that addition of 0.1 mg g-1 and 253 

0.5 mg g-1 (-)-β-pinene to the fungal growth medium did not affect the attraction of 254 

beetles towards G. penicillata when tested against a fungus-free control (Fig 4A, left) 255 

(0.1 mg g-1, z = 2.22, p = 0.02; 0.5 mg g-1, z = 2.54, p = 0.01, Wilcoxon’s test). However, 256 

addition of 1 mg g-1 (-)-β-pinene completely abolished the attraction to G. penicillata and 257 

adult beetles were unresponsive in the binary choice test (Fig 4A, left). To further 258 

understand the different responses of beetles towards G. penicillata grown on varying 259 

concentrations of (-)-β-pinene, individual electrophysiologically-active (-)-β-pinene 260 

biotransformation products were used in trap bioassays against a mineral oil control. At 261 

the highest dose tested (1 mg), both trans-4-thujanol and terpinen-4-ol were avoided by 262 

adult beetles (Fig 4B trans-4-thujanol, left panel; terpinene-4-ol, right panel) (1 mg trans-263 

4-thujanol, z = -1.9, p = 0.05; 1 mg terpinen-4-ol, z = -1.7, p = 0.08, Wilcoxon’s test). On 264 

the other hand, 100 µg trans-4-thujanol significantly attracted adult beetles (Fig 4B, left 265 
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panel) (z = 2.78, p = 0.005, Wilcoxon’s test). Adult beetles did not discriminate between 266 

G. penicillata grown on (-)-β-pinene enriched medium and G. penicillata grown on non-267 

enriched medium (Fig 4E). Based on these results, we concluded that beetles show 268 

concentration-specific responses to some (-)-β-pinene biotransformation products, but 269 

not to (-)-β-pinene itself.  270 

Addition of another major host tree monoterpene, (-)-bornyl acetate, to fungal 271 

growth medium at 0.05 mg g-1 and 0.5 mg g-1 resulted in strong attraction of I. 272 

typographus adults towards G. penicillata when tested against a fungus-free control 273 

after 4 d incubation (Fig 4C, left panel) (0.05 mg g-1, z = 3.31, p = 0.001; 0.5 mg g-1, z = 274 

3.21, p = 0.001, Wilcoxon’s test). The major biotransformation product of (-)-bornyl 275 

acetate that formed in this period (Fig 4C), camphor, was significantly more attractive to 276 

adult beetles at a 100 µg dose than the mineral oil control (Fig 4D) (z = 2.58, p = 0.01, 277 

Wilcoxon’s test). However, adult beetles preferred G. penicillata grown on unenriched 278 

medium against G. penicillata grown on high amount of (-)-bornyl acetate (0.5 mg g-1) 279 

enriched medium (Fig 4F) (z = 2.12, p = 0.03, Wilcoxon’s test) consistent with their 280 

preference for lower amounts of camphor. By contrast, in the absence of fungus beetles 281 

did not discriminate between diet enriched with monoterpenes and diet without 282 

monoterpenes (S10 Fig). Collectively, these results show that fungal biotransformation 283 

products of host tree monoterpenes can be perceived as attractive cues by adult 284 

beetles, but this attraction varies with the concentration. 285 

Volatiles of symbiotic fungi increase bark beetle attraction to pheromones 286 
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Previous studies have detected the emission of several oxygenated monoterpenes from 287 

bark beetle entrance holes on attacked trees during the colonization phase coincident 288 

with the emission of male-produced pheromones [36–38]. Therefore, we tested the role 289 

of fungal symbiont volatiles in the behavioral response of adult beetles towards their 290 

pheromones. Ips typographus has been shown to display sex-specific responses to its 291 

pheromone components [42,43], so individual sexes were tested separately. Female 292 

beetles were significantly more attracted towards the individual aggregation pheromone 293 

components cis-verbenol and 2-methyl-3-buten-2-ol (cis-verbenol, z = 2.98, p = 0.003; 294 

2-methyl-3-buten-2-ol, z = 2, p = 0.046, Wilcoxon’s test), and towards a mixture of the 295 

two pheromone components (z = 5.19, p < 0.001, Wilcoxon’s test) compared to the 296 

mineral oil control (Fig 5A). By contrast, adult males did not make a significant choice 297 

between these options in accordance with previous studies [42, 61]. However, when 298 

beetles had to choose between the pheromone mixture with or without G. penicillata 299 

volatiles, females significantly preferred the pheromone mixture together with G. 300 

penicillata volatiles (Fig 5B) (z = 3.41, p = 0.001, Wilcoxon’s test). These results indicate 301 

that, in addition to male-produced pheromones, female beetles might also utilize 302 

fungus-produced oxygenated monoterpenes as cues to select suitable breeding sites 303 

that include a beneficial symbiotic fungus. 304 

Symbiotic fungi increase the tunneling of adult beetles 305 

We previously showed that the symbiotic fungi of I. typographus stimulate tunneling of 306 

adult bark beetles in fungus-colonized medium [40,44,45]. Here we investigated if the 307 

addition of specific spruce monoterpenes to medium colonized by G. penicillata had an 308 

effect on tunneling. Overall, the presence of a symbiotic fungus increased the tunneling 309 
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success of adult beetles after 48 h. Multiple logistic regression analysis revealed that 310 

successful tunneling odds in (-)-bornyl acetate-amended medium were significantly 311 

influenced by the fungus when the beetle sex and the monoterpene treatment remained 312 

constant (Table 1) (β = 4.98, χ2 = 20.99, p < 0.001). The presence of the fungus 313 

increased the tunneling odds by 145 units (percentage probability increased by 99%) 314 

compared to in the absence of the fungus. Additionally, males had significantly lower 315 

tunneling success compared to females (Table 1) (β = -1.72, χ2 = 8.78, p = 0.003) with 316 

the tunneling odds for males being 0.18 units lower (percentage probability decreased 317 

by 15.2%) than for females. In (-)-β-pinene-amended medium, only the presence of the 318 

fungus significantly influenced the tunneling odds of beetles (Table 1) (β = 2.65, χ2 = 319 

20.45, p < 0.001), with an increase of 14.06 units (percentage probability increased by 320 

93%) compared to in the absence of the fungus. Similarly, in (-)-α-pinene-amended 321 

medium only the presence of the fungus significantly influenced the tunneling odds of 322 

beetles (Table 1) (β = 2.02, χ2 = 9.39, p = 0.002), with an increase of 7.51 units 323 

(percentage probability increased by 88%) compared to the absence of the fungus. 324 

Addition of the three monoterpenes without fungus did not have any effect on the 325 

tunneling behavior of adult beetles.  326 

The growth of G. penicillata on monoterpene-enriched media resulted in 327 

significantly longer beetle tunnels than in the other treatments (Fig 6B-D) ((-)-β-pinene, 328 

F(3,99) = 4.95, p = 0.003; (-)-α-pinene, F(3,92) = 14.8, p < 0.001; (-)-bornyl acetate, F(3,106) 329 

= 6.6, p < 0.001, ANOVA, Tukey’s test). However, there was no significant difference in 330 

tunnel lengths in treatments with fungus alone versus fungus plus monoterpenes except 331 

for the treatment with (-)-β-pinene (Fig 6B-D, Tukey’s test). The sex of the beetle and 332 
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the interaction of sex with other treatments had no effect on the tunnel length. 333 

Altogether, these results show that adult I. typographus recognize fungal volatiles 334 

produced by symbionts growing on spruce bark as positive cues that stimulate tunneling 335 

in the presence of fungus. 336 

 337 

 338 

 339 

 340 

 341 

 342 

Discussion 343 

The successful attack of bark beetles on their host trees is invariably associated with 344 

free-living fungal symbionts. These ascomycete symbionts may detoxify the terpene-345 

rich defensive resin of the host tree, hasten host tree death, provide nutritional benefits, 346 

and increase resistance to pathogens, [20,21,26]. Here, we documented the ability of I. 347 

typographus fungal symbionts to metabolize host tree monoterpenes to oxygenated 348 

derivatives that may assist adult beetles in locating suitable breeding and feeding sites 349 

[38,46]. Several oxygenated monoterpenes have been previously identified as volatiles 350 

released from trees that were attacked by I. typographus [36,37,39].  We showed that 351 

these compounds were likely fungal metabolites that become dominant components of 352 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.03.450988doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.03.450988
http://creativecommons.org/licenses/by-nc-nd/4.0/


the volatile profile of fungus-infected bark within 12 days following infection. Bark beetle 353 

olfactory sensory neurons could detect various oxygenated monoterpenes produced by 354 

symbiotic fungi, and we identified three neuron classes that primarily respond to these 355 

compounds. Major fungal-derived oxygenated monoterpenes attracted adult beetles 356 

and stimulated tunneling of beetles on diets inoculated with monoterpene-metabolizing 357 

fungal symbionts. The presence of the symbiont G. penicillata also increased the 358 

attraction of female beetles to the aggregation pheromone. 359 

Oxygenated monoterpenes are widespread volatile cues in tree-feeding insects  360 

Various forest insects that are associated with fungal symbionts, such as bark beetles, 361 

ambrosia beetles and wood wasps live in host trees producing large quantities of 362 

monoterpene volatiles. These insects are often attracted to their fungal symbionts 363 

through volatiles [6,40,47] and hence, fungal-produced monoterpene metabolites could 364 

be critical components of the attractive volatile blends. For bark beetles, oxygenated 365 

monoterpenes derived from either the beetles, fungi or host trees play many important 366 

roles in their life history [48]. During mass attacks, the host-derived oxygenated 367 

monoterpene cis-verbenol acts together with 2-methyl-3-buten-2-ol as an aggregating 368 

signal for I. typographus to promote mass attack on individual trees [32,49]. Beetles 369 

also utilize oxygenated monoterpenes to restrict the density of attack. Microbes lining 370 

the gallery walls or living in the beetle gut oxidize cis and trans-verbenol into verbenone, 371 

which inhibits the attraction of both sexes to fully colonized trees [50–52]. Furthermore, 372 

mated male beetles produce ipsenol and ipsdienol, of which ipsenol acts as an anti-373 

attractant [52] and, an oxygenated monoterpene from host trees, 1,8-cineole, which is 374 

produced in higher amounts in resistant or MeJA-primed trees, inhibits attraction of 375 
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beetles to their pheromones [53–55]. Oxygenated monoterpenes are also used as 376 

reliable cues by parasitoids of bark beetles to locate their prey [39,56].  377 

Here we discovered that oxygenated monoterpenes emitted by bark beetle-associated 378 

fungi growing on agar amended with spruce bark attracted adult I. typographus. 379 

Previously, we demonstrated that fungi grown on potato dextrose agar without any 380 

spruce bark de novo produced other volatiles, mixtures of aliphatic and aromatic 381 

compounds, that attract newly emerged (callow) adult beetles [40]. These compounds 382 

were also detected here as major components of the volatile blend at later phases of 383 

fungal growth (S3-7 Table). Although we focused principally on the symbiont G. 384 

penicillata in this study, volatiles from other fungal symbionts were also investigated. 385 

The congener G. europhioides and E. polonica were also found to emit volatile blends 386 

attractive to adult I. typographus when growing on spruce bark agar (Fig. S1), but the 387 

volatiles of O. bicolor and the saprophyte O. piceae were not attractive. Since all of 388 

these species produce oxygenated derivatives of spruce bark monoterpenes (Tables 389 

S2-7), it is not the simple presence of oxygenated monoterpenes, but the entire volatile 390 

profile that determines its attractiveness.  391 

Oxygenated monoterpenes signal the presence of fungi to bark beetles and so 392 

may modulate beetle colonization  393 

The first chemical signals reported to mediate bark beetle colonization of their hosts 394 

were aggregation pheromones. Yet even in the presence of these pheromones, a large 395 

proportion of aggregating beetles that land on trees leave without tunneling into the bark 396 

[46,57,58]. This suggests that other cues may be needed to induce beetles to stay and 397 
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bore into the bark. Indeed, bark beetles have been shown to respond to signals from 398 

host and non-host species when selecting trees for colonization [32,40,59–62]. Based 399 

on our results, fungus-produced oxygenated monoterpenes might also belong to the list 400 

of colonization cues. For bark beetles, fungal metabolites can serve as indicators of 401 

host tree sectors where their fungal symbionts are already established. These 402 

compounds also provide evidence for the ongoing metabolism of host tree defenses, 403 

which could improve the success of bark beetle colonization.  404 

Fungal volatiles also enhance the attraction of bark beetles to aggregation pheromones. 405 

Female I. typographus are known to use the aggregation pheromone ( 2-methyl-3-406 

buten-2-ol and cis-verbenol) to locate trees suitable for mating and oviposition [46,63]. 407 

Here we showed that female I. typographus were more attracted at short range to a 408 

combination of pheromones plus fungal volatiles than to pheromones alone. 409 

Oxygenated monoterpenes and other fungal volatiles provide information about the 410 

presence of fungal symbionts, which promote the successful development of their 411 

offspring. Similarly, the pheromone component cis-verbenol, itself an oxygenated 412 

monoterpene produced by I. typographus from the host tree precursor α-pinene [64], 413 

provides information about the presence of other beetles, especially mates. The lack of 414 

response of males to pheromones in our experiments is not unexpected, as male I. 415 

typographus have been reported to be less responsive than females to high doses of 416 

pheromones in walking bioassays [43,63]. This behavior may help them avoid dense 417 

colonies of male conspecifics within a tree to reduce competition for mates and food.  418 

The oxygenated metabolites of host monoterpenes produced by fungal symbionts not 419 

only attracted bark beetles, but also stimulated them to tunnel in a fungal-colonized 420 
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medium. Interestingly, both sexes showed increased tunneling in contrast to their 421 

response to pheromones. The lack of differences in sex-specific responses could be 422 

due to the fact that the nutritional advantage of feeding on fungus colonized spruce bark 423 

medium is beneficial to both sexes [21,22].  424 

The proportion of oxygenated monoterpenes to total monoterpenes in the volatile blend 425 

of G. penicillata increased over the time course studied to nearly 50% at 12 days and 426 

nearly 70% at 18 days, a trend also observed for G. europhioides and O. bicolor. Thus, 427 

higher proportions of these compounds may indicate older fungal infection sites and 428 

hence older beetle invasion sites that may be less attractive to newly arriving beetles 429 

due to crowding. The lack of attraction and even repellency of higher concentrations of 430 

individual oxygenated monoterpenes seen in laboratory bioassays in our and in 431 

previous studies is consistent with this interpretation [65]. In fact, one oxygenated 432 

monoterpene derivative has been already reported to inhibit I. typographus attraction. 433 

Verbenone, which is produced by microbial oxidation or auto-oxidation of the 434 

pheromone cis-verbenol, repels I. typographus in later phases of the attack cycle 435 

[52,66,67].  436 

Oxygenated monoterpenes are signals not only for bark beetles, but also for their 437 

enemies. Both beetle predators and parasitoids employ these compounds and other 438 

volatiles to locate bark beetle larvae hidden under the bark [68]. Specifically, a three-439 

component blend comprising camphor, isopinocamphone and terpinen-4-ol, all fungal 440 

metabolites of host tree monoterpene hydrocarbons, was reported to attract a 441 

coleopteran predator and several hymenopteran parasitoids of I. typographus in the 442 

presence of host tree background signals [56,69,70]. A similar mechanism is used by 443 
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parasitoids of the wood wasp, Sirex noctilio to locate their concealed host insect under 444 

the bark via the volatiles from the wood wasp fungal symbiont Amylostereum areolatum 445 

[71]. Furthermore, the bark beetle predator, Thanasimus formicarius contains OSNs to 446 

detect oxygenated monoterpenes such as camphor and pinocamphone [72]. Thus, any 447 

benefit to the beetle arising from oxygenated monoterpene production by its symbiotic 448 

fungi may come at the cost of revealing its presence to natural enemies that employ 449 

these same volatiles to locate bark beetles.  450 

Formation of oxygenated derivatives may reduce monoterpene toxicity for bark 451 

beetles 452 

The conversion of host tree monoterpene defenses by symbiotic fungi to oxygenated 453 

products may alleviate toxicity to bark beetles. Terpene-rich resins are a general 454 

defense of P. abies and other conifers against herbivores and pathogens [4,73,74]. 455 

Thus, it is not surprising that monoterpenes have exhibited toxicity to bark beetles in 456 

many studies [75–77]. Monoterpene hydrocarbons, such as α-pinene are typically more 457 

toxic to beetles than host tree-produced oxygenated monoterpenes, such as bornyl 458 

acetate [78]. Hence the oxidative transformations carried out by fungal symbionts 459 

described in this study could reduce toxicity to I. typographus through conversion to less 460 

poisonous derivatives. Such detoxification of host tree defenses could represent a 461 

significant benefit of fungal symbionts [79].  462 

By contrast, oxygenated monoterpenes may be more toxic for fungi than monoterpene 463 

hydrocarbons [80,81]. Thus, the initial oxidation of monoterpene hydrocarbons may not 464 

constitute a detoxification unless it is a step towards further metabolism. The potential 465 
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toxicity of oxygenated monoterpenes may explain why these substances are readily 466 

degraded by fungi specialized on conifers such as G. penicillata, Heterobasidion 467 

parviporum and Seridium cardinale [80,81]. The fungus G. clavigera, a symbiont of the 468 

bark beetle Dendroctonus ponderosae, possesses genes encoding cytochromes P450 469 

and other oxidative enzymes that are up-regulated by dietary monoterpenes [82,83] 470 

 471 

Other sources of oxygenated monoterpenes in spruce-bark beetle interactions 472 

Oxygenated monoterpenes emitted from trees attacked by I. typographus may arise 473 

from sources other than fungal symbionts. The host tree P. abies synthesizes large 474 

amounts of bornyl acetate [84] and small amounts of 1,8-cineole [85]. In these 475 

compounds, the oxygen functions are incorporated during biosynthesis from basic 476 

precursors, whereas the products from fungal symbionts are formed by oxidative 477 

modification of a previously formed monoterpene hydrocarbon skeleton. The compound 478 

trans-4-thujanol belongs to the latter group. We identified it as a G. penicillata 479 

metabolite of α- and β-pinene, but trans-4-thujanol may also be synthesized by the tree, 480 

although at low levels in P. abies bark [65]. As another alternative, this and other 481 

oxygenated monoterpenes could be produced via autoxidation. The degradation of 482 

monoterpenes upon exposure to air could explain the release of low but readily 483 

detectible amounts of oxygenated monoterpenes from uninfected control bark plugs in 484 

our and other studies. In the field, oxygenated monoterpenes other than bornyl acetate 485 

and 1,8-cineole have been detected from damaged P. abies trees when monoterpenes 486 

were exposed to air [86,87]. However, in the present study the emission rate from 487 
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uninfected bark plugs was much lower than from fungus-infected plugs, suggesting that 488 

microbial metabolism is a much more significant source of oxygenated monoterpenes 489 

than autoxidation [88]. However, since P. abies cell suspension cultures have been 490 

reported to oxidize added monoterpenes [89,90] the tree itself cannot be ruled out as a 491 

source of any of the detected oxygenated monoterpenes.  492 

Among microbial sources of oxygenated monoterpenes are several yeast species 493 

including Hansenula holstii, H. capsulata and Candida nitratophila, which were isolated 494 

from I. typographus, and produce terpinen-4-ol, α-terpineol, borneol and trans-495 

pinocarveol when grown in phloem medium or in α-pinene-supplemented medium [67]. 496 

In addition, another bark beetle species, Polygraphus poligraphus, which is sometimes 497 

found together with I. typographus, was shown to emit large amounts of terpinene-4-ol 498 

[91,92]. Intermediate amounts of α-terpineol, cis- and trans-4-thujanol were also 499 

identified from the hindgut as well as the entrance holes of this beetle’s gallery and 500 

could be formed by this beetle or its associated microorganisms from host tree 501 

monoterpenes.  502 

High selectivity of bark beetle olfactory neurons to oxygenated monoterpenes 503 

suggest their role in detecting symbiotic fungi  504 

The bark beetles of Ips typographus possess several classes of olfactory sensory 505 

neurons (OSNs) that were shown to detect the oxygenated monoterpenes produced by 506 

their fungal symbionts with notable specificity. For example, the isopinocamphone OSN 507 

showed high specificity towards several monoterpene ketones produced by fungal 508 

symbionts, including (+)- and (-)-isopinocamphone, (+)- and (-)-pinocamphone, 509 
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camphor, and pinocarvone, but not to monoterpene alcohols such as borneol and trans-510 

pinocarveol. The absence of any response to monoterpene hydrocarbons indicates that 511 

this OSN is not tuned to detect the host tree itself, but rather organisms metabolizing 512 

the major host monoterpenes. The isopinocamphone OSN is similar to one recently 513 

reported OSN class from I. typographus that responded best to pinocarvone and 514 

camphor (OSN class named Pcn; isopinocamphone and pinocamphone were not 515 

tested) [87]. Our work shows that (+)-isopinocamphone is the primary ligand of this OSN 516 

class, based on its greater activity than the other active compounds. In addition, the 517 

response profile of this OSN class matches very well with that of the odorant receptor 518 

(OR) ItypOR29, which recently was characterized in Xenopus laevis oocytes [93]. 519 

 Likewise, we showed that a previously described verbenone-sensitive OSN class [41] 520 

also responds to cis- and trans-verbenol and β-isophorone, compounds that are 521 

believed to arise from bark beetle metabolism of host tree terpenes [94]. Verbenone is 522 

produced from the verbenols by microbes that colonize gallery walls and beetle guts. 523 

Therefore, this OSN appears to be tuned to signals from various ecological sources 524 

providing information on bark beetle density as well as microbial establishment 525 

[46,51,86].  526 

Another OSN class responded most sensitively to the monoterpene alcohol trans-4-527 

thujanol, a fungal symbiont metabolite of α- and β-pinene. This OSN also responded to 528 

the fungal metabolites terpinen-4-ol and α-terpineol, as well as C8 alcohols, but only at 529 

the highest doses tested, which extends prior results for this OSN [87] to other 530 

compounds from our greatly expanded test odor panel. Strong electroantennographic 531 

activity in I. typographus in response to these oxygenated monoterpenes has also been 532 
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reported [86,87], and the response spectrum of this OSN class matches well with that of 533 

the receptor ItypOR23, which is evolutionarily related to ItypOR29 detecting 534 

isopinocamphone [93]. In the present study, fungal symbiont-produced oxygenated 535 

monoterpenes dominated the volatile profile of fungus-infected spruce bark and might 536 

thus indicate the defense status and degree of host colonization by fungus and beetles. 537 

However, the ecological relevance of oxygenated monoterpenes is likely to be context 538 

dependent, and many factors including the concentration of volatiles, blend ratios, 539 

timing of emission (early or late attack phase), as well as the nutritional state, age and 540 

sex of beetles, may determine the valence of these compounds. 541 

Conclusion 542 

We show that free-living fungal symbionts vectored by spruce bark beetles metabolize 543 

host tree monoterpene hydrocarbons to oxygenated derivatives as they infect the bark. 544 

These oxygenated volatile compounds serve as signals to indicate the establishment of 545 

fungi in beetle galleries and ultimately attract bark beetles and stimulate their tunneling. 546 

However, the roles of such fungal volatiles are context-dependent and can either attract 547 

or repel beetles depending on their concentrations, which reflect the physiological status 548 

of the microbes, the density of beetles and the stage of attack [40,95]. Since the 549 

ecological roles we have proposed for these oxygenated monoterpenes are based on 550 

laboratory assays with walking beetles, studies under natural conditions are necessary 551 

to confirm our findings. These compounds may also be useful in integrated pest 552 

management strategies as attractants or repellents of bark beetles perhaps in 553 

combination with pheromones [96–98]. In this way, microbial volatiles provide a rich 554 
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source of untapped insect semiochemicals that can be exploited for protecting forests 555 

from devastating pest species such as I. typographus. 556 

 557 

 558 

 559 

1 Materials and methods 560 

1.1 Fungal strains and growth medium 561 

The fungal strains used in this study have been previously described [40] (listed in 562 

Table S1). In order to obtain spores from fungi, freshly inoculated PDA plates were 563 

incubated at room temperature for 15-20 d until the mycelium was old and dark. After 20 564 

d, plates were kept briefly at 4˚C to induce sporulation. Four to six 1 cm diameter 565 

mycelium plugs were removed from each plate and inoculated into 20 mL potato 566 

dextrose broth and incubated at 25˚C at 150 rpm for 4 days. Once the broth was turbid, 567 

the spores were filtered using a 40 µm EASYstrainerTM (Greiner Bio-One, 568 

Frickenhausen, Germany), and the filtrate was spun down at 4200 rcf for 10 min to 569 

precipitate the spores. The supernatant was discarded and the spore suspension was 570 

washed three times with autoclaved water and then stored at 4˚C until used. The spore 571 

suspension prepared using this method was viable for several months when stored at 572 

4˚C.  573 

1.2 Bark beetle rearing  574 
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Bark beetles were reared and stored in the laboratory as described [40]. The starting 575 

beetle culture was obtained from an infested tree in October 2017 near Jena, Thuringia, 576 

Germany. Beetles were reared throughout the year in the laboratory in freshly cut 577 

spruce logs (ca. 30 cm diameter x 50 cm height) placed in an environmental chamber 578 

set at 25°C throughout the day, 65% relative humidity and a photoperiod of 20 h per 579 

day. Beetles emerged from breeding logs after ca. 35 days and were collected 580 

manually. Emerged adults were sexed based on the bristle density on their pronotum 581 

[99] and stored separately in Falcon tubes lined with moist paper at 4°C at least for a 582 

week before using them in bioassays. Adult beetles were used only once in bioassays. 583 

1.3 Spruce bark diet 584 

Spruce bark agar was prepared as follows: the outer bark of a freshly cut mature tree 585 

was scraped off gently using a drawing knife and the inner bark (phloem) was carefully 586 

peeled off using a chisel. The bark was cut into small pieces and ground to a fine 587 

powder in vibratory micro mill (Pulverisette 0, Fritsch GmbH, Idar-Oberstein, Germany). 588 

The instrument was pre-cooled with liquid nitrogen and bark pieces were pulverized at 589 

an amplitude of 2.0 for ca. 10 minutes with addition of liquid nitrogen every two minutes 590 

to prevent thawing. The ground powder was stored in Falcon tubes at -80°C until used 591 

for diet preparation. For preparing spruce bark diet, 7% powdered inner spruce phloem 592 

(w/v) was added to 4% Bactoagar (Roth) and heat sterilized at 121°C for 20 minutes. 593 

1.4 Identification and quantification of headspace volatiles of fungal symbionts  594 

Norway spruce bark plugs of approximately 28 mm diameter were removed from a 595 

freshly felled tree in July, 2017 and a single bark plug was placed inside a 250 mL 596 
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volatile collection glass bottle. Before removing the bark plugs, the surface of the bark 597 

and the cork borer were sterilized by thorough spraying with 70% ethanol in a laminar 598 

hood. An 100 µL quantity of spore suspension (1*106 cells mL-1), prepared as described 599 

above, was added to the exposed section of the bark, and autoclaved water was added 600 

to the control treatment. Each treatment was replicated four times including the control. 601 

The glass bottle was secured tightly and incubated at 25˚C for 4 days. After 4 d, 602 

activated charcoal-filtered air was passed into the bottle inlet at the rate of 50 mL min-1 603 

and the outlet air was funneled through a SuperQ adsorbent filter (150 mg) for 4 hours. 604 

Afterwards, the filters were eluted with 200 µL dichloromethane spiked with 10 ng µL-1 605 

nonyl acetate (Sigma Aldrich) as an internal standard and stored at -20˚C. The spruce 606 

bark plugs were oven dried at 80˚C for 6 hours after the experiment and the dry weight 607 

was measured. 608 

The eluted volatile samples were subjected to GC-MS and GC-FID analysis using an 609 

Agilent 6890 series GC (Agilent, Santa Clara, CA, USA) (injection, 1 µl splitless; flow, 2 610 

ml min-1; temperature, 45 to 180°C at 6°C min-1 and then to 300°C at 100°C min-1 for 10 611 

min) coupled either to an Agilent 5973 quadrupole mass selective detector (interface 612 

temperature 270 °C, quadrupole temperature 150°C, source temperature 230 °C; 613 

electron energy 70 eV) or a flame ionization detector (FID, temp. 300 °C). The 614 

constituents were separated on a DB-5MS column (Agilent (30 m x 0.25 mm x 0.25 615 

µm)), with He (MS) or H2 (FID) as carrier gas. The identity of each peak was determined 616 

by comparing its mass spectra and retention times to those of reference libraries 617 

(NIST98 and Wiley275) and authentic standards. The amount of each compound was 618 
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calculated from the peak area obtained from the FID detector relative to the internal 619 

standard and standardized to the spruce bark dry weight.  620 

1.5 Time series headspace volatile collection  621 

For time series volatile analysis, spruce bark plugs (10 mm diameter) were removed 622 

using a cork borer from a freshly felled spruce tree in October, 2016. Each spruce bark 623 

plug was placed in a 15 mL clear glass vial (Supelco-Sigma-Aldrich) and 50 µL spore 624 

suspension (1*106 cells mL-1), prepared as described above, was added to treatment 625 

plugs while control plugs received sterile water. The headspace volatiles were captured 626 

on three polydimethylsiloxane (PDMS) sorbent silicone tubes (0.5 cm), which were hung 627 

in each glass vial using a manually crafted metal hook attached to the bottom of 628 

PTFE/silicone septa in the screw cap [100]. The headspace volatiles were collected 629 

from each treatment for 2 h at 4, 8, 12 and 18 d after inoculation. After sampling, 630 

silicone tubes were placed in 1.5 mL brown glass vials and stored at -20°C until 631 

analysis. 632 

Volatiles collected on PDMS tubes were analyzed using a GC-2010 plus gas 633 

chromatograph coupled to a MS-QP2010 quadrupole mass spectrometer equipped with 634 

a TD-20 thermal desorption unit (Shimadzu, Japan) and a GC Cryo-Trap filled with 635 

Tenax. A single tube was placed in a 89�mm glass thermal desorption tube and 636 

desorbed at a flow rate of 60�mL�min−1 for 8�min at 200�°C under a stream of N2 637 

gas. The desorbed substances were focused on a cryogenic trap at -20�°C. The Tenax 638 

adsorbent was heated to 230�°C and the analytes were injected using split mode 639 

(1:100) onto a Rtx-5MS GC column (30� m x 0.25 mm x 0.25 �µm) with helium as 640 
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carrier gas. Compounds were identified as above (1.5) from authentic standards and 641 

libraries, and quantified from the area of each peak obtained using GC-MS post run 642 

analysis software from Shimadzu. The PLS-DA plot in Fig 2A was generated by using 643 

MetaboAnalyst 3.0 software with normalized GC-MS data (both log transformed, and 644 

range scaled) [101]. 645 

 646 

1.6 Biotransformation of host tree compounds 647 

Experiments were conducted in 9 cm Petri dishes containing 2% potato dextrose agar 648 

(PDA) supplemented with test solutions. The tested compounds were (-)-α-pinene, (+)-649 

α-pinene, (-)-β-pinene, myrcene, γ-terpinene, terpinolene, sabinene, camphene, p-650 

cymene, and (-)-bornyl acetate. Sources of these compounds are given in Table S1. 651 

Compounds were added after dissolving in dimethyl sulfoxide (DMSO). These were 652 

then added into PDA to reach a final concentration of 0.5 mg mL-1 before pouring into 653 

Petri dishes. A 5 mm agar plug containing a fungal colony was placed in the center of 654 

each dish and incubated at 25˚C in darkness for 6 d. Each treatment was replicated four 655 

times and for the control the PDA contained only DMSO plus monoterpene. The 656 

headspace volatiles were collected after 4d using three PDMS tubes, which were 657 

mounted on sterile metal wires and imbedded in PDA for one hour and stored at -20˚C. 658 

The identification and quantification of compounds were conducted in the same way as 659 

reported for the time series (section 1.5). The headspace volatiles from fungus grown 660 

on PDA enriched with myrcene, γ-terpinene, terpinolene, camphene and p-cymene did 661 

not yield detectable amounts of monoterpene transformation products on analysis.  662 
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To identify if symbiotic fungi can reduce the amount of monoterpenes in their substrate, 663 

fungi were grown on PDA enriched with 0.5 mg g-1 (-)-α-pinene, (+)-α-pinene, (-)-β-664 

pinene, and (-)-bornyl acetate as described above. Control plates contained only DMSO 665 

and the tested monoterpene. After 4 d, three plugs of 6 mm diameter were removed, 666 

weighed and transferred to 1.5 ml sterile glass vials. Agar plugs were homogenized 667 

using sterile plastic pestles and 1 ml hexane (extraction solvent) spiked with 10 ng µL-1 668 

nonyl acetate was added and samples were vortexed for 30 s. Supernatants were 669 

transferred to new vials and stored at -20°C until identification and quantification by GC-670 

MS and GC-FID (1.4). Data analysis was identical to that reported above. 671 

1.7 Chemical synthesis of (+)-isopinocamphone and β-isophorone  672 

(+)-isopinocamphone ((1R,2R,5S)-2,6,6-Trimethylbicyclo[3.1.1]heptan-3-one). A 673 

mixture of (1R,2R,3R,5S)-(-)-isopinocampheol (200 mg, 1.30 mmol, Sigma-Aldrich) and 674 

Dess-Martin-periodinane (825 mg, 1.95 mmol) in anhydrous CH2Cl2 (15 mL) was stirred 675 

at room temperature for 1 hour, followed by the  addition of water and sat. aq. NaHCO3  676 

solution. The mixture was extracted twice with methyl t-butyl ether. The organic phase 677 

was washed with brine, dried over anhydrous Na2SO4 and concentrated in vacuo. The 678 

residue was purified by short-path chromatography using an SPE cartridge 679 

(Chromabond SiOH, 6 mL, 500 mg, Macherey-Nagel, n-hexane:EtOAc = 10:1) to yield 680 

(+)-isopinocamphone (159 mg, 1.04 mmol, 80%). NMR measurements were carried out 681 

on a Bruker Avance AV-500HD spectrometer, equipped with a TCI cryoprobe using 682 

standard pulse sequences as implemented in Bruker Topspin ver. 3.6.1. (Bruker Biospin 683 

GmbH, Rheinstetten, Germany). Chemical shifts were referenced to the residual solvent 684 

signals of acetone-d6 (δH
 2.05/ δC 29.84) or CDCl3 (δH

 7.26/ δC 77.16), respectively.  685 
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1H-NMR (500 MHz, CDCl3) δ ppm: 2.64 (ddd, J=18.6/3.0/3.0 Hz, 1H), 2.62 (dddd, 686 

J=10.1/6.2/6.1/3.0 Hz, 1H), 2.52 (bd, J=18.6 Hz, 1H), 2.46 (dq, J=7.3/1.9 Hz, 1H), 2.12 687 

(ddd, J=9.1/6.1/3.0 Hz, 1H), 2.06 (ddd, J=6.2/6.2/1.9 Hz, 1H), 1.31 (s, 3H), 1.21 (d, 688 

J=7.3 Hz, 3H), 1.19 (bd, J=10.1 Hz, 1H), 0.88 (s, 3H). 13C-NMR (125 MHz, CDCl3) δ 689 

ppm: 215.9, 51.7, 45.3, 45.1, 39.4, 39.1, 34.8, 27.4, 22.2, 17.3. GC-MS tR: 13.6 min. EI-690 

MS (70 eV): m/z (%) 152 (14), 110 (15), 95 (44), 83 (89), 69 (97), 55 (100), 41(64).  691 

β-isophorone (3,5,5-Trimethyl-3-cyclohexen-1-one). β-Isophorone was synthesized 692 

from α-isophorone (Acros Organics, Fair Lawn, NJ, USA) following published methods 693 

[102]. Since β-isophorone was very unstable during column chromatography, the 694 

compound was used for the bioassay without purification. The purity of β-Isophorone 695 

was 91% with 6% of α-isophorone as assessed by NMR analysis. 1H-NMR (500 MHz, 696 

acetone-d6) δ ppm: 5.44 (s, 1H), 2.69 (bs, 2H), 2.27 (s, 2H), 1.70 (bs, 3H), 1.00 (s, 6H). 697 

13C-NMR (125 MHz, acetone-d6) δ ppm: 209.3, 133.0, 130.6, 53.6, 44.2, 36.9, 29.8, 698 

22.8. GC-MS tR: 10.3 min. EI-MS (70 eV): m/z (%) 138 (69), 123 (68), 96 (99), 95 (84), 699 

81 (100).  700 

Purity of the synthesized compounds was also determined using the following GC-MS 701 

program: injection, 1 µl splitless; flow, 2 ml min-1; temperature, 45 °C (held for 2 min) to 702 

250 °C with 6 °C min−1. 703 

1.7 Electrophysiology 704 

Laboratory reared adult beetles from the same German culture that were used in 705 

bioassays were used for electrophysiological single sensillum recordings (SSR) using 706 

tungsten microelectrodes according to established methodology [40,41], using the SSR 707 
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set-up (Syntech, Kirchzarten, Germany) and odor delivery system previously described 708 

[103]. The odor panel comprising 92 compounds consisted of beetle pheromones, host 709 

tree, non-host tree and fungal compounds ([40], Table S2).  Both major and minor 710 

fungal volatiles identified during the chemical analysis were included in the odor panel. 711 

All odors were dissolved in odorless paraffin oil (w/v). SSR traces were analyzed as 712 

described [97] using Autospike 3.0 (Syntech). Males and females were initially screened 713 

for responses to the odor panel using a high stimulus dose (10 µg on filter paper placed 714 

inside capped standard Pasteur pipette odor cartridges [103]. OSN classes shown to 715 

primarily respond to fungus-derived oxygenated monoterpenes were subsequently 716 

studied in dose-response experiments with active stimuli diluted in ten-fold steps and 717 

tested from lowest to highest dose with the least active ligands tested first at each dose. 718 

To reduce variation due to odor depletion, stimulus cartridges were used for a maximum 719 

of 8 stimulations during screening and 2 stimulations during dose-response tests [104].  720 

1.8 Trap bioassay 721 

The trap bioassay used in this study has been described previously [40]. The setup was 722 

designed so that adult beetles had to make their choice through olfaction and not by 723 

contact cues. Fungi were inoculated on spruce bark agar-based diet and incubated at 724 

25˚C for 4 days. With the help of a cork borer (10 mm diameter), bark plugs with or 725 

without fungus were inserted into circular cups (1.8 cm height * 1.8 cm diameter) facing 726 

each other. Two beetles were placed inside each arena and the olfactometer was 727 

placed inside a laminar flow cabinet in darkness. Each experiment was replicated at 728 

least 25 times with 2 beetles per replicate. The choice of beetles was determined 729 

periodically for up to six hours by counting the number of beetles trapped inside the 730 
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cups and represented as percentage choice (percentage of insects responding to either 731 

control traps or treatment traps or no response). Preliminary experiments showed that 732 

the sex of the beetle did not influence the olfactory response towards fungus grown 733 

either alone or in the diet enriched with monoterpenes. Therefore, two beetles were 734 

randomly chosen for trap bioassays. 735 

For bioassays using terpenes, stock solutions were prepared by dissolving the 736 

compounds in DMSO, which were then added to 7% spruce bark agar to a final 737 

concentration of 0.05 to 1 mg g-1. To determine the response of adult beetles to (-)-β-738 

pinene and (-)-bornyl acetate amended diet containing the fungus, G. penicillata was 739 

used as this species emitted higher amounts of biotransformation products compared to 740 

other fungi. Controls were treated with DMSO plus monoterpene (no fungus) or DMSO 741 

plus G. penicillata (no monoterpene). 7% spruce bark agar plugs (10 mm) 742 

supplemented with monoterpenes or plugs containing G. penicillata were placed in the 743 

control cups, and G. penicillata colonized plugs from monoterpene-enriched medium 744 

were placed in the treatment cups. The volatile emission from each control and 745 

treatment plug used in the bioassays was determined using PDMS tubes as adsorbents 746 

and analyzed as described previously (section 1.5). For bioassays with synthetic 747 

compounds, stock solutions of authentic standards were prepared by dissolving them in 748 

mineral oil (w/v) and further diluted in log10 steps by dissolving in mineral oil. 10 µL was 749 

applied to 10 mm Whatmann filter paper laid on the top of spruce bark agar plugs 750 

placed inside the cups. Control traps were treated with 10 µL paraffin oil. For the 751 

experiment with pheromone blend in the presence of G. penicillata volatiles, G.  752 

penicillata colonized spruce bark plugs were placed in treatment cups and 10 µL of a 753 
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pheromone mixture (cis-verbenol:2-methyl-3-buten-2-ol in the ratio of 1:50 diluted 1:100 754 

in paraffin oil) was applied to filter paper as described above. Control cups were treated 755 

with 10 µL of the pheromone mixture. 756 

1.10 Tunneling behavior bioassay 757 

Bark beetle tunneling behavior was assayed in 35 ×10 mm Petri dishes (Greiner Bio-758 

one, Frickenhausen, Germany) filled with ca. 3 ml of spruce bark diet. The spruce 759 

bark diet was prepared as before with some modifications: 7% (w/v) spruce inner 760 

bark powder was mixed with 1% fibrous cellulose (Sigma), 2% glucose (Roth), and 761 

4% Bactoagar (Roth) in water and autoclaved for 20 minutes at 121 ºC. Before 762 

pouring the medium into the Petri dishes, the medium was mixed with 2% solvent 763 

(DMSO: ethanol, 1:1) with 1 mg g-1 of various monoterpenes ((-)-α-pinene, (-)-β-764 

pinene and (-)-bornyl acetate) and solvent only as a control. For treatment with 765 

fungus, 5 µl spore suspension of G. penicillata (1 x 106 cells mL-1) was added to the 766 

center of Petri dishes containing monoterpene-enriched media or solvent controls 767 

and incubated at 25°C for 4 days. A single beetle was introduced per plate, and the 768 

plates were sealed with Parafilm and kept in the environmental chamber for 48 h 769 

under conditions described above (section 1.2). The beetles were monitored for their 770 

tunneling activity after 2, 4, 6, 24 and 48 h with tunneling recorded as a binary event. 771 

If beetles were inside the media, it was noted as 1 and if outside, noted as 0. After 48 772 

h, tunnel lengths made by beetles in each plate were measured using Image J 773 

software. Each treatment was replicated with 15 male and female beetles.  774 

1.11 Data analysis 775 
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IBM SPSS Statistics V25.0 was used to analyze the volatile differences between 776 

treatments (E. polonica-, G. penicillata-, G. europhioides-, O. bicolor-, and O. piceae 777 

treated bark samples and untreated control). Data were log-transformed to meet the 778 

assumptions of normal distribution, as needed. All individual compounds assigned to 779 

monoterpenes (MTs) or oxygenated monoterpenes were combined and their 780 

concentrations (in dry weight (ng h-1 mg-1)) were subjected to a t-test for estimating 781 

differences between control and G. penicillata (Fig. 2). Additionally, separate 782 

ANOVAs for all individual compounds in each group were also performed (Table S2). 783 

For volatile time course samples, a separate ANOVA test was performed for all 784 

individual compounds and compound groups from each fungus with time intervals as 785 

an independent factor (Table S3-7). All ANOVA tests were followed by Tukey’s post-786 

hoc tests to test for differences among treatment combinations. For behavioral 787 

bioassays, the CI values from each experimental group were analyzed by Wilcoxon’s 788 

singed ranked test to compare the differences between control and treatment 789 

samples. Binary data from bark beetle tunneling assays were subjected to multiple 790 

logistic regression to analyze independent variables such as monoterpene, sex, and 791 

fungus that influence the tunneling activity of beetles (dependent variable) in the 792 

medium. During data analysis, the male was coded as 1 and female as 0, the 793 

presence of fungus coded as 1 and absence of fungus as 0, tunneling inside the 794 

medium coded as 1 and not tunneling or staying outside the medium as 0. After 795 

testing all possible independent variables and their interactions among them, the 796 

following best-fitted logistic regression model was created to predict the odds of 797 

beetles tunneling in the different media.  798 
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Ln [odds] (tunneling odds) = β0 + β1*compound+ β2*sex + β3*fungus  799 

Here, β0 is constant whereas β1, β2, and β3 are logistic coefficients or estimates for the 800 

parameters for compound, sex and fungus respectively. The strength of association 801 

between beetle tunneling odds and effect of monoterpenes or sex or fungus is 802 

expressed as odds ratios (OR=expβ.) where OR<1 indicates a negative relationship 803 

between the two events, i.e., the tunneling event is less likely to happen in response to 804 

a selected independent variable (coded as 1) in comparison with its base group (coded 805 

as 0), OR=1 indicates no relationship between two events, OR>1 shows positive 806 

relationship between two events. 807 
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Figure 1: Ips typographus uses volatile cues from spruce bark inoculated with G. 
penicillata (Gp) to detect this symbiotic fungus. 

(A) Arena used for trap bioassays to study the behavior of bark beetles to volatiles emitted 
by a symbiotic fungus. Cups containing agar (with and without fungus) were offered to 
beetles as odor samples. Holes on each side of the cup allowed the beetles to smell, but not 
touch the agar until they entered the cup and then could no longer escape. (B), (C) Adult 
beetles chose Gp-colonized agar medium over fungus-free medium (n = 25, with two beetles 
per replicate). (D) Adult beetles chose Gp-inoculated spruce bark agar over Gp-inoculated 
agar without spruce bark (n = 25). (B), (C), (D) Deviation of response indices against zero 
was tested using Wilcoxon’s test. Asterisks denotes significant differences, *P < 0.01, ***P < 
0.001. 
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Figure 2: Growth of Ips typographus symbiotic fungi on spruce bark induces 
increased emission of oxygenated monoterpenes. 

(A) Volatile emission pattern differed between spruce bark inoculated with G. penicillata (Gp) 
and uninfected bark 4 days after inoculation, as depicted in a partial least squares 
discriminant analysis (PLS-DA). Principal components (PC1 and PC2) explain 57.2% and 
10.7% of total variation, respectively, and ellipses denote 95% confidence intervals around 
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each treatment. Complete volatile emission data by compound for G. penicillata and other I. 
typographus fungal symbionts are given in Table S2. (B) Changes in volatile emission 
profiles of spruce bark due to G. penicillata infection over an 18 d time course. Compounds 
are classified into six groups by their chemical structures (n = 5). Complete volatile emission 
data by compound and time point for G. penicillata and other symbionts are given in Tables 
S3-S6. (C), (D) Emission of specific monoterpenes from fresh spruce bark inoculated with G. 
penicillata at four days post inoculation. Identified compounds were classified into 
monoterpene hydrocarbons (C) and oxygenated monoterpenes (D). The individual 
compounds are stacked within a single bar representing the total emission. Significant 
differences in the total emission levels induced by G. penicillata are denoted by asterisks 
above the bars (n = 4, Welch’s t-test with ns= not significant *P < 0.05, **P < 0.01, ***P < 
0.001). The numbers denote the identities of the compounds in the stacked bars. Complete 
volatile emission data are given in Table S2. (E) Emission rate of major oxygenated 
monoterpenes from spruce bark inoculated with G. penicillata four days post inoculation. 
Asterisks indicate significant differences between the spruce bark-inoculated G. penicillata 
and the fungus-free control (Welch’s t-test). (F-G) Metabolism of major spruce monoterpenes 
by G. penicillata after fungal-infected vs. uninfected PDA was supplemented with 0.5 mg/g of 
(-)-β-pinene, (-)-α-pinene and (-)-bornyl acetate. (F) The amounts of starting monoterpenes 
remaining after four days. Error bars represent SEM (n = 5). Asterisks indicate significant 
difference between the PDA-inoculated G. penicillata and the fungus-free control (Welch’s t-
test) with ns�=�not significant, **P�<�0.01. (G) The most abundant metabolites of 
administered monoterpenes are depicted with their percentages relative to the total amounts 
of metabolites detected for each compound (derived from (-)-β-pinene in red; derived from (-
)-α-pinene in purple; derived from (-)-bornyl acetate in green) (n = 4). Amounts were 
determined by headspace collection of volatiles from the agar (n = 3).  
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Figure 3: Oxygenated monoterpenes derived from fungal metabolism of host tree 
monoterpene hydrocarbons are detected by specialized olfactory neurons in the I. 
typographus antenna 

(A)  Mapping of three classes of olfactory sensory neurons (OSN) selective for oxygenated 
monoterpenes (isopinocamphone; verbenone; (-)-trans-4-thujanol) on the antenna. Olfactory 
sensilla housing these OSN classes are distributed in medial (subscript “m”) and lateral 
(subscript “l”) regions of sensillum areas a and b (but not in area c) of the antenna. (B) 
Representative spike trains from an isopinocamphone-responsive neuron stimulated with 1 
µg of (+)-isopinocamphone (top left) and (±)-camphor (bottom left); a verbenone-responsive 
neuron stimulated with 1 µg (-)-verbenone (top right); a (+)-trans-4-thujanol-responsive 
neuron stimulated with 1 µg (+)-trans-4-thujanol (bottom right). Black horizontal bars indicate 
the 0.5 s odor puffs. (C) Response spectra of OSN classes responding predominantly to 
oxygenated monoterpenes produced by fungi at the 10 µg screening dose. The average 
number of spikes/second was recorded from the isopinocamphone-tuned OSN class (left) (n 
= 6 except (+) and (-)-pinocamphone (n = 3)), trans-4-thujanol-tuned OSN class (middle) (n = 
5) and verbenone and isophorone-tuned OSN class (right) (n = 4) after neurons were 
stimulated with a panel of 97 odors. Error bars represent SEM. (D) Dose-response curves of 
the OSNs stimulated with their most active ligands: isopinocamphone-tuned OSN class (left) 
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((n = 9) except for (+) and (-)-pinocamphone (n = 3)), trans-4-thujanol-tuned OSN class 
(middle) (n = 3), and the OSN class tuned to isophorone and verbenone (right) (n = 3). Error 
bars represent SEM. 
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Figure 4: Bark beetles are attracted to oxygenated monoterpenes produced by 
symbiotic fungi. 

(A) Adult beetles preferred spruce bark agar enriched with 0.1 mg/g, and 0.5 mg/g of (-)-β-
pinene inoculated with G. penicillata for 4 days over spruce bark agar enriched with 0.1 
mg/g, and 0.5 mg/g (-)-β-pinene but without fungus (left). GC-MS traces of the 
headspace volatiles of (-)-β-pinene-enriched agar with and without G. penicillata for 4 
days (right) showing the oxygenated monoterpenes produced by the fungus from (-)-β-
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pinene. Numbers refer to the identities of compounds. (B) Adult beetles chose trans-4-
thujanol (left) at a 100 μg dose but avoided trans-4-thujanol (left) at a 1 mg dose diluted 
in mineral oil, when tested against a mineral oil control. Adult beetles showed indifferent 
responses to (+)-isopinocamphone (middle), and terpinen-4-ol (right), applied in various 
doses in mineral oil. (C) Adult beetles preferred spruce bark agar enriched with various 
amounts of (-)-bornyl acetate inoculated with G. penicillata for 4 days over spruce bark 
agar enriched with (-)-bornyl acetate but without fungus (left). GC-MS traces of the 
headspace volatiles of 0.5 mg/g (-)-bornyl acetate-enriched agar with and without G. 
penicillata (right) showing the oxygenated monoterpenes produced by the fungus from (-
)-bornyl acetate. Numbers refer to the identities of compounds. (D) Adult beetles 
preferred (±)-camphor at a 100 μg dose against a mineral oil control, but not at other 
doses. (E) Adult beetles did not discriminate between G. penicillata on agar with three 
different concentrations of (-)-β-pinene and G. penicillata without (-)-β-pinene. (F) Adult 
beetles chose G. penicillata on agar without any administrated (-)-bornyl acetate vs. G. 
penicillata on agar with 0.5 mg/g (-)-bornyl acetate. (A), (B), (C), (D), (E), (F) Deviation 
of response indices against zero was tested using Wilcoxon’s test. Asterisks denotes 
significant differences, *P<0.05, **P<0.01, ***P< 0.001. n = 25 for each trial. 
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Figure 5: Female adult bark beetles are attracted towards a pheromone mixture in the 
presence of G. penicillata volatiles  

(A) Adult females chose traps containing 2-methyl-3-buten-2-ol (MB) and cis-verbenol at 10-2 
concentration diluted in mineral oil over control traps containing mineral oil. Females strongly 
preferred traps containing a binary pheromone blend (cis-verbenol: 2-methyl-3-buten-2-ol, 
50:1) diluted in mineral oil over the mineral oil control (bottom). Adult males were 
unresponsive to these concentrations of individual pheromones and their blend. (B) Adult 
females preferred pheromone blend in the presence of G. penicillata volatiles over 
pheromone blend without fungus. (A), (B). Deviation of response indices against zero was 
tested using Wilcoxon’s test. Asterisks denotes significant differences, *P<0.05, **P<0.01, 
***P< 0.001 (n = 28 for each experiment). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.03.450988doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.03.450988
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: Bark beetles tunnel more in monoterpene-enriched diet in the presence of a 
symbiotic fungus.  

(A) Schematic drawing of a Petri dish arena used for the no-choice tunneling assay. The dish 
was filled with monoterpene-enriched spruce bark agar and inoculated with G. penicillata 
(Gp) (top). Example of the tunneling pattern of an adult beetle within the fungus-colonized 
diet as pictured from the bottom side of Petri dish (bottom). (B), (C), (D) Tunnel lengths (cm) 
made by adult beetles after 48 hours in diet containing G. penicillata only, monoterpenes 
only, G. penicillata and monoterpenes, or controls with neither G. penicillata nor 
monoterpenes. Error bars represent SEM (n = 30 (15 ♂, 15 ♀) for each trial). Monoterpenes: 
(-)-β-pinene (B), (-)-α-pinene (C), (-)-bornyl acetate (D). Different lowercase letters indicate 
significant differences between treatments (ANOVA, Tukey’s test, P< 0.05).  
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Table 1: Multiple logistic regression analysis predicting the odds of adult bark beetles 
tunneling into media enriched in different monoterpenes with and without G. penicillata in a 
no-choice assay (see also Fig 6A). 

Successful 
tunneling in  
diets witha 

Predictors β SEb Wald 
χ2 

P 
value Exp(β) 

95% CI for Exp(β) 

Lower Upper  

(-)-Bornyl 
acetate 

Monoterpene -0.31 0.56 0.31 ns 0.73 0.25 2.19 
Sex -1.72 0.58 8.78 0.003 0.18 0.06 0.56 

Fungus 4.98 1.09 20.99 <0.001 145.30 17.27 1222.52 

(-)-β-Pinene 

Monoterpene -0.87 0.54 2.57 ns 0.42 0.14 1.22 
Sex 0.25 0.52 0.24 ns 1.29 0.47 3.55 

Fungus 2.65 0.58 20.45 <0.001 14.09 4.48 44.36 

(-)-α-Pinene 

Monoterpene 0.00 0.52 0.00 ns 1.00 0.36 2.75 
Sex 0.00 0.52 0.00 ns 1.00 0.36 2.75 

Fungus 2.02 0.66 9.39 0.002 7.51 2.07 27.28 
aThe reference category is unsuccessful tunneling 

bStandard error of β  
ns=not significant 
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