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Abstract 21 

Speech processing is highly incremental. It is widely accepted that listeners continuously use the 22 
linguistic context to anticipate upcoming concepts, words and phonemes. However, previous 23 
evidence supports two seemingly contradictory models of how predictive cues are integrated with 24 
bottom-up evidence: Classic psycholinguistic paradigms suggest a two-stage model, in which 25 
acoustic input is represented fleetingly in a local, context-free manner, but quickly integrated with 26 
contextual constraints. This contrasts with the view that the brain constructs a single unified 27 
interpretation of the input, which fully integrates available information across representational 28 
hierarchies and predictively modulates even earliest sensory representations. To distinguish these 29 
hypotheses, we tested magnetoencephalography responses to continuous narrative speech for 30 
signatures of unified and local predictive models. Results provide evidence for some aspects of 31 
both. Local context models, one based on sublexical phoneme sequences, and one based on the 32 
phonemes in the current word alone, do uniquely predict some part of early neural responses; at 33 
the same time, even early responses to phonemes also reflect a unified model that incorporates 34 
sentence level constraints to predict upcoming phonemes. Neural source localization places the 35 
anatomical origins of the different predictive models in non-identical parts of the superior 36 
temporal lobes bilaterally, although the more local models tend to be right-lateralized. These 37 
results suggest that speech processing recruits both local and unified predictive models in parallel, 38 
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reconciling previous disparate findings. Parallel models might make the perceptual system more 39 
robust, facilitate processing of unexpected inputs, and serve a function in language acquisition.  40 
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Introduction 41 

Acoustic events in continuous speech occur at a rapid pace, and listeners face pressure to process 42 
the speech signal rapidly and incrementally1. One strategy that listeners employ to achieve this is 43 
to organize internal representations in such a way as to minimize the processing cost of future 44 
language input2. This is reflected in a variety of measures that suggest that more predictable words 45 
are easier to process3–5. For instance, spoken words are recognized more quickly when they are 46 
heard in a meaningful context6, and words that are made more likely by the context are associated 47 
with reduced neural responses, compared to less expected words7–11. This contextual facilitation 48 
occurs broadly and is sensitive to language statistics12–14 as well as discourse level meaning15,16.  49 

Words are predictable because they occur in sequences that form meaningful messages. Similarly, 50 
phonemes are predictable because they occur in sequences that form words. For example, after 51 
hearing the beginning /ɹıv/, /ɝ/ would be a likely continuation forming river; /i/ would be more 52 
surprising, because riviera is a less frequent word, whereas /ʊ/ would be highly surprising because 53 
there are no common English words starting with that sequence. Phonemes that are thus 54 
inconsistent with known word forms elicit a mismatch response17, and responses to valid 55 
phonemes are proportionately larger the more surprising the phonemes are18–20. Predictive 56 
processing is not restricted to linguistic representations, as even responses to acoustic features in 57 
early auditory cortex reflect expectations based on the acoustic context21,22. 58 

Thus, there is little doubt that the brain uses context to facilitate processing of upcoming 59 
information, at multiple levels of representation. Here we investigate a fundamental question 60 
about the underlying cognitive organization: Does the brain develop a single, unified 61 
representation of the input? In other words, one representation that is consistent across 62 
hierarchical levels, effectively propagating information from the sentence context across 63 
hierarchical levels to anticipate even low-level features of the sensory input such as phonemes? 64 
Or do cognitive subsystems differ in the extent and kind of context they use to interpret their 65 
input? This question has appeared in different forms, for example in early debates about whether 66 
sensory systems are modular23 or whether sensory input and contextual constraints are combined 67 
immediately in speech perception6,24. A similar distinction has also surfaced more recently 68 
between the local and global architectures of predictive coding25.  69 

A strong argument for a unified, globally consistent model comes from Bayesian frameworks, 70 
which suggest that, for optimal interpretation of imperfect sensory signals, listeners ought to use 71 
the maximum amount of information available to them to compute a prior expectation for 72 
upcoming sensory input26,27. An implication is that speech processing is truly incremental, with a 73 
unified linguistic representation that is updated at the phoneme (or an even lower) time scale5. 74 
Such a unified representation is consistent with empirical results suggesting that word recognition 75 
can bias subsequent phonetic representations28, that listeners weight cues like a Bayes-optimal 76 
observer during speech perception29,30, and that they immediately interpret incoming speech with 77 
regard to communicative goals31,32. A recent implementation proposed for such a model is the 78 
global variant of hierarchical predictive coding, which assumes a cascade of generative models 79 
predicting sensory input from higher level expectations25,33,34. However, a unified model is also 80 
assumed by classical interactive models of speech processing, which rely on cross-hierarchy 81 
interactions to generate a globally consistent interpretation of the input35–37. 82 
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However, there is also evidence for incomplete use of context in speech perception. Results from 83 
cross-modal semantic priming suggest that, during perception of a word, initially multiple 84 
meanings are activated regardless of whether they are consistent with the sentence context or 85 
not, and contextually appropriate meanings only come to dominate at a later stage38,39. Similarly, 86 
eye tracking suggests that lexical processing activates candidates that should be excluded by the 87 
syntactic context40. Such findings can be interpreted as evidence for a two-stage model, in which 88 
an earlier retrieval process operates without taking into account the wider sentence context, and 89 
only a secondary process of selection determines the best fit with context41. Similarly, experiments 90 
with non-words suggest that phoneme sequence probabilities can have effects separate from 91 
lexical processing42,43. However, it is also possible that such effects occur only due to the 92 
unnaturalness of experimental tasks. For example, in the cross-modal priming task, listeners might 93 
come to expect a visual target which is not subject to sentence context constraints, and thus 94 
change their reliance on that context. 95 

Finally, a third possibility is that a unified model coexists with more local models of context, and 96 
that they operate in a parallel fashion. For example, it has been suggested that the two 97 
hemispheres differ with respect to their use of context, with the left hemisphere relying heavily 98 
on top-down predictions, and the right hemisphere processing language in a more bottom-up 99 
manner44. 100 

Distinguishing among these possibilities requires a task that encourages naturalistic engagement 101 
with the context, and a non-intrusive measure of linguistic processing. To achieve this, we analyzed 102 
magnetoencephalography (MEG) responses to continuous narrative speech. Previous work using 103 
a similar paradigm has tested either only for a local or only for a unified context model, by either 104 
using only the current word up to the current phoneme as context45,46 or by using predictions from 105 
a complete history of phonemes and words47. However, because these two context models 106 
include overlapping sets of constraints, their predictions are correlated and they need to be 107 
assessed jointly. Furthermore, some architectures predict that both kinds of context model should 108 
affect brain responses separately. For example, a two-stage architecture predicts an earlier stage 109 
of lexical processing that is sensitive to lexical statistics only, and a later stage that is sensitive to 110 
the global sentence context. Here we directly test such possibilities by comparing the ability of 111 
different context models to jointly predict brain responses. 112 

Expressing the use of context through information theory 113 
The sensitivity of speech processing to different definitions of context is formalized through 114 
conditional probability distributions (Figure 1). Each distribution reflects an interpretation of 115 
ongoing speech input, at a given level of representation. We here use word forms and phonemes 116 
as units of representation (Figure 1-A), but this is a matter of methodological convenience, and 117 
similar models could be formulated using a different granularity5. Figure 1-B shows an architecture 118 
in which each level uses local information from that level, but information from higher levels does 119 
not affect beliefs at lower levels. In this architecture, phonemes are classified at the sublexical 120 
level based on the acoustic input and possibly a local phoneme history. The word level decodes 121 
the current word from the incoming phonemes, but without access to the multi-word context. 122 
Finally, the sentence level updates the sentence representation from the incoming word 123 
candidates, and thus selects those candidates that are consistent with the sentence context. In 124 
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such a model, apparent top-down effects such as perceptual restoration of noisy input48,49 are 125 
generated at higher level decision stages rather than at the initial perceptual representations50. In 126 
contrast, Figure 1-C illustrates the hypothesis of a unified or global context model, in which priors 127 
at lower levels take advantage of information available at the higher levels. Here, the sentence 128 
context is used in decoding the current word by directly altering the prior over word candidates, 129 
and this sentence-appropriate prior is in turn used to alter expectations for upcoming phonemes. 130 

 131 
Figure 1. Information flow in local and unified architectures for speech processing 132 
(A) Schematic characterization of the linguistic units used to characterize speech. The same 133 
phoneme can be invoked as part of a sublexical phoneme sequence, phk, or as part of wordj, phj,i. 134 
(B) Each box stands for a level of representation, characterized by its output and a probability 135 
distribution describing the level’s use of context. For example, the sublexical level’s output is an 136 
estimate of the current phoneme, phk, and the distribution for phk is estimated as probability for 137 
different phonemes based on the sound input and a sublexical phoneme history. At the sentence 138 
level, sentencej,i stands for a temporary representation of the sentence at time j,i. Boxes represent 139 
functional organization rather than specific brain regions. Arrows reflect the flow of information: 140 
each level of representation is updated incrementally, combining information from the same level 141 
at the previous time step (horizontal arrows) and the level below (bottom-up arrows). 142 
(C) The unified architecture implements a unified, global context model through information 143 
flowing down the hierarchy, such that expectations at lower levels incorporate information 144 
accumulated at the sentence level. Relevant differences from the local context model are in red. 145 
Note that while the arrows only cross one level at a time, the information is propagated in steps 146 
and eventually crosses all levels. 147 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2021. ; https://doi.org/10.1101/2021.07.03.450698doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.03.450698
http://creativecommons.org/licenses/by/4.0/


   
 

   
 

6 

These hypotheses make different predictions for brain responses sensitive to language statistics. 148 
Probabilistic speech representations, as in Figure 1, are linked to brain activity through information 149 
theoretic complexity metrics51. The most common linking variable is surprisal, which is equivalent 150 
to the difficulty incurred in updating an incremental representation of the input4. A second 151 
information theoretic measure that has been found to independently predict brain activity is 152 
entropy45,47, a measure of the uncertainty in a probability distribution. Because entropy is a 153 
function of a distribution, entropy differs depending on the unit of classification. This allows 154 
distinguishing between the entropy of recognizing the current partial word, and the entropy of 155 
predicting the next phoneme (see Methods for details). Entropy might relate to neuronal 156 
processes in at least two ways. First, the amount of uncertainty might reflect the amount of 157 
competition among different representations, which might play out through a neural process such 158 
as lateral inhibition36. Second, uncertainty might also be associated with increased sensitivity to 159 
bottom-up input, because the input is expected to be more informative52,53.  160 

Models for responses to continuous speech 161 
To test how context is used in continuous speech processing, we compared the ability of three 162 
different context models to predict MEG responses, corresponding to the three levels in Figure 1-163 
B (see Figure 2). The context models all incrementally estimate a probability distribution at each 164 
phoneme position, but they differ in the amount and kind of context they incorporate. 165 
Throughout, we used n-gram models to estimate sequential dependencies because they are 166 
powerful language models that can capture effects of language statistics in a transparent manner, 167 
with minimal assumptions about the underlying cognitive architecture4,5,54. 168 

Sublexical context model: A 5-gram model estimates the prior probability for the next phoneme 169 
given the 4 preceding phonemes. This model reflects simple phoneme sequence statistics42,43 and 170 
is unaware of word boundaries. Such a model is thought to play an important role in language 171 
acquisition55–57, but it is unknown whether it has a functional role in adult speech processing. The 172 
sublexical model predicted brain responses via the phoneme surprisal and entropy linking 173 
variables. 174 

Word context model: This model implements the cohort model of word perception58, applied to 175 
each word in isolation. The first phoneme of the word generates a probability distribution over 176 
the lexicon, including all words starting with the given phoneme, and each word’s probability 177 
proportional to the word’s relative unigram frequency. Each subsequent phoneme trims this 178 
distribution by removing words that are inconsistent with that phoneme. Like the sublexical 179 
model, the lexical model can be used as a predictive model for upcoming phonemes, yielding 180 
phoneme surprisal and entropy variables. In addition, the lexical model generates a probability 181 
distribution over the lexicon, which yields a cohort entropy variable. 182 

Sentence context model: The sentence model is closely related to the lexical model, but each 183 
word’s prior probability is estimated from a lexical 5-gram model. While a 5-gram model misses 184 
longer-range linguistic dependencies, we use it here as a conservative initial approximation of high 185 
level linguistic and interpretive constraints5. The sentence model implements cross-hierarchy 186 
predictions by using the sentence context in concert with the partial current word to predict 187 
upcoming phonemes. Brain activity is predicted from the same three variables as from the word 188 
context model. 189 
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We evaluated these different context models in terms of their ability to explain held-out MEG 190 
responses, and the latency of the brain responses associated with each model. An architecture 191 
based on local context models, as in Figure 1-B, predicts a temporal sequence of responses as 192 
information passes up the hierarchy, with earlier responses reflecting lower order context models. 193 
In contrast, a unified architecture, as in Figure 1-C, predicts that the sentence context model 194 
should exhaustively explain brain responses, because all representational levels use priors derived 195 
from the sentence context. Finally, architectures that entail multiple kinds of models predict that 196 
different context models might explain response components, possibly in different anatomical 197 
areas. 198 

 199 

Figure 2. Models for predictive speech processing based on the sentence, lexical and sublexical 200 
context, used to predict MEG data 201 
(A) Example of word-by-word surprisal. The sentence (5-gram) context generally leads to a 202 
reduction of word surprisal, but the magnitude of the reduction differs substantially between 203 
words. 204 
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(B) Sentence level predictions propagate to phoneme surprisal, but not in a linear fashion. For 205 
example, in the word happened, the phoneme surprisal based on all three models is relatively low 206 
for the second phoneme /æ/ due to the high likelihood of word candidates like have and had. 207 
However, the next phoneme is /p/ and phoneme surprisal is high across all three models. On the 208 
other hand, for words like find, on and Ohio, the sentence-constrained phoneme surprisal is 209 
disproportionately low for subsequent phonemes, reflecting successful combination of the 210 
sentence constraint with the first phoneme. 211 
(C) Phoneme-by-phoneme estimates of information processing demands, based on different 212 
context models, were used to predict MEG responses through multivariate temporal response 213 
functions (mTRFs)59. mTRFs were estimated jointly such that each predictor, convolved with the 214 
corresponding TRF, predicted a partial response, and the point-wise sum of partial responses 215 
constituted the predicted MEG response. See Methods for details. 216 

Results 217 

Twelve participants listened to ~45 minutes of a nonfiction audiobook. Multivariate temporal 218 
response functions (mTRFs) were used to jointly predict held-out, source localized MEG responses 219 
(Figure 2-C). To test whether each context model is represented neurally, the predictive power of 220 
the full model including all predictors was compared with the predictive power of a model that 221 
was estimated without the predictor variables belonging to this specific context model. 222 

Phoneme-, Word- and Sentence-constrained models co-exist in the brain 223 
Each context model significantly improves the prediction of held-out data, even after controlling 224 
for acoustic features and the other two context models (Figure 3-A). Each of the three context 225 
models’ source localization is consistent with sources in the superior temporal gyrus (STG), 226 
thought to support phonetic and phonological processing60. In addition, the sentence constrained 227 
model also extends to more ventral parts of the temporal lobe, consistent with higher-level 228 
language processing61,62. For comparison, the predictive power of the acoustic features is shown 229 
in Figure 3-D. At each level of context, surprisal and entropy contribute about evenly to the 230 
model’s predictive power (Figure 3-B). 231 
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 232 
Figure 3. All context models significantly contribute to predictions of brain responses 233 
(A) Each context model significantly improves predictions of held-out MEG data in both 234 
hemispheres (tmax ≥ 6.16, p ≤ .005). Black bars below anatomical plots indicate a significant 235 
difference between hemispheres. The white outline indicates a region of interest (ROI) used for 236 
measures shown in (B), (C) and (E). 237 
(B) Surprisal and entropy have similar predictive power in each context model (each dot represents 238 
one subject; predictive power averaged in the ROI). Cohort- and phoneme entropy are combined 239 
here because the predictors are highly correlated and hence share a large portion of their 240 
explanatory power. Individual values provided in Supplementary Data. LH: left hemisphere; RH: 241 
right hemisphere. 242 
(C) Even when tested individually, excluding variability that is shared between the two, cohort- 243 
and phoneme entropy at each level significantly improved predictions. A significant effect of 244 
sentence-constrained phoneme entropy is evidence for cross-hierarchy integration. 245 
(D) Predictive power of the acoustic feature representations. 246 
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(E) The lateralization index (𝐿𝐼 = 𝑅 (𝐿 + 𝑅)⁄ ) indicates that the sublexical context model is more 247 
right-lateralized than the sentence context model. Left: LI = 1; Right: LI = 0. Significance levels: * p 248 
≤ .05; ** p ≤ .01; *** p ≤ .001. 249 

The predictive power of the local context models is inconsistent with the hypothesis of a single, 250 
unified context model (Figure 1-C). Instead, it suggests that different neural representations 251 
incorporate different kinds of context. We next pursued the question of how these different 252 
representations are organized hierarchically. While surprisal depends on the conditional 253 
probability of a discrete event and is agnostic to the underlying unit of representation4,5, entropy 254 
depends on the units over which probabilities are calculated. Entropy can thus potentially 255 
distinguish between whether brain responses reflect uncertainty over the next phoneme, or 256 
uncertainty over the word currently being perceived. This distinction is particularly interesting for 257 
the sentence context model: if predictions are constrained to using context within a hierarchical 258 
level, as in Figure 1-B, then the sentence context should affect uncertainty about the upcoming 259 
word, but not uncertainty about the upcoming phoneme. On the other hand, a brain response 260 
related to sentence-conditional phoneme entropy would constitute evidence for cross-hierarchy 261 
predictions, with sentence level information predicting upcoming phonemes.  262 

Even though phoneme and cohort entropy were highly correlated (sentence context: r = .92; word 263 
context: r = .90), each of the four representations was able to explain variability in the MEG 264 
responses that could not be attributed to any of the other representations (Figure 3-C; all t11 ≥ 265 
2.49, p ≤ .030). This suggests that the sentence context model is not restricted to predicting 266 
upcoming words, but also generates expectations for upcoming phonemes. This is thus evidence 267 
for cross-hierarchy top-down information flow, indicative of a unified language model that aligns 268 
representations across hierarchical levels. Together, these results thus indicate that the brain does 269 
maintain a unified context model, but that it also maintains more local context models. 270 

Different context models affect different neural processes 271 
All three context models individually contribute to neural representations, but are these 272 
representations functionally separable? While all three context models improve predictions in 273 
both hemispheres, the sentence constrained model does so symmetrically, whereas the lexical 274 
and sublexical models are both more powerful in the right hemisphere than in the left hemisphere 275 
(Figure 3-A). The sublexical context model is indeed significantly more right-lateralized than the 276 
sentence model (t11 = 4.33, p = .001; Figure 3-E), while the word model is only numerically more 277 
right-lateralized than the sentence model (t11 = 1.48, p = .167). This difference in lateralization 278 
suggests some anatomical differentiation in the representations of different context models, with 279 
the left hemisphere primarily relying on a unified model of the sentence context, and the right 280 
hemisphere more broadly keeping track of different context levels.  281 

Given that all three context models are represented in the STG, especially in the right hemisphere, 282 
a separate question concerns whether, within a hemisphere, the different context models predict 283 
activity in the same or different neural sources. While MEG source localization does not allow 284 
precisely separating different sources in close proximity, it does allow statistically testing whether 285 
two effects originate from the same or from a different configuration of neural sources63. The null 286 
hypothesis of such a test64 is that a single neural process, corresponding to a fixed configuration 287 
of current sources, generates activity that is correlated with all three context models. The 288 
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alternative hypothesis suggests some differentiation between the configuration of sources 289 
recruited by the different models. Results indicate that, in the right hemisphere, all three context 290 
models, as well as the two acoustic models, originate from different source configurations (F(175, 291 

1925) ≥ 1.25, p ≤ .017). In the left hemisphere, the sentence constrained model is localized 292 
differently from all other models (F(179, 1969) ≥ 1.38, p < .001), whereas there is no significant 293 
distinction among the other models (possibly due to lower power due to the weaker effects in the 294 
left hemisphere for all but the sentence model). In sum, these results suggest that the different 295 
context models are maintained by at least partially separable neural processes. 296 

Sentence context affects early responses and dominates late responses 297 
The TRFs estimated for the full model quantify the influence of each predictor variable on brain 298 
responses over a range of latencies (Figure 2-C). Figure 4 shows the response magnitude to each 299 
predictor variable as a function of time, relative to phoneme onset. For an even comparison 300 
between predictors, TRFs were summed in the anatomical region in which any context model 301 
significantly improved predictions. Note that responses prior to 0 ms are plausible due to 302 
coarticulation, by which information about a phoneme’s identity can already be present in the 303 
acoustic signal prior to the conventional phoneme onset65,66. Figure 5 shows the anatomical 304 
distribution of responses related to the different levels of context. 305 

Surprisal quantifies the incremental update to a context model due to new input. A brain response 306 
related to surprisal therefore indicates that the input is brought to bear on a neural representation 307 
that uses the corresponding context model. Consequently, the latencies of brain responses related 308 
to different context models are indicative of the underlying processing architecture. In an 309 
architecture in which information is sequentially passed to higher level representations with 310 
broadening context models (Figure 1-B), responses should form a temporal sequence from 311 
narrower to broader contexts. However, in contrast to this prediction, the observed responses to 312 
surprisal suggest that bottom-up information reaches representations using sentence- and word-313 
level contexts simultaneously at an early response peak (Figure 4-A; sentence: 78 ms, SD = 24 ms; 314 
word: 76 ms, SD = 11 ms). Sublexical surprisal is associated with a lower response magnitude 315 
overall, but also exhibits an early peak at 94 ms (SD = 26 ms). This suggests a parallel processing 316 
architecture in which different context representations are activated simultaneously by new input. 317 
Later in the timecourse the responses dissociate more strongly, with a large, extended response 318 
reflecting the sentence context, but not the word context starting at around 205 ms (tmax = 5.27, 319 
p = .007). The lateralization of the TRFs is consistent with the trend observed for predictive power: 320 
a symmetric response reflecting the unified sentence context, and more right-lateralized 321 
responses reflecting the more local contexts (Figure 4-B).  322 
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 323 
Figure 4. Early responses reflect parallel activation of all context models, later responses 324 
selectively reflect activity in the sentence-constrained model  325 
(A) Current magnitude of TRFs to phoneme surprisal for each level of context (mean and within-326 
subject standard error67; y-axis scale identical in all panels of the figure). Bars indicate time 327 
windows corresponding to source localizations shown in Figure 5. 328 
(B) When plotted separately for each hemisphere, relative lateralization of the TRFs is consistent 329 
with the lateralization of predictive power (Figure 3). 330 
(C-D) TRFs to lexical cohort entropy are dominated by the sentence context model. 331 
(E-F) TRFs to phoneme entropy are similar between context models, consistent with parallel use 332 
of different contexts in predictive models for upcoming speech. 333 

Sentence context dominates word recognition, all contexts drive phoneme predictions 334 

Brain responses related to entropy indicate that neural processes are sensitive to uncertainty or 335 
competition in the interpretation of the speech input. Like surprisal, such a response suggests that 336 
the information has reached a representation that has incorporated the corresponding context. 337 
In addition, because entropy measures uncertainty regarding a categorization decision, the 338 
response to entropy can distinguish between different levels of categorization: uncertainty about 339 
the current word (cohort entropy) versus uncertainty about the next phoneme (phoneme 340 
entropy). 341 

The TRFs to cohort entropy suggest a similar pattern as those to surprisal (Figure 4 C-D). Both 342 
cohort representations are associated with an early peak (sentence context: 56 ms, SD = 28 ms; 343 
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word context: 80 ms, SD = 23 ms), followed only in the sentence constrained cohort by a later 344 
sustained effect. In contrast to surprisal, however, even early responses to cohort-entropy are 345 
dominated by the sentence context (tmax = 5.35, p = .004 at 43 ms; later responses: tmax = 7.85, p 346 
< .001 at 461 ms). This suggests that lexical representations are overall most strongly activated in 347 
a model that incorporates the sentence context.  348 

 349 
Figure 5. All context models engage the superior temporal gyrus at early response, mid-latency 350 
responses incorporating the sentence context also engage more ventral temporal areas 351 
Current magnitude associated with different levels of context representing early (-50 – 150 ms), 352 
mid-latency (150 – 350 ms) and late (350 – 550 ms) responses. The color-scale is adjusted for 353 
different predictors to avoid images dominated by the spatial dispersion characteristic of MEG 354 
source estimates. 355 

In contrast to surprisal and cohort entropy, the responses to phoneme entropy are similar for all 356 
levels of context, dominated by an early and somewhat broader peak (Figure 4 E-F). There is still 357 
some indication of a second, later peak in the response to sentence-constrained phoneme 358 
entropy, but this might be due to the high correlation between cohort and phoneme entropy. A 359 
direct comparison of sentence-constrained cohort and phoneme entropy indicates that early 360 
processing is biased towards phoneme entropy (though not significantly) while later processing is 361 
biased towards cohort entropy (tmax = 4.74, p = .017 at 231 ms). 362 

In sum, the entropy results suggest that all context representations drive a predictive model for 363 
upcoming phonemes. This is reflected in a short-lived response in STG, consistent with the fast 364 
rate of phonetic information. Simultaneously, the incoming information is used to constrain the 365 
cohort of word candidates matching the current input, with lexical activations primarily driven by 366 
a unified model that incorporates the sentence context. 367 

Mid-latency, sentence-constrained processing engages larger parts of the temporal lobe  368 
Source localization suggests that early activity originates from the vicinity of the auditory cortex in 369 
the upper STG, regardless of context (Figure 5). The precise source configuration in the right STG 370 
nevertheless differs between contexts in the early time window (sentence vs word: F(175, 1925) = 371 
2.08, p < .001; word vs sublexical: F(175, 1925) = 5.99, p < .001). More notably, the sentence-based 372 
responses in the mid-latency window recruits more sources, localized to the middle and inferior 373 
temporal lobe. Accordingly, the sentence-based responses in the mid-latency window differs 374 
significantly from the early window (left hemisphere (L): F(179, 1969) = 1.72, p < .001; right 375 
hemisphere (R): F(175, 1925) = 5.48, p < .001). These results suggest that phonetic information initially 376 
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engages a set of sources in the STG, while a secondary stage then engages more ventral sources 377 
that specifically represent the sentence context.  378 

No evidence for a trade-off between contexts 379 
We interpret our results as evidence that different context models are maintained in parallel. An 380 
alternative possibility is that there is some trade-off between contexts used, and it only appears 381 
in the averaged data as if all models were operating simultaneously. This alternative predicts a 382 
negative correlation between the context models, reflecting the trade-off in their activation. No 383 
evidence was found for such a trade-off, as correlation between context models were generally 384 
neutral or positive across subjects and across time (see Supplementary Figure 1). 385 

Discussion 386 

The present MEG data provide clear evidence for the existence of a neural representation of 387 
speech that is unified across representational hierarchies. This representation incrementally 388 
integrates phonetic input with information from the multi-word context within about 100 ms. 389 
However, in addition to this globally unified representation, brain responses also show evidence 390 
of separate neural representations that use more local contexts to process the same input. 391 

Parallel representations of speech using different levels of context 392 
The evidence for a unified global model suggests that there is a functional brain system that 393 
processes incoming phonemes while building a representation that incorporates constraints from 394 
the multi-word context. A possible architecture for such a system is the one shown in Figure 1-C, 395 
in which a probabilistic representation of the lexical cohort mediates between sentence and 396 
phoneme level representations: the sentence context modifies the prior expectation for each 397 
word, which is in turn used to make low-level predictions about the phonetic input. While there 398 
are different possible implementations for such a system, the key feature is that the global 399 
sentence context is used to make predictions for and interpret low-level phonetic, possibly even 400 
acoustic68 input. 401 

A second key result from this study, however, is evidence that this unified model is not the only 402 
representation of speech. Brain responses also exhibited evidence for two other, separate 403 
functional systems that process incoming phonemes while building representations that 404 
incorporate different, more constrained kinds of context: one based on a local word context, 405 
processing the current word with a prior based on context-independent lexical frequencies, and 406 
another based on the local phoneme sequence regardless of word boundaries. Each of these three 407 
functional systems generates its own predictions for upcoming phonemes, resulting in parallel 408 
responses to phoneme entropy. Each system is updated incrementally at the phoneme rate, 409 
reflected in early responses to surprisal. However, each system engages an at least partially 410 
different configuration of neural sources, as evidenced by the localization results. 411 

Together, these results suggest that multiple predictive models process speech input in parallel. 412 
An architecture consistent with these observations is sketched in Figure 6: three different neural 413 
systems receive the speech input in parallel. Each representation is updated incrementally by 414 
arriving phonemes. However, the three systems differ in the extent and kind of context that they 415 
incorporate, each generating its own probabilistic beliefs about the current word and/or future 416 
phonemes. For instance, the sublexical model uses the local phoneme history to predict upcoming 417 
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phonemes. The incrementality of the updates is reflected in the inputs to the sublexical model at 418 
time k+1, combining the state of the sublexical model at time k and the phoneme input from time 419 
k. The same incremental update pattern applies to the word and sentence models. 420 

 421 

Figure 6. An architecture for speech perception with multiple parallel context models 422 
A model of information flow, consistent with brain signals reported here. Brain responses 423 
associated with Information theoretic variables provided separate evidence for each of the 424 
probability distributions in the colored boxes. From left to right, the three different context models 425 
(sentence, lexical and sublexical) update incrementally as each phoneme arrives. The cost of these 426 
updates is reflected in the brain response related to surprisal. Representations also include 427 
probabilistic representations of words and upcoming phonemes, reflected in brain responses 428 
related to entropy. 429 

A listener whose goal is comprehending a discourse-level message might be expected to rely 430 
primarily on the unified, sentence constrained context model. Consistent with this, there is some 431 
evidence that this model has a privileged status. Among the linguistic models, the unified model 432 
has the most explanatory power and clearly bilateral representation (Figure 3). In addition, while 433 
activity in local models was short-lived, the unified model was associated with extended activation 434 
for up to 600 ms and recruitment of more ventral regions of the temporal lobe (Figure 4 and 5). 435 
This suggests that the update in the unified model is normally more extensive than the local 436 
models, and could indicate that the unified model most commonly drives semantic as well as form 437 
representations, while the short-lived local models might be restricted to form-based 438 
representations.  439 
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Implications for speech processing 440 
A longstanding puzzle in the comprehension literature has been why activation of non-441 
contextually supported candidates is sometimes reported38,39, if top-down sentence context 442 
rapidly feeds down to early levels of speech perception. Parallel activation of lexical candidates 443 
based on sentence and word context models can explain these findings. Short-lived brain 444 
responses (up to 150 ms after phoneme onset) show evidence of parallel activation of sentence-445 
constrained as well as sentence-independent word candidates. The co-existence of these two 446 
candidate sets can explain short-lived priming of sentence-inappropriate candidates. Whereas 447 
brain responses related to sentence-independent candidates are transient, brain responses 448 
related to sentence-appropriate candidates exhibit a secondary, sustained response (150-550 ms), 449 
explaining selective priming of sentence-appropriate candidates at longer delays. 450 

If context-constrained candidates are immediately available, then why maintain alternative, 451 
sentence-independent candidates or even sublexical probabilistic phoneme sequences? One 452 
functional advantage might be faster recovery when sentence-based predictions turn out to be 453 
misleading. Such an effect has been described in reading, where contextually unexpected 454 
continuations are not associated with a proportional increase in processing cost69,70.  455 

Similarly, a representation of sublexical phoneme sequences might be functionally relevant when 456 
encountering input that is noisy or not yet part of the lexicon. Phoneme transition probabilities 457 
are generally higher within words than between words, such that low probability phoneme 458 
transitions are cues to word boundaries56,71. Statistical phoneme sequence models might thus play 459 
an important role in language acquisition by bootstrapping lexical segmentation of continuous 460 
speech55–57. Even in adult speech perception, they might have a similar function when 461 
encountering novel words, such as domain-specific vocabularies or personal names27. Finally, the 462 
linguistic context can be highly informative for phoneme recognition72, and different levels of 463 
context might make complementary contributions. 464 

The parallel model suggested in Figure 6 has a special theoretical appeal over the two-stage 465 
explanation: Bayesian accounts of perception suggest that listeners generate a prior, reflecting an 466 
estimate of future input, and compare this prior to the actual input to compute a posterior 467 
probability, or interpretation of the sensory percept. In architectures that allow different priors at 468 
sequential hierarchical levels (such as Figure 1-B), higher levels receive the posterior interpretation 469 
of the input from the lower levels, rather than the unbiased input itself. This is suboptimal when 470 
considering a Bayesian model of perception, because the prior of lower levels is allowed to distort 471 
the bottom-up evidence before it is compared to the prior generated by higher levels73. In 472 
contrast, the parallel representations favored by the evidence presented here allows undistorted 473 
bottom-up information to be directly compared with the context model for each definition of 474 
context. The parallel model can thus explain empirical effects of local context priors while avoiding 475 
this theoretical problem associated with sequential models. 476 

Evidence for graded linguistic predictions 477 
There is broad agreement that language processing involves prediction, but the exact nature of 478 

these predictions is more controversial74–78. Much of the debate is about whether humans can 479 

represent distributions over many likely items, or just predict specific items. Previous research 480 

showing an early influence of sentence context on speech processing7–9,79 has typically relied on 481 
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specifically designed, highly constraining contexts which are highly predictive of a specific lexical 482 

item. In such highly predictive contexts, listeners might indeed predict specific items, and such 483 

predictions might be linked to the left-lateralized speech productions system44,77. However, such 484 

a mechanism would be less useful in more representative language samples, in which highly 485 

predictable words are rare69. In such situations of limited predictability, reading time data suggest 486 

that readers instead make graded predictions, over a large number of possible continuations5,69. 487 

Alternatively, it has been suggested that what looks like graded predictions could actually be pre-488 

activation of specific higher-level semantic and syntactic features shared among the likely 489 

items69,77,80–82, without involving prediction of form-based representations. The present results, 490 

showing brain responses reflecting sentence-constrained cohort- and phoneme entropy, provide 491 

a new kind of evidence in favor of graded probabilistic predictions, involving predictive 492 

representations at least down to the phoneme level. 493 

Bilateral pathways to speech comprehension 494 
Our results suggest that lexical/phonetic processing is largely bilateral. This is consistent with 495 
extensive clinical evidence for bilateral receptive language ability83,84,61, and suggestions that the 496 
right hemisphere might even play a distinct role in complex, real-world language processing85,86. 497 
In healthy participants, functional lateralization of sentence processing has been studied using 498 
visual half-field presentation87. Overwhelmingly, results from these studies suggest that lexical 499 
processing in both hemispheres is dominated by sentence meaning87–90. This is consistent with the 500 
strong bilateral representation of the unified model of speech found here. As in the visual studies, 501 
the similarity of the response latencies in the two hemispheres implies that right-hemispheric 502 
effects are unlikely to be due to inter-hemispheric transfer from the left hemisphere (Figure 4).  503 

Nevertheless, response patterns are not identical between hemispheres. Hemispheric differences 504 
in visual half-field studies have been interpreted as indicating that the left hemisphere processes 505 
language in a maximally context-sensitive manner, whereas the right hemisphere is more biased 506 
towards a bottom-up interpretation of sensory input44. Our results suggest a modification of this 507 
proposal, indicating that both hemispheres rely on sentence-based graded predictions, but that 508 
the right hemisphere additionally maintains stronger representations of local contexts. Finally, 509 
lateralization might also depend on task characteristics such as stimulus familiarity45, and in highly 510 
constraining contexts the left hemisphere might engage the language production system to make 511 
specific predictions44,77. 512 

Conclusions 513 
Prior research on the use of context during language processing has often focused on binary 514 
distinctions, such as asking whether context is or is not used to predict future input. Such questions 515 
assumed a single serial or cascaded processing stream. Here we show that this assumption might 516 
have been misleading, because different predictive models are maintained in parallel. Our results 517 
suggest that robust speech processing is based on probabilistic predictions using different context 518 
models in parallel and cutting across hierarchical levels of representations. 519 
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Materials and Methods 524 

Participants 525 
Twelve native speakers of English were recruited from the University of Maryland community (6 526 
female, 6 male, age mean = 21 years, range 19-23). None reported any neurological or hearing 527 
impairment. According to self-report using the Edinburgh Handedness Inventory91, 11 were right-528 
handed and one left-handed. All subjects provided informed consent in accordance with the 529 
University of Maryland Institutional Review Board. Subjects either received course credit (n=4) or 530 
were paid for their participation (n=8). 531 

Stimuli 532 
Stimuli consisted in eleven excerpts from the audiobook version of The Botany of Desire by Michael 533 
Pollan92. Each excerpt was between 210 and 332 seconds long, for a total of 46 minutes and 44 534 
seconds. Excerpts were selected to create a coherent narrative and were presented in 535 
chronological order to maximize deep processing for meaning. 536 

Procedure 537 
During MEG data acquisition, participants lay in a supine position. They were allowed to keep their 538 
eyes open or closed to maximize comfort. Stimuli were delivered through foam pad earphones 539 
inserted into the ear canal at a comfortably loud listening level. After each segment, participants 540 
answered 2-3 questions relating to its content and had an opportunity to take a short break. 541 

Data acquisition and preprocessing 542 
Brain responses were recorded with a 157 axial gradiometer whole head MEG system (KIT, 543 
Kanazawa, Japan) inside a magnetically shielded room (Vacuumschmelze GmbH & Co. KG, Hanau, 544 
Germany) at the University of Maryland, College Park. Sensors (15.5 mm diameter) are uniformly 545 
distributed inside a liquid-He dewar, spaced ~25 mm apart, and configured as first-order axial 546 
gradiometers with 50 mm separation and sensitivity better than 5 fT·Hz-1/2 in the white noise 547 
region (> 1 KHz). Data were recorded with an online 200 Hz low-pass filter and a 60 Hz notch filter 548 
at a sampling rate of 1 kHz. 549 

Recordings were pre-processed using mne-python93. Flat channels were automatically detected 550 
and excluded. Extraneous artifacts were removed with temporal signal space separation94. Data 551 
were filtered between 1 and 40 Hz with a zero-phase FIR filter (mne-python 0.20 default settings). 552 
Extended infomax independent component analysis95 was then used to remove ocular and cardiac 553 
artifacts. Responses time-locked to the speech stimuli were extracted, low pass filtered at 20 Hz 554 
and resampled to 100 Hz. 555 

Five marker coils attached to participants’ head served to localize the head position with respect 556 
to the MEG sensors. Head position was measured at the beginning and at the end of the recording 557 
session and the two measurements were averaged. The FreeSurfer96 ‘‘fsaverage’’ template brain 558 
was coregistered to each participant’s digitized head shape (Polhemus 3SPACE FASTRAK) using 559 
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rotation, translation, and uniform scaling. A source space was generated using four-fold 560 
icosahedral subdivision of the white matter surface, with source dipoles oriented perpendicularly 561 
to the cortical surface. Regularized minimum 𝓁2 norm current estimates97,98 were computed for 562 

all data using an empty room noise covariance ( = 1/6). The temporal response function analysis 563 
was restricted to brain areas of interest by excluding the occipital lobe, insula and midline 564 
structures based on the “aparc” FreeSurfer parcellation99. Excluded areas are shaded gray in Figure 565 
3. A preliminary analysis (see below) was restricted to the temporal lobe (superior, middle and 566 
inferior temporal gyri, Heschl’s gyrus and superior temporal sulcus). 567 

Predictor variables 568 

Acoustic model 569 
To control for brain responses to acoustic features, all models included an 8 band gammatone 570 
spectrogram and an 8 band acoustic onset spectrogram100, both covering frequencies from 20 to 571 
5000 Hz in equivalent rectangular bandwidth (ERB) space101 and scaled with exponent 0.6102. 572 

Word- and phoneme segmentation 573 
A pronunciation dictionary was generated by combining the Carnegie-Mellon University 574 
pronunciation dictionary with the Montreal Forced Aligner103 dictionary and adding any additional 575 
words that occurred in the stimuli. Transcripts were then aligned to the acoustic stimuli using the 576 
Montreal Forced Aligner 103 version 1.0.1. All models included control predictors for word onsets 577 
(equal value impulse at the onset of each word) and phoneme onsets (equal value impulse at the 578 
onset of each non-word initial phoneme). 579 

Context-based predictors 580 
All experimental predictor variables consistent of one value for each phoneme and were 581 
represented as a sequence of impulses at all phoneme onsets. The specific values were derived 582 
from three different linguistic context models. 583 

Sublexical context model 584 
The complete SUBTLEX-US corpus104 was transcribed by substituting the pronunciation for each 585 
word and concatenating those pronunciations across word boundaries (i.e., no silence between 586 
words). Each line was kept separate since lines are unordered in the SUBTLEX corpus. The resulting 587 
phoneme sequences were then used to train a 5-gram model using KenLM105. This 5-gram model 588 
was then used to derive phoneme surprisal and entropy. 589 

The surprisal of experiencing phoneme phk at time point k is inversely related to the likelihood of 590 
that phoneme, conditional on the context (measured in bits): 𝐼(𝑝ℎ𝑘) = −𝑙𝑜𝑔2(𝑝(𝑝ℎ𝑘|𝑐𝑜𝑛𝑡𝑒𝑥𝑡)). 591 
In the case of the 5-phone model this context consists of the preceding 4 phonemes, phk-4;…k-1. 592 

The entropy H (Greek Eta) at phoneme position phk reflects the uncertainty of what the next 593 
phoneme, phk+1 will be. It is defined as the expected (average) surprisal at the next phoneme, 594 

𝐻(𝑝ℎ𝑘) = −∑ 𝑝(𝑝ℎ𝑘+1 = 𝑝ℎ|𝑐𝑜𝑛𝑡𝑒𝑥𝑡) log2(𝑝(𝑝ℎ𝑘+1 = 𝑝ℎ|𝑐𝑜𝑛𝑡𝑒𝑥𝑡))𝑝ℎ𝑜𝑛𝑒𝑚𝑒𝑠
𝑝ℎ . Based on the 595 

5-phone model, the context here is phk-3;…k. 596 

Lexical context model 597 
The lexical context model takes into account information from all phonemes that are in the same 598 
word as, and precede the current phoneme45 and is based on the cohort model of word 599 
perception58. At word onset, the prior for each word is proportional to its frequency in the Corpus 600 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2021. ; https://doi.org/10.1101/2021.07.03.450698doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.03.450698
http://creativecommons.org/licenses/by/4.0/


   
 

   
 

20 

of Contemporary American English (COCA)106. With each subsequent phoneme, the probability for 601 
words that are inconsistent with that phoneme is set to 0, and the remaining distribution is 602 
renormalized. Phoneme surprisal and entropy are then calculated as above, but with the context 603 
being all phonemes in the current word so far. I addition, lexical entropy is calculated at each 604 

phoneme position as the entropy in the distribution of the cohort 𝐻(𝑝ℎ𝑗,𝑖) =605 

−∑ 𝑝(𝑤𝑜𝑟𝑑𝑗 = 𝑤𝑜𝑟𝑑|𝑐𝑜𝑛𝑡𝑒𝑥𝑡) log2(𝑝(𝑤𝑜𝑟𝑑𝑗 = 𝑤𝑜𝑟𝑑|𝑐𝑜𝑛𝑡𝑒𝑥𝑡))𝑙𝑒𝑥𝑖𝑐𝑜𝑛
𝑤𝑜𝑟𝑑  where j is the index of 606 

the word, i is the index of the current phoneme within word j, and the context consists of 607 
phonemes phj,1;…j,i-1. 608 

Sentence context model 609 
The sentence context model was implemented like the lexical context model, but with the addition 610 
of lexical priors based on the 5-gram word context. A 5-gram model was trained on COCA106 with 611 
KenLM105. Then, at the onset of each word, the cohort was initialized with each word’s prior set 612 
to its probability given the 4 preceding words in the 5-gram model. 613 

Reverse correlation 614 
Multivariate temporal response functions (mTRFs) were computed independently for each subject 615 
and each virtual current source59,107. The neural response at time t, yt was predicted jointly from 616 

N predictor time series xi,t convolved with a corresponding mTRF hi, of length T: 617 

�̂�𝑡 =∑∑ℎ𝑛,𝜏 ∙ 𝑥𝑖,𝑡−𝜏

𝑇

𝜏

𝑁

𝑖

 618 

mTRFs were generated from a basis of 50 ms wide Hamming windows centered at 𝑇 =619 
[−100,… , 1000) ms. For estimating mTRFs, all responses and predictors were standardized by 620 
centering and dividing by the mean absolute value. 621 

For estimation using 4-fold cross-validation, each subject’s data were concatenated along the time 622 
axis and split into 4 contiguous segments of equal length. The mTRFs for predicting the responses 623 
in each segment were trained on the remaining 3 segments. Each of the 4 training runs in turn 624 
consisted of 3 iterations, in which the 3 segments were divided into 2 training segments and 1 625 
validation segment. In each training run, an mTRF was estimated using an iterative coordinate 626 
descent algorithm108 to minimize the 𝓁1 error. The mTRF was iteratively modified based on the 627 
maximum error reduction in the training set (the steepest coordinate descent) and validated 628 
based on the error in the validation set. Whenever a training step caused an increase of error in 629 
the validation set, the TRF for the predictor responsible for the increase was frozen, and training 630 
continued until the whole mTRF was frozen. The 3 mTRFs from the 3 training runs were then 631 
averaged to predict responses in the left-out testing segment. 632 

Model comparisons 633 
Model quality was quantified through the 𝓁1 norm of the residuals. For this purpose, the predicted 634 
responses for the 4 test segments, each based on mTRFs estimated on the other 3 segments, were 635 
concatenated again. To compare the predictive power of two models, the difference in the 636 
residuals of the two models was calculated at each virtual source dipole. This difference map was 637 
smoothed (Gaussian window, SD = 5 mm) and tested for significance using a mass-univariate one-638 
sample t-test with threshold-free cluster enhancement (TFCE)109 and a null distribution based on 639 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2021. ; https://doi.org/10.1101/2021.07.03.450698doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.03.450698
http://creativecommons.org/licenses/by/4.0/


   
 

   
 

21 

the full set of 4095 possible permutations of the 12 difference maps. For effect size comparison 640 
we report tmax, the largest t-value in the significant (p ≤ .05) area.  641 

The full model consisted of the following predictors: acoustic spectrogram (8 bands); acoustic 642 
onset spectrogram (8 bands); word onsets; phoneme onsets; sublexical context model (phoneme 643 
surprisal and phoneme entropy); lexical context model (phoneme surprisal, phoneme entropy and 644 
word entropy); sentence context model (phoneme surprisal, phoneme entropy and word 645 
entropy).  646 

For each of the tests reported in Figure 3, mTRFs were re-estimated using a corresponding subset 647 
of the predictors in the full model. For instance, to calculate the predictive power for a given level 648 
of context, the model was re-fit using all predictors except the predictors of the level under 649 
investigation. Each plot thus reflects the variability that can only be explained by the level in 650 
question. This is generally a conservative estimate for the predictive power because it discounts 651 
any explanatory power based on variability that is shared with other predictors.  652 

To express model fits in a meaningful unit, the explainable variability was estimated through the 653 
largest possible explanatory power of the full model (maximum across the brain of the measured 654 
response minus residuals, averaged across subjects). All model fits were then expressed as % of 655 
this value. For visualization, brain maps are not masked by significance to accurately portray the 656 
continuous nature of MEG source estimates. 657 

ROI 658 
To allow for univariate analyses of predictive power, an ROI was used including a region responsive 659 
to all context models (white outline in Figure 3-A). This ROI was defined as the posterior 2/3 of the 660 
combined Heschl’s gyrus and STG “aparc” label, separately in each hemisphere. 661 

Tests of lateralization 662 
For spatio-temporal tests of lateralization (Figure 3-A and D) the difference map was first morphed 663 
to the symmetric “fsaverage_sym” brain110, and the data from the right hemisphere was morphed 664 
to the left hemisphere. Once in this common space, a mass-univariate repeated measures t-test 665 
with TFCE was used to compare the difference map from the left and right hemisphere.  666 

Tests of localization difference 667 
A direct comparison of two localization maps can have misleading results due to cancellation 668 
between different current sources63 as well as the continuous nature of MEG source estimates111. 669 
However, a test of localization difference is possible due to the additive nature of current 670 
sources64. Specifically, for a linear inverse solver as used here, if the relative amplitude of a 671 
configuration of current sources is held constant, the topography of the resulting source 672 
localization is also unchanged. Consequently, we employed a test of localization difference that 673 
has the null hypothesis that the topography of two effect in source space is the same64. 674 
Localization tests were generally restricted to an area encompassing the major activation seen in 675 
Figure 3, based on “aparc” labels99: the posterior 2/3 of the superior temporal gyrus and Heschl’s 676 
gyrus combined, the superior temporal sulcus, and the middle 3/5 of the middle temporal gyrus. 677 
For each map, the values in this area were extracted and z-scored (separately for each 678 
hemisphere). For each comparison, the two z-scored maps were subtracted, and the resulting 679 
difference map was analyzed with a one-way repeated measures ANOVA with factor source 680 
location (left hemisphere: 180 sources; right hemisphere: 176 sources). According to the null 681 
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hypothesis, the two maps should be (statistically) equal, and the difference map should only 682 
contain noise. In contrast, a significant effect of source location would indicate that the difference 683 
map reflects a difference in topography that is systematic between subjects.  684 

TRF analysis 685 
For the analysis of the TRFs, all 12 mTRFs estimated for each subject were averaged (4 test 686 
segments * 3 training runs). TRFs were analyzed in the normalized scale that was used for model 687 
estimation. 688 

TRF time-course 689 
To extract the time course of response functions, an ROI was generated including all virtual current 690 
sources for which at least one of the three context models significantly improved the response 691 
predictions. To allow a fair comparison between hemispheres, the ROI was made symmetric by 692 
morphing it to the “fsaverage_sym” brain110 and taking the union of the two hemispheres. With 693 
this ROI, the magnitude of the TRFs at each time point was then extracted as the sum of the 694 
absolute current values across source dipoles. These time courses were resampled to 1000 Hz. 695 
Peak times were determined by finding the maximum value within a given window for each 696 
subject. Time-courses were statistically compared using mass-univariate related measures t-tests, 697 
with a null distribution based on the maximum statistic in the 4095 permutations (no cluster 698 
enhancement). 699 

TRF-localization 700 
To analyze TRF localization, TRF magnitude was quantified as the summed absolute current values 701 
in three time-windows, representing early (-50 – 150 ms), mid-latency (150 – 350 ms) and late 702 
(350 – 550 ms) responses (see Figure 5). Maps were smoothed (Gaussian window, SD = 5 mm) and 703 
tested for localization differences with the same procedure as described above (Tests of 704 
localization difference). 705 

Analysis of trade-off between context models 706 
Several analyses were performed to detect a trade-off between the use of the different context 707 
models.  708 

Trade-off by subject 709 
One possible trade-off is between subjects: some subjects might rely on sentence context more 710 
than local models, whereas other subjects might rely more on local models. For example, for 711 
lexical processing, this hypothesis would predict that for a subject for whom the sentence context 712 
model is more predictive, the lexical context model should be less and vice versa. According to this 713 
hypothesis, the predictive power of the different context models should be negatively correlated 714 
across subjects. To evaluate this, we correlations between the predictive power of the different 715 
models in the in the mid/posterior STG ROI (see Supplementary Figure 1-A). 716 

Trade-off over time  717 
A second possible trade-off is across time: subjects might change their response characteristics 718 
over time to change the extent to which they rely on lower- or higher-level context. For example, 719 
the depth of processing of meaningful speech might fluctuate with the mental state of alertness. 720 
According to this hypothesis, the predictive power of the different context models should be anti-721 
correlated over time. To evaluate this, we calculated the residuals for the different model fits for 722 
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each time point, 𝑟𝑒𝑠𝑡 = 𝑎𝑏𝑠(𝑦𝑡 − �̂�𝑡), aggregating by taking the mean in the mid/posterior STG 723 
ROI (separately or each subject). The predictive power was calculated for each model by 724 
subtracting the residuals of the model from the absolute values of the measured data (i.e., the 725 
residuals of a null model without any predictor). The predictive power for each level of context 726 
was then computed by subtracting the predictive power of a corresponding reduced model, 727 
lacking the given level of context, from the predictive power of the full model. Finally, to reduce 728 
the number of data points the predictive power was summed in 1 second bins. 729 

For each subject, the trade-off between each pair of contexts was quantified as the partial 730 
correlation112 between the predictive power of the two contexts, controlling for the predictive 731 
power of the full model (to control for MEG signal quality fluctuations over time). To test for a 732 
significant trad-off, a one-sample t-test was used for each pair and in each hemisphere, with the 733 
null hypothesis that the correlation between contexts over time is 0 (see Supplementary Figure 1-734 
B). 735 
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