- 1 Short title: Hydropower impacts on Amazonian wildlife
- 2 Understanding hydropower impacts on Amazonian wildlife is limited by a lack of robust
- 3 evidence: results from a systematic review
- 4
- 5 Eduardo Rodrigues dos Santos^{1,2}, Fernanda Michalski^{1,2,3}, Darren Norris^{*1,2,4}
- ⁶ ¹ Postgraduate Programme in Tropical Biodiversity, Federal University of Amapá, Macapá,
- 7 Amapá, Brazil
- ⁸ ² Ecology and Conservation of Amazonian Vertebrates Research Group, Federal University of
- 9 Amapá, Macapá, Amapá, Brazil
- ³ Instituto Pró-Carnívoros, Atibaia, São Paulo, Brazil
- ⁴ School of Environmental Sciences, Federal University of Amapá, Macapá, Amapá, Brazil
- 12
- 13 *Corresponding Author:
- 14 Darren Norris,
- 15 Ecology and Conservation of Amazonian Vertebrates Research Group
- 16 Federal University of Amapá
- 17 Rod. Juscelino Kubitschek Km 02, 68903-419 Macapá, Brazil.
- 18 Email: dnorris75@gmail.com
- 19

20

- 21 Keywords: Amazon, dam, evidence based conservation, hydropower, impact evaluation, study
- 22 design, vertebrates
- 23
- 24

25 Abstract

26	Background and Research Aims: Although hydropower provides energy to fuel economic
27	development across Amazonia, strategies to minimize or mitigate impacts in highly biodiverse
28	Amazonian environments remain unclear. The growing number of operational and planned
29	hydroelectrics requires robust scientific evidence to evaluate impacts of these projects on
30	Amazonian vertebrates. Here we investigated the existing scientific knowledge base
31	documenting impacts of hydropower developments on vertebrates across Brazilian Amazonia.
32	Methods: We reviewed the scientific literature from 1945 to 2020 published in English, Spanish
33	and Portuguese to assess the temporal and spatial patterns in publications and the types of study
34	design adopted as well as scientific evidence presented.
35	Results : A total of 24 published articles documented impacts on fish ($n = 20$), mammals ($n = 3$)
36	and freshwater turtles ($n = 1$). Most study designs (87.5%) lacked appropriate controls and only
37	three studies adopted more robust Before-After-Control-Impact designs. The published evidence
38	did not generally support causal inference with only two studies (8.3%) including appropriate
39	controls and/or confounding variables.
40	Conclusion: Decades of published assessments (54.2% of which were funded by hydropower
41	developers or their subsidiaries) do not appear to have established robust evidence of impacts of
42	hydropower developments on Amazonian vertebrates. This lack of robust evidence could limit
43	the development of effective minimization and mitigation actions for the diverse vertebrate
44	groups impacted by hydroelectrics across Brazilian Amazonia.
45	Implications for Conservation: To avoid misleading inferences there is a need to integrate
46	more robust study designs into impact assessments of hydropower developments in the Brazilian
47	Amazon.

48 Introduction

49	The development and operation of hydroelectric power plants generates multiple environmental
50	and social impacts across tropical regions, ranging from habitat destruction to changes in river
51	flow, habitat fragmentation, and overhunting (Aurelio-Silva et al., 2016; Benchimol & Peres,
52	2015; Bueno & Peres, 2019; Cosson et al., 1999; Palmeirim et al., 2017). The increasing number
53	of hydroelectrics in tropical rivers means there is an urgent need to understand impacts to
54	establish minimization and mitigation actions necessary to ensure sustainability of these
55	developments. To date evidence documenting impacts is limited, for example the only synthesis
56	at the Environmental Evidence database is on impacts to fish mortality (Algera et al., 2020) and
57	fish productivity (Rytwinski et al., 2020) in temperate regions
58	(https://environmentalevidence.org/completed-reviews/?search=dam, accessed 14 July 2021).
59	In South America, hydropower projects with reservoirs and run-of-river dams are
60	common (Finer & Jenkins, 2012). For example, in 2021 Brazilian Amazonia has 29 operational
61	hydroelectric power plants (including only those with installed power > 30 MW) and an
62	additional 93 in process of regularization and construction (SIGEL, 2021). Projects with
63	reservoir storage (e.g. Balbina dam in Brazil), make it possible to adjust the level of water to
64	produce energy during periods of water scarcity, which can make substantial changes to both the
65	landscape and water flow (Egré & Milewski, 2002; Fearnside, 1989). Projects using run-of-river
65 66	
	landscape and water flow (Egré & Milewski, 2002; Fearnside, 1989). Projects using run-of-river
66	landscape and water flow (Egré & Milewski, 2002; Fearnside, 1989). Projects using run-of-river dams use the natural river flow to generate energy and can therefore reduce environmental
66 67	landscape and water flow (Egré & Milewski, 2002; Fearnside, 1989). Projects using run-of-river dams use the natural river flow to generate energy and can therefore reduce environmental impacts in certain cases (Egré & Milewski, 2002). Yet due to highly seasonal rainfall and river

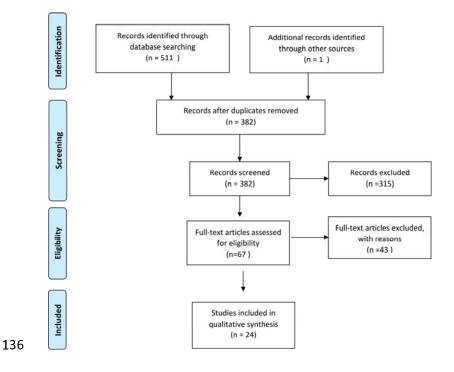
71	The Amazon rainforest is renowned for its globally important biodiversity and
72	availability of hydric resources (Dirzo & Raven, 2003; Malhi et al., 2008). The Amazon basin
73	has a large vertebrate biodiversity (Silva et al., 2005). For example, the total number of
74	freshwater fish species present in the Amazon basin represents ~15% of all freshwater fishes
75	described worldwide (Jézéquel et al., 2020). Similarly, for three groups of terrestrial vertebrates
76	(birds, mammals and amphibians), the Brazilian Amazon has a higher overall species richness
77	compared with other Brazilian biomes (Jenkins et al., 2015). Vertebrates have great importance
78	in the management of tropical forest ecosystems (Janzen, 1970). This includes seed dispersal,
79	predation, regulation of water quality, and nutrient and carbon cycles in both terrestrial and
80	aquatic ecosystems (Böhm et al., 2013; Fletcher et al., 2006; Raxworthy et al., 2008).
81	Amazon biodiversity is increasingly threatened by several factors, including habitat loss
82	and fragmentation and climate change (Dudgeon et al., 2006; Laurance et al., 2011; Li et al.,
83	2013; Malhi et al., 2008; Michalski & Peres, 2007; Schneider et al., 2021). One of the major
84	threats to Amazonian biodiversity identified by the International Union for Conservation of
85	Nature is the construction of hydroelectric power plants (IUCN, 2020). These constructions
86	make a direct impact on the local environment and an indirect impact on a large scale, extending
87	through the entire hydrology basin that is inserted (Carvalho et al., 2018). Expansion of
88	hydropower developments in the Brazilian Amazon started in the 1980s (Fearnside, 2001; Junk
89	et al., 1981), but only since 1986 does Brazilian legislation requires that developers need to
90	produce a mandatory Environmental Impact Assessment (EIA), that evaluates the impact of the
91	project and provides necessary minimization and mitigation actions. Although millions of dollars
92	were invested, these EIAs are widely criticized as overly simplistic and generalist (Fearnside,
93	2014; Gerlak et al., 2020; Simões et al., 2014).

94	Systematic reviews summarize and evaluate studies, making evidence available for
95	decision-makers (Gopalakrishnan & Ganeshkumar, 2013). A number of reviews document
96	impacts of dams across the Amazon (Athayde, Mathews, et al., 2019; Ferreira et al., 2014; Lees
97	et al., 2016). Recently several studies evaluated the impacts of hydroelectrics on water flow,
98	sediments, and on aquatic Amazonian species, mostly fishes (Athayde, Mathews, et al., 2019;
99	Castello et al., 2013; Latrubesse et al., 2017; Turgeon et al., 2021). But these and other reviews
100	did not evaluate the quality of evidence presented in the primary studies. Indeed, to date there
101	have been no systematic reviews on the impacts of hydroelectrics on Amazonian vertebrates.
102	In this review, we evaluated the scientific literature reporting hydroelectric impacts on
103	vertebrates in Brazilian Amazonia. Specifically we addressed the following questions: (1) what
104	are the temporal and spatial patterns of articles, (2) study designs adopted and (3) evidence types
105	generated.
106	
107	Methods
108	Study identification and selection
109	We focused on vertebrates as this group includes fish which is perhaps the most intensively
110	studied wildlife group in terms of hydropower impacts globally (Algera et al., 2020; Arantes et
111	al., 2019; Turgeon et al., 2021). Additionally, this group also includes "mega-fauna" (vertebrates
112	> 30 kg) that have a disproportionately high risk of extinction due to human threats (He et al.,
113	2018). As such vertebrates should present a best case scenario for the scientific evidence
114	documenting hydropower impacts on threatened Amazonian wildlife. Searches were conducted
115	for articles published from 1945 to 2020 using four different databases: ISI Web of Science,

SCOPUS, PubMed and Scielo. The databases were searched using the following combination of terms: (Amazon*) and (hydroelectric or hydropower or dam) and (mammal or fish or bird or reptile or amphibian or vertebrate) and (impact* or effect*). The same terms were translated and searches repeated in Portuguese and Spanish. Searches were conducted twice, once on 28 March 2020 and again on 29 March 2021 to update publications from 2020.

121 Studies were selected following guidelines established by the Preferred Reporting Items for a

122 Systematic Review and Meta-analysis [PRISMA (Moher et al., 2015; Shamseer et al., 2015),


123 Figure 1]. First, we screened all titles, keywords and abstracts and excluded duplicates and any

studies that were not related to hydroelectric developments and vertebrates within the legal

125 Brazilian Amazon. The full-text of all articles that passed initial screening was then read to

126 establish eligibility.

127 As our focus was on evaluating impacts, the studies needed to include results from comparisons 128 with at least one of the following: control areas (including space-for-time) and/or the impacted 129 area after the hydroelectric was operational. Selected articles needed to present basic 130 data/primary studies (Salafsky et al., 2019) from operational hydroelectrics, as such laboratory experiments, simulations, reviews and meta-analysis were not included. Studies that used novel 131 132 reservoir environments to test theories (e.g. species-area relationships on reservoir islands) were not included. In addition, studies with lists of species compared with other areas in only a 133 qualitative narrative form or where comparisons were only discussed (not included as part of the 134 135 sampling methodology or analysis) were also excluded at this stage.

137 Figure 1. PRISMA flow chart. Showing process used to assess and select studies.

138

139 Study data extraction

Each study was evaluated by one reviewer, who compiled: publication year, vertebrate groups, 140 141 period of data collection, study design, geographic coordinates for the studied dams [obtained by joining dam name with coordinates provided by SIGEL (2021)], evidence type and whether the 142 study received funding/data from the developer/operator (Supplemental Material Appendix 1). 143 Study design typology followed definitions in Christie et al. (2019) and evidence types were 144 classified following Burivalova et al. (2019) (Table 1). Finally the PRISMA process and data 145 extraction stages were independently reviewed by two researchers (DN and FM) and corrections 146 147 made to ensure reproducibility and consistency.

- 148 Table 1. Study Designs and Evidence Types. Typology used to classify selected studies.
- 149 Descriptions summarized from Christie et al. (2019) and Burivalova et al. (2019).

Study Design	Description	
After	Sampling data post-impact without a control or data before.	
Before-After	Sampling data before and post impact without a control.	
Control-Impact	Sampling data from a control area and compare with post-impact data.	
Before-After Control-Impact	Sampling data before and post impact with a control.	
Evidence type	Description	
Evidence type Case Report	Description Descriptive data from the intervention and its effects, made by interviews, perception or sense of fairness.	
	Descriptive data from the intervention and its effects,	
Case Report	Descriptive data from the intervention and its effects, made by interviews, perception or sense of fairness. Studies that compare a metric before and after an	

150

151 Hydroelectric data

- 152 To contextualize the literature review we compiled data on the operational hydroelectric plants in
- the legal Brazilian Amazon. For each hydroelectric plant we obtained geographic coordinates,
- 154 operational start date and power output from the Brazilian Electric Sector Geographic
- 155 Information (SIGEL "Sistema de Informações Georreferenciadas do Setor Elétrico"), provided
- and maintained by the Brazilian National Agency of Electricity (ANEEL "Agência Nacional

157	de Energia Elétrica", downloaded from: https://sigel.aneel.gov.br/Down/, accessed on 30 March
158	2021). We retained only hydroelectric power plants (HPPs) with an installed power greater than
159	30 MW (Supplemental Material Appendix 2). We used ArcGIS 10.3 (ESRI, 2015) in order to
160	produce the final distribution map of the hydroelectric plants and study locations.

161

162 Data Analysis

All analyses were performed in R (R Development Core Team, 2020). Patterns in the geographic 163 164 and temporal distribution of publications were evaluated using maps and descriptive analysis. As Brazilian states are an important administrative and legislative unit for the management of 165 166 environmental resources, we compared the distribution of hydroelectrics and publications between the nine states of the 5 Mkm² Legal Brazilian Amazon [Acre, Amapá, Amazonas, Mato 167 168 Grosso, Maranhão, Pará, Rondônia, Roraima and Tocantins, (IBGE, 2020)]. The distribution of study designs and evidence types was compared between studies that i) received funding and/or 169 170 data from the hydroelectric developer/operator and ii) independent research studies without any 171 declared association with the hydroelectric developer/operator.

172

173

174 **Results**

185

175 Temporal and spatial distribution of studies

- 176 A total of 24 peer-reviewed studies were included in our review most of which (n = 16) were
- published between 2015 and 2020 (Figure 2). The first article found in our review was published
- in 1981 (Junk et al., 1981). This was four years after the hydroelectric plant under study ("Curuá-
- 179 Una") became operational in 1977 and six years after the first hydroelectric plant became
- 180 operational in the legal Brazilian Amazon in 1975 (Figure 2). Although the number of
- 181 operational hydroelectrics increased steadily in the subsequent decades, the number of published
- 182 articles started to increase only recently (Figure 2). After the first published study there was a 12
- 183 year gap until the next publication and few studies (n = 4) were published by 2012, despite there
- being 15 operational hydroelectrics in 2010.

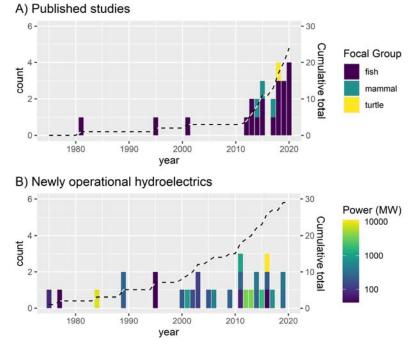
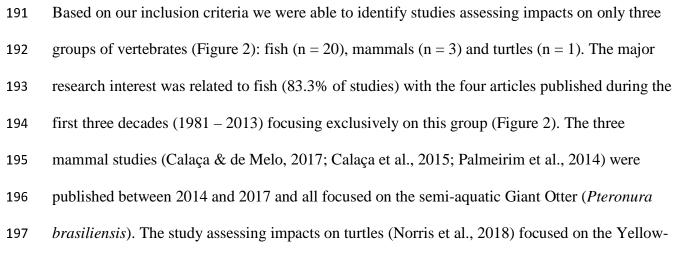
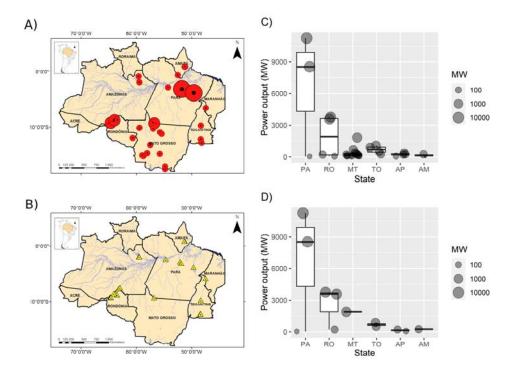




Figure 2. Temporal distribution of published studies and operational hydroelectrics. Annual frequency of A) published articles documenting impacts on vertebrates (n = 24) and B) newly operational hydroelectrics (n = 29) across the legal Brazilian Amazon. Dashed lines show cumulative totals.

190

198 spotted River Turtle (*Podocnemis unifilis*).

200 Figure 3. Spatial distribution of published studies and operational hydroelectrics. Geographic location of A) operational hydroelectrics (circles, n = 29) and B) studies documenting impacts on 201 202 vertebrates (triangles, n = 24) across the legal Brazilian Amazon. The size of the circles showing hydroelectric locations is proportional to the power output of each hydroelectric, and light grey 203 lines represent major rivers. Plots show distribution of power output (MW) by C) State of all 29 204 operational hydroelectric and D) The 12 hydroelectrics included in 24 studies. The sequence of 205 States is ordered by total power output of operational hydroelectrics in each state (high to low 206 207 from left to right).


208

209	The studies assessed impacts caused by 12 of the 29 operational hydroelectric plants. The
210	distribution of studies tended to follow the power output of the dams in each state (Figure 3) and
211	we found a positive but insignificant correlation between power output and number of studies per
212	hydroelectric power plant (Spearman Correlation rho = 0.41 , p = 0.181). Nearly half of studies (n
213	= 11) investigated impacts of three power plants, namely Jirau and Santo Antônio ($n = 7$, with 6
214	studies including both) in the state of Rondônia and Peixe Angical $(n = 4)$ in Tocantins. With the
215	two most intensely studied hydroelectrics (Jirau and Santo Antonio, power output 3750 and
216	3568 MW respectively) accounting for 7 of the 13 studies published since 2017. The remaining 9
217	hydroelectric plants had one or two studies each. We also found a weak positive correlation
218	between the number of hydroelectrics and number of published studies per state (Spearman
219	Correlation rho = 0.21 , p = 0.686). Mato Grosso was the state with most hydroelectric power
220	plants ($n = 13$), but was severely under-represented with only two published studies (Figure 3),
221	both of which focused around the recently operational Teles Pires dam [1,819 MW, operational
222	in November 2015, (Calaça & de Melo, 2017; Calaça et al., 2015)].
223	
	Study Design and Evidence Type
224	Study Design and Evidence Type

Most studies (87.5%) adopted either "After" (n = 6) or "Before-After" (n = 15) study designs

226 (Figure 4). Only three studies used a Before-After Control-Impact design, two with fish (Araújo

et al., 2013; Lima et al., 2018) and one with turtles (Norris et al., 2018).

228

Figure 4. Temporal distribution of study designs and evidence types. The A) study design used
and B) type of evidence produced by 24 published articles documenting impacts hydroelectric
developments on vertebrates across the legal Brazilian Amazon. Classification follows
previously published definitions of study designs (Christie et al., 2019) and evidence types
(Burivalova et al., 2019). Studies are grouped into those conducted without financial support
from the developer/operator ("independent") and those that received financial support or data
from the developer/operator ("operator").

237	Most publications (91.7%, $n = 22$) did not support causal inference, with evidence coming from
238	either Case-report ($n = 6$) or Case-Control I ($n = 16$) studies (Figure 4). Only one Quasi-
239	Experimental study was found, which included data collected pre and post reservoir formation
240	with both impacted and control areas and analysis to explicitly test the Before-After Control-
241	Impact interaction (Norris et al., 2018). The proportion of independent $(n = 11)$ and operator
242	funded (n = 13) studies was similar (Chi-squared = 0.17 , df = 1, p = 0.683) and there was no
243	significant difference in the frequencies of study designs or evidence types between
244	independently or operator funded studies (Figure 4, Fisher's Exact Test $p = 0.725$ and 0.288 for
245	study designs and evidence types respectively).
246	

247 Discussion

248	Our systematic review showed that (1) studies focused on understanding the impacts of
249	hydroelectrics on Amazonian vertebrates are increasing, but weak sampling designs resulted in a
250	lack of robust evidence, (2) the majority of studies focused on fish, and (3) there was a tendency
251	for studies to be concentrated on high potency "mega" hydropower plants. We first turn to
252	discuss the lack of evidence due to weak sampling designs and then explore the focus on selected
253	vertebrate groups, discrepancy on studies focused on large dams and lack of integrated studies.
254	The look of rebust avidance was sumrising considering bydronewar development impacts are so
254	The lack of robust evidence was surprising considering hydropower development impacts are so
255	strong and well known at a global scale (Grill et al., 2019; Liermann et al., 2012; Maavara et al.,
256	2020). We found that studies across Brazilian Amazonia were biased by a focus on mega-dams.
257	A major part of the increasing number of studies since 2012 can be attributed to studies of only
258	two dams (Jirau and Santo Antonio). Although the sustainability of both projects was questioned
259	(Fearnside, 2014, 2015), both received certification by Hydropower Sustainability Assessment
260	Protocol (https://www.hydrosustainability.org/published-assessments/santo-antonio and
261	https://www.hydrosustainability.org/published-assessments/jirau, accessed 23 June 2021). Our
262	results show that scientific evidence documenting the impacts of both was generally weak (i.e.
263	below expected best practice). A finding that supports recent analysis showing a link between
264	superficial impact assessments and a lack of social and environmental sustainability of
265	Amazonian hydropower developments (Fearnside, 2018; Gerlak et al., 2020).
266	We found that studies generally adopted weak sampling designs (e.g. lacking controls) and
267	lacked evidence necessary to generate reliable inference (Christie et al., 2021; Christie et al.,
268	2019; Salafsky et al., 2019). Although randomized-control studies are widely recognized as the
269	most robust, logistically simpler designs such as before-after control-impact can be equally

effective in generating robust evidence for impact assessments of abrupt changes induced by
large scale development projects including dam construction. Additionally, dams are so
widespread across Amazonia (Anderson et al., 2018; Athayde, Duarte, et al., 2019; Grill et al.,
2019) that there are few remaining free flowing river sections that could be included within a
randomized-control design.

275 Most of the studies found in our review focused on fishes and are therefore likely to represent

best-case scenario in terms of scientific knowledge and evidence base. In fact, this finding

277 follows global patterns where fishes were one of the most frequently studied groups used to

evaluate effects of hydroelectric dams in both temperate (Algera et al., 2020) and tropical regions

279 (Arantes et al., 2019). But, impacts of run-of-river dams are poorly studied even for fish the most

intensively studied group (Turgeon et al., 2021). Moreover, there is a lack of studies on multiple

vertebrate groups, which is essential to understand hydroelectric effects on complex hydrological

systems such as the Amazon (Park & Latrubesse, 2017).

As impacts are so poorly understood it is also unsurprising that there is limited evidence

documenting the effectiveness of mitigation actions for vertebrates impacted by hydropower

developments across Amazonia. For example, from a total of 48 actions identified in the

286 Conservation Evidence database

287 (https://www.conservationevidence.com/data/index?pp=50&terms=dam&country%5B%5D=&re

288 <u>sult_type=interventions&sort=relevance.desc#searchcontainer</u>, accessed 14 July 2021) there

were no studies from the Amazon basin. Although it is possible to suggest some general actions

based on documented global experiences, no studies have evaluated effects of installing bypasses

- channels for aquatic mammals (Berthinussen et al., 2021) and only three short-term studies (10
- to 18 months) evaluated translocations, two in French Guiana, both for primates (Richard-

Hansen et al., 2000; Vié et al., 2001) and one in central Brazil for lesser anteater (Rodrigues et
al., 2009). Indeed, to date no studies have implemented or evaluated mitigation actions that are
likely to generate multiple conservation benefits such as habitat restoration.

Our review showed a lack of studies assessing multiple hydroelectrics and/or multiple vertebrate 296 297 groups along the same river. In Brazil, several hydroelectric plants belonging to different 298 operators are commonly arranged in the same river, creating "cascades" (Athayde, Duarte, et al., 299 2019; Mendes et al., 2017). Although many studies focus on mega-dams, the combined effect of multiple hydroelectrics, which can cause cumulative impacts (Athayde, Duarte, et al., 2019) 300 remains poorly documented. For example, Coaracy Nunes was the first dam installed in the legal 301 302 Brazilian Amazon in 1975, since then two additional dams have become operational along the 303 same river, providing a total of three dams with a combined output of 549 MW (78, 252 and 219 MW) within a 18 km stretch of river. The impact of these multiple dams is thought to have 304 305 drastically altered both upstream and downstream flow rates and following the installation of the 306 second dam (Ferreira Gomes) in 2014 the rivers downstream course became divided, draining 307 predominantly to the Amazon river not the Atlantic Ocean (Silva dos Santos, 2017). Whilst 308 individual studies focus on fish (Sá-Oliveira et al., 2015; Sá-Oliveira et al., 2016) and turtles 309 (Norris et al., 2018; Norris et al., 2020) along the impacted river, these studies focused on 310 different dams and adopted different sampling designs, which limits the ability to integrate 311 results for important basin wide analysis necessary to inform mitigation actions.

312 We failed to find studies including important cofounding impacts such as deforestation (Stickler

et al., 2013). Although deforestation and tree mortality have been widely documented as

important impacts of Amazonian dams (Athayde, Mathews, et al., 2019; Resende et al., 2019;

315 Stickler et al., 2013) no studies included these important cofounding variables in the assessments

of vertebrates. For example, the lack of studies in Mato Grosso was particularly surprising
considering previous studies on effects of forest fragmentation on vertebrates in this state
(Michalski & Peres, 2007; Norris & Michalski, 2009).

319 We found few studies considering the overall number and investment in hydropower projects 320 across the Legal Brazilian Amazonia. Even fewer studies were found when considering only 321 those with a robust design and able to establish causal inference. It could be suggested that weak 322 evidence is a reflection of a lack of investment in science and technology, together with a reduction in investment in the Brazilian Ministry of the Environment over the past twenty years 323 (de Area Leão Pereira et al., 2019). Although there is undoubtedly support for such 324 considerations, the lack of robust survey designs can also perhaps be attributed more simply to a 325 326 failure of researchers to adopt robust designs (Christie et al., 2021; Christie et al., 2019). 327 However, we need to highlight that our review has some limitations, as we did not include "grey 328 literature" in our searchers. Thus, it is important to recognize the potential for gaps or missing 329 studies that were not published in peer-reviewed journals. On the other hand, as we would expect 330 published studies to have more robust designs and analysis compared with grey literature or reports, our review, performed in searches across four different databases and in three languages 331 332 is likely to be a best-case representation of the scientific evidence base documenting 333 hydroelectric impacts on vertebrates in the Brazilian Amazonia.

334

335 Implications for conservation

There is an urgent need to take advantage of freely available data to organize and plan effectivesurveys and sampling strategies to evaluate sustainability of current and future hydroelectric

across the Brazilian Amazon. Below we provide recommendations to help develop a more robust

339 evidence base.

340	1.	Geographical distribution of studies.
341		Research gaps: Studies were focused within specific regions
342		Future directions: Increase the number of studies all around Brazilian Amazon with a
343		focus in Mato Grosso state, which has more than 50% of operational and planned
344		hydroelectrics.
345	2.	Study groups.
346		Research gaps: The majority of studies focus on understanding the impacts on fish.
347		Future directions: Increase studies focusing on other threatened vertebrate groups
348		including amphibians, birds, mammals, and reptiles.
349	3.	Hydroelectric power plants.
350		Research gaps: Most of our reviewed studies were concentrated in three large
351		hydroelectric power plants.
352		Future directions: Increase number of studies to represent the distribution of operational
353		and planned power output. This should include closer integration with university research
354		teams to develop robust evidence as part of the necessary Environmental Impact
355		Assessments.
356	4.	Study design and evidence.
357		Research gaps: There is currently a lack of robust evidence to evaluate impacts of
358		hydroelectric power plants on Amazonian wildlife.
359		Future directions: Studies need to include more robust designs (e.g. Before-After
360		Control-Impact) to establish causal inference.

С	c	1
С	O	т

362 Acknowledgements

363 The Federal University of Amapá (UNIFAP) provided logistical support.

364

365 **Declaration of Conflicting Interests**

366 The author(s) declared no potential conflicts of interest with respect to the research, authorship,

367 and/or publication of this article.

368

369 Funding

- 370 The author(s) disclosed receipt of the following financial support for the research, authorship,
- and/or publication of this article: The data presented here were collected during ERS's master
- study, which was funded by a studentship from the Brazilian Federal Agency for Support and
- 373 Evaluation of Graduate Education, Ministry of Education ("Coordenação de Aperfeiçoamento de
- Pessoal de Nível Superior" CAPES —Grant: 675849). FM receives a productivity scholarship
- from CNPq (Grant: Process 302806/2018-0) and was funded by CNPq (Grant: 403679/2016-8).

376

377 Referrences

378	Algera, D. A., Rytwinski, I., Taylor, J. J., Bennett, J. R., Smokorowski, K. E., Harrison, P. M., Cooke, S. J.
379	(2020). What are the relative risks of mortality and injury for fish during downstream passage at
380	hydroelectric dams in temperate regions? A systematic review. Environmental Evidence, 9(1), 3.
381	doi:10.1186/s13750-020-0184-0
382	Anderson, E. P., Jenkins, C. N., Heilpern, S., Maldonado-Ocampo, J. A., Carvajal-Vallejos, F. M., Encalada,
383	A. C., Tedesco, P. A. (2018). Fragmentation of Andes-to-Amazon connectivity by hydropower
384	dams. <i>Sci Adv, 4</i> (1), eaao1642. doi:10.1126/sciadv.aao1642
385	Arantes, C. C., Fitzgerald, D. B., Hoeinghaus, D. J., & Winemiller, K. O. (2019). Impacts of hydroelectric
386	dams on fishes and fisheries in tropical rivers through the lens of functional traits. <i>Current</i>
387	Opinion in Environmental Sustainability, 37, 28-40.
388	doi: <u>https://doi.org/10.1016/j.cosust.2019.04.009</u>
389	Araújo, E. S., Marques, E. E., Freitas, I. S., Neuberger, A. L., Fernandes, R., & Pelicice, F. M. (2013).
390	Changes in distance decay relationships after river regulation: similarity among fish assemblages
391	in a large Amazonian river. <i>Ecology of Freshwater Fish, 22</i> (4), 543-552.
392	doi: <u>https://doi.org/10.1111/eff.12054</u>
393	Athayde, S., Duarte, C. G., Gallardo, A. L. C. F., Moretto, E. M., Sangoi, L. A., Dibo, A. P. A., Sánchez, L.
394	E. (2019). Improving policies and instruments to address cumulative impacts of small
395	hydropower in the Amazon. <i>Energy Policy, 132</i> , 265-271.
396	doi: <u>https://doi.org/10.1016/j.enpol.2019.05.003</u>
397	Athayde, S., Mathews, M., Bohlman, S., Brasil, W., Doria, C., Dutka-Gianelli, J., Kaplan, D. (2019).
398	Mapping research on hydropower and sustainability in the Brazilian Amazon: advances, gaps in
399	knowledge and future directions. Current Opinion in Environmental Sustainability, 37, 50-69.
400	doi: <u>https://doi.org/10.1016/j.cosust.2019.06.004</u>
401	Aurelio-Silva, M., Anciaes, M., Henriques, L. M. P., Benchimol, M., & Peres, C. A. (2016). Patterns of local
402	extinction in an Amazonian archipelagic avifauna following 25 years of insularization. Biological
403	Conservation, 199, 101-109. doi: <u>https://doi.org/10.1016/j.biocon.2016.03.016</u>
404	Benchimol, M., & Peres, C. A. (2015). Widespread Forest Vertebrate Extinctions Induced by a Mega
405	Hydroelectric Dam in Lowland Amazonia. <i>Plos One, 10</i> (7).
406	doi: <u>https://doi.org/10.1371/journal.pone.0129818</u>
407	Berthinussen, A., Smith, R. K., & Sutherland, W. J. (2021). <i>Marine and Freshwater Mammal Conservation:</i>
408	Global Evidence for the Effects of Interventions. Conservation Evidence Series Synopses.
409	Retrieved from https://www.conservationevidence.com/synopsis/pdf/30
410	Böhm, M., Collen, B., Baillie, J., Bowles, P., Chanson, J., Cox, N., Zug, G. (2013). The Conservation
411	Status of the World's Reptiles. <i>Biological Conservation, 157,</i> 372-385.
412	doi: <u>https://doi.org/10.1016/j.biocon.2012.07.015</u>
413	Bueno, A. S., & Peres, C. A. (2019). Patch-scale biodiversity retention in fragmented landscapes:
414	Reconciling the habitat amount hypothesis with the island biogeography theory. <i>Journal of</i>
415	<i>Biogeography, 46</i> (3), 621-632. doi: <u>https://doi.org/10.1111/jbi.13499</u>
416	Burivalova, Z., Miteva, D., Salafsky, N., Butler, R. A., & Wilcove, D. S. (2019). Evidence Types and Trends
417	in Tropical Forest Conservation Literature. <i>Trends in Ecology & Evolution, 34</i> (7), 669-679.
418	doi: <u>https://doi.org/10.1016/j.tree.2019.03.002</u>
419	Calaça, A. M., & de Melo, F. R. (2017). Reestablishment of giant otters in habitats altered by the filling of
420	the Teles Pires hydroelectric dam in the Amazonia. IUCN Otter Specialist Group Bulletin, 34(2),
421	73-78.

- 422 Calaça, A. M., Faedo, O. J., & de Melo, F. R. (2015). Hydroelectric Dams: The First Responses from Giant 423 Otters to a Changing Environment. *IUCN Otter Spec. Group Bull, 32*(1), 48-58.
- 424 Carvalho, D. N., Boniolo, M. R., Santos, R. G., Batista, L. V., Malavazzi, A. A., Reis, F. A. G. V., & Giordano,
 425 L. d. C. (2018). Criteria applied in the definition of influence areas, impacts and programmes in
 426 environmental impact studies of Brazilian hydroelectric power plants. *Geociencias UNESP, 37*,
 427 15.
- Castello, L., McGrath, D. G., Hess, L. L., Coe, M. T., Lefebvre, P. A., Petry, P., . . . Arantes, C. C. (2013). The
 vulnerability of Amazon freshwater ecosystems. *Conservation Letters*, 6(4), 217-229.
 doi:https://doi.org/10.1111/conl.12008
- Christie, A. P., Amano, T., Martin, P. A., Petrovan, S. O., Shackelford, G. E., Simmons, B. I., . . . Sutherland,
 W. J. (2021). The challenge of biased evidence in conservation. *Conservation Biology*, *35*(1), 249262. doi:https://doi.org/10.1111/cobi.13577
- Christie, A. P., Amano, T., Martin, P. A., Shackelford, G. E., Simmons, B. I., & Sutherland, W. J. (2019).
 Simple study designs in ecology produce inaccurate estimates of biodiversity responses. *Journal* of Applied Ecology, 56(12), 2742-2754. doi:<u>https://doi.org/10.1111/1365-2664.13499</u>
- Cosson, J. F., Ringuet, S., Claessens, O., de Massary, J. C., Dalecky, A., Villiers, J. F., . . . Pons, J. M. (1999).
 Ecological changes in recent land-bridge islands in French Guiana, with emphasis on vertebrate
 communities. *Biological Conservation*, *91*(2-3), 213-222. doi:<u>https://doi.org/10.1016/s0006-</u>
 3207(99)00091-9
- de Area Leão Pereira, E. J., Silveira Ferreira, P. J., de Santana Ribeiro, L. C., Sabadini Carvalho, T., & de
 Barros Pereira, H. B. (2019). Policy in Brazil (2016–2019) threaten conservation of the Amazon
 rainforest. *Environmental Science & Policy*, *100*, 8-12.
 doi:https://doi.org/10.1016/j.envsci.2019.06.001
- Dirzo, R., & Raven, P. H. (2003). Global State of Biodiversity and Loss. Annual Review of Environment and
 Resources, 28(1), 137-167. doi:https://doi.org/10.1146/annurev.energy.28.050302.105532
- Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Leveque, C., ... Sullivan,
 C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. *Biological Reviews*, *81*(2), 163-182. doi:https://doi.org/10.1017/s1464793105006950
- 450 Egré, D., & Milewski, J. C. (2002). The diversity of hydropower projects. *Energy Policy*, *30*(14), 1225 451 1230. doi:<u>https://doi.org/10.1016/S0301-4215(02)00083-6</u>
- 452 ESRI. (2015). ArcGIS Desktop: Release 10.3. Redlands, CA: Environmental Systems Research Institute.
- Fearnside, P. M. (1989). Brazil's Balbina Dam: Environment versus the legacy of the Pharaohs in
 Amazonia. *Environ Manage*, 13(4), 401-423. doi:<u>https://doi.org/10.1007/BF01867675</u>
- Fearnside, P. M. (2001). Environmental impacts of Brazil's Tucurui Dam: unlearned lessons for
 hydroelectric development in Amazonia. *Environ Manage*, 27(3), 377-396.
 doi:https://doi.org/10.1007/s002670010156
- 458 Fearnside, P. M. (2006). Dams in the Amazon: Belo Monte and Brazil's Hydroelectric Development of the 459 Xingu River Basin. *Environ Manage*, *38*(1), 16. doi:<u>https://doi.org/10.1007/s00267-005-0113-6</u>
- Fearnside, P. M. (2014). Impacts of Brazil's Madeira River Dams: Unlearned lessons for hydroelectric
 development in Amazonia. *Environmental Science & Policy, 38*, 164-172.
 doi:<u>https://doi.org/10.1016/j.envsci.2013.11.004</u>
- Fearnside, P. M. (2015). Tropical hydropower in the clean development mechanism: Brazil's Santo
 Antônio Dam as an example of the need for change. *Climatic Change*, *131*(4), 575-589.
 doi:<u>https://doi.org/10.1007/s10584-015-1393-3</u>
- Fearnside, P. M. (2018). Challenges for sustainable development in Brazilian Amazonia. Sustainable
 Development, 26(2), 141-149. doi:<u>https://doi.org/10.1002/sd.1725</u>

468 Ferreira, J., Aragão, L. E. O. C., Barlow, J., Barreto, P., Berenguer, E., Bustamante, M., . . . Zuanon, J. 469 (2014). Brazil's environmental leadership at risk. Science, 346(6210), 706. 470 doi:https://doi.org/10.1126/science.1260194 Finer, M., & Jenkins, C. N. (2012). Proliferation of hydroelectric dams in the Andean Amazon and 471 implications for Andes-Amazon connectivity. Plos One, 7(4), e35126-e35126. 472 473 doi:https://doi.org/10.1371/journal.pone.0035126 Fletcher, D., Hopkins, W., Saldaña, T., Baionno, J., Arribas, C., Standora, M., & Fernandez-Delgado, C. 474 475 (2006). Geckos as indicators of mining pollution. Environmental toxicology and chemistry / 476 SETAC, 25, 2432-2445. doi:https://doi.org/10.1897/05-556R.1 477 Gerlak, A. K., Saguier, M., Mills-Novoa, M., Fearnside, P. M., & Albrecht, T. R. (2020). Dams, Chinese 478 investments, and EIAs: A race to the bottom in South America? Ambio, 49(1), 156-164. 479 doi:https://doi.org/10.1007/s13280-018-01145-y 480 Gopalakrishnan, S., & Ganeshkumar, P. (2013). Systematic reviews and meta-analysis: Understanding 481 the best evidence in primary healthcare. 2(1), 9-14. doi:https://doi.org/10.4103/2249-482 4863.109934 483 Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., . . . Zarfl, C. (2019). Mapping the 484 world's free-flowing rivers. Nature, 569(7755), 215-221. doi:https://doi.org/10.1038/s41586-485 019-1111-9 Hall, A., & Branford, S. (2012). Development, Dams and Dilma: the Saga of Belo Monte. Critical 486 487 Sociology, 38(6), 851-862. doi: https://doi.org/10.1177/0896920512440712 488 He, F., Bremerich, V., Zarfl, C., Geldmann, J., Langhans, S. D., David, J. N. W., . . . Jähnig, S. C. (2018). 489 Freshwater megafauna diversity: patterns, status and threats. *Diversity Distributions, 24*(10), 490 1395-1404. doi:https://doi.org/10.1111/ddi.12780 491 IBGE. (2020). Legal Amazon Boundaries for 2019 [Press release]. Retrieved from 492 https://censos.ibge.gov.br/en/2185-news-agency/releases-en/28109-ibge-updates-map-of-the-493 legal-amazon.html 494 IUCN. (2020). The IUCN Red List of Threatened Species. . 495 Janzen, D. H. (1970). Herbivores and the Number of Tree Species in Tropical Forests. 104(940), 501-528. 496 doi:https://doi.org/10.1086/282687 497 Jenkins, C. N., Alves, M. A. S., Uezu, A., & Vale, M. M. (2015). Patterns of Vertebrate Diversity and 498 Protection in Brazil. Plos One, 10(12), e0145064. 499 doi:https://doi.org/10.1371/journal.pone.0145064 Jézéquel, C., Tedesco, P. A., Bigorne, R., Maldonado-Ocampo, J. A., Ortega, H., Hidalgo, M., ... 500 501 Oberdorff, T. (2020). A database of freshwater fish species of the Amazon Basin. Scientific Data, 502 7(1), 96. doi:https://doi.org/10.1038/s41597-020-0436-4 503 Junk, W. J., Robertson, B. A., Darwich, A. J., & Vieira, I. (1981). Investigações limnológicas e ictiológicas 504 em Curuá-Una, a primeira represa hidrelétrica na Amazônia Central. Acta Amazonica, 11(4), 689-717. doi:https://doi.org/10.1590/1809-43921981114689 505 506 Latrubesse, E. M., Arima, E. Y., Dunne, T., Park, E., Baker, V. R., d'Horta, F. M., . . . Stevaux, J. C. (2017). 507 Damming the rivers of the Amazon basin. Nature, 546(7658), 363-369. 508 doi:https://doi.org/10.1038/nature22333 509 Laurance, W. F., Camargo, J. L. C., Luizao, R. C. C., Laurance, S. G., Pimm, S. L., Bruna, E. M., . . . Lovejoy, 510 T. E. (2011). The fate of Amazonian forest fragments: A 32-year investigation. Biological 511 Conservation, 144(1), 56-67. doi:https://doi.org/10.1016/j.biocon.2010.09.021 512 Lees, A. C., Peres, C. A., Fearnside, P. M., Schneider, M., & Zuanon, J. A. S. (2016). Hydropower and the 513 future of Amazonian biodiversity. *Biodiversity and Conservation*, 25(3), 451-466. 514 doi:https://doi.org/10.1007/s10531-016-1072-3

515 516	Li, J. S., Lin, X., Chen, A. P., Peterson, T., Ma, K. P., Bertzky, M., Poulter, B. (2013). Global Priority Conservation Areas in the Face of 21st Century Climate Change. <i>Plos One, 8</i> (1), 9.
517 510	doi: <u>https://doi.org/10.1371/journal.pone.0054839</u>
518	Liermann, C. R., Nilsson, C., Robertson, J., & Ng, R. Y. (2012). Implications of Dam Obstruction for Global
519 520	Freshwater Fish Diversity. <i>BioScience, 62</i> (6), 539-548. doi:10.1525/bio.2012.62.6.5
520 521	Lima, A. C., Sayanda, D., Agostinho, C. S., Machado, A. L., Soares, A. M. V. M., & Monaghan, K. A. (2018). Using a trait-based approach to measure the impact of dam closure in fish communities of a
521	Neotropical River. Ecology of Freshwater Fish, 27(1), 408-420.
523	doi:https://doi.org/10.1111/eff.12356
525	Maavara, T., Chen, Q., Van Meter, K., Brown, L. E., Zhang, J., Ni, J., & Zarfl, C. (2020). River dam impacts
525	on biogeochemical cycling. Nature Reviews Earth & Environment, 1(2), 103-116.
526	doi: <u>https://doi.org/10.1038/s43017-019-0019-0</u>
527	Malhi, Y., Roberts, J. T., Betts, R. A., Killeen, T. J., Li, W. H., & Nobre, C. A. (2008). Climate change,
528	deforestation, and the fate of the Amazon. <i>Science</i> , <i>319</i> (5860), 169-172.
529	doi:https://doi.org/10.1126/science.1146961
530	Mendes, C. A. B., Beluco, A., & Canales, F. A. (2017). Some important uncertainties related to climate
531	change in projections for the Brazilian hydropower expansion in the Amazon. <i>Energy</i> , 141, 123-
532	138. doi: <u>https://doi.org/10.1016/j.energy.2017.09.071</u>
533	Mendes, Y. A., Oliveira, R. S., Montag, L. F. A., Andrade, M. C., Giarrizzo, T., Rocha, R. M., & Auxiliadora
534	P. Ferreira, M. (2021). Sedentary fish as indicators of changes in the river flow rate after
535	impoundment. <i>Ecological Indicators, 125,</i> 107466.
536	doi:https://doi.org/10.1016/j.ecolind.2021.107466
537	Michalski, F., & Peres, C. A. (2007). Disturbance-Mediated Mammal Persistence and Abundance-Area
538	Relationships in Amazonian Forest Fragments. Conservation Biology, 21(6), 1626-1640.
539	doi: <u>https://doi.org/10.1111/j.1523-1739.2007.00797.x</u>
540	Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Group, PP. (2015).
541	Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015
542	statement. Systematic Reviews, 4(1), 1. doi: <u>https://doi.org/10.1186/2046-4053-4-1</u>
543	Norris, D., & Michalski, F. (2009). Are otters an effective flagship for the conservation of riparian
544	corridors in an Amazon deforestation frontier. IUCN Otter Spec. Group Bull, 26(2), 72-76.
545	Norris, D., Michalski, F., & Gibbs, J. P. (2018). Beyond harm's reach? Submersion of river turtle nesting
546	areas and implications for restoration actions after Amazon hydropower development. PeerJ, 6,
547	e4228. doi: <u>https://doi.org/10.7717/peerj.4228</u>
548	Norris, D., Michalski, F., & Gibbs, J. P. (2020). Community based actions save Yellow-spotted river turtle
549	(Podocnemis unifilis) eggs and hatchlings flooded by rapid river level rises. <i>PeerJ, 8</i> , e9921.
550	doi:10.7717/peerj.9921
551	Palmeirim, A. F., Peres, C. A., & Rosas, F. C. W. (2014). Giant otter population responses to habitat
552	expansion and degradation induced by a mega hydroelectric dam. Biological Conservation, 174,
553	30-38. doi: <u>https://doi.org/10.1016/j.biocon.2014.03.015</u>
554	Palmeirim, A. F., Vieira, M. V., & Peres, C. A. (2017). Non-random lizard extinctions in land-bridge
555	Amazonian forest islands after 28 years of isolation. <i>Biological Conservation, 214</i> , 55-65.
556	doi: <u>https://doi.org/10.1016/j.biocon.2017.08.002</u>
557	Park, E., & Latrubesse, E. M. (2017). The hydro-geomorphologic complexity of the lower Amazon River
558	floodplain and hydrological connectivity assessed by remote sensing and field control. Remote
559	Sensing of Environment, 198, 321-332. doi: <u>https://doi.org/10.1016/j.rse.2017.06.021</u>
560	R Development Core Team. (2020). R: A language and enviroment for statistical computing. Vienna,
561	Austria: R Fundation for Statistical Computing.

562 Raxworthy, C., Pearson, R., Zimkus, B., Reddy, S., Deo, A., Nussbaum, R., & Ingram, C. (2008). Continental 563 speciation in the tropics: Contrasting biogeographic patterns of divergence in the Uroplatus leaf-564 tailed gecko radiation of Madagascar. Journal of Zoology, 275, 423-440. 565 doi:https://doi.org/10.1111/j.1469-7998.2008.00460.x 566 Resende, A. F. d., Schöngart, J., Streher, A. S., Ferreira-Ferreira, J., Piedade, M. T. F., & Silva, T. S. F. 567 (2019). Massive tree mortality from flood pulse disturbances in Amazonian floodplain forests: 568 The collateral effects of hydropower production. Science of The Total Environment, 659, 587-569 598. doi:https://doi.org/10.1016/j.scitotenv.2018.12.208 570 Richard-Hansen, C., Vié, J. C., & de Thoisy, B. t. (2000). Translocation of red howler monkeys (Alouatta 571 seniculus) in French Guiana. Biological Conservation, 93(2), 247-253. 572 doi:https://doi.org/10.1016/S0006-3207(99)00136-6 573 Rodrigues, F. H. G., Marinho-Filho, J., & dos Santos, H. G. (2009). Home ranges of translocated lesser 574 anteaters Tamandua tetradactyla in the cerrado of Brazil. Oryx, 35(2), 166-169. 575 doi:10.1046/j.1365-3008.2001.00162.x 576 Rytwinski, T., Harper, M., Taylor, J. J., Bennett, J. R., Donaldson, L. A., Smokorowski, K. E., . . . Cooke, S. J. 577 (2020). What are the effects of flow-regime changes on fish productivity in temperate regions? 578 A systematic map. Environmental Evidence, 9(1), 7. doi:10.1186/s13750-020-00190-z 579 Sá-Oliveira, J. C., Hawes, J. E., Isaac-Nahum, V. J., & Peres, C. A. (2015). Upstream and downstream 580 responses of fish assemblages to an eastern Amazonian hydroelectric dam. Freshwater Biology, 581 60(10), 2037-2050. doi: https://doi.org/10.1111/fwb.12628 582 Sá-Oliveira, J. C., Isaac, V. J., Araújo, A. S., & Ferrari, S. F. (2016). Factors Structuring the Fish Community 583 in the Area of the Coaracy Nunes Hydroelectric Reservoir in Amapá, Northern Brazil. Tropical 584 Conservation Science, 9(1), 16-33. doi:https://doi.org/10.1177/194008291600900103 585 Salafsky, N., Boshoven, J., Burivalova, Z., Dubois, N. S., Gomez, A., Johnson, A., . . . Wordley, C. F. R. 586 (2019). Defining and using evidence in conservation practice. Conservation Science and Practice, 587 1(5), e27. doi:https://doi.org/10.1111/csp2.27 588 Schneider, M., Biedzicki de Marques, A. A., & Peres, C. A. (2021). Brazil's Next Deforestation Frontiers. 589 Tropical Conservation Science, 14, 19400829211020472. 590 doi:https://doi.org/10.1177/19400829211020472 Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., ... Stewart, L. A. (2015). 591 592 Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: 593 elaboration and explanation. British Medical Journal, 349, g7647. 594 doi:https://doi.org/10.1136/bmj.g7647 595 SIGEL. (2021). Sistema de Informações Georreferenciadas do Setor Elétrico. Available from Agência 596 Nacional de Energia Elétrica Sistema de Informações Georreferenciadas do Setor Elétrico 597 Retrieved 30 March 2021, from ANEEL https://sigel.aneel.gov.br/Down/ 598 Silva dos Santos, E. (2017). Alterações geomorfológicas no baixo rio Araguari e seus impactos na 599 hidrodinâmica e na qualidade da água. (PhD), Universidade Federal do Amapa. Retrieved from 600 https://www2.unifap.br/ppgbio/files/2018/03/Santos-2017-Tese-de-Doutorado.pdf 601 Silva, J. M. C. d., Rylands, A. B., & Gustavo, A. B. d. F. (2005). The Fate of the Amazonian Areas of 602 Endemism. Conservation Biology, 19(3), 689-694. doi:https://doi.org/10.1111/j.1523-603 1739.2005.00705.x 604 Simões, P. I., Stow, A., Hödl, W., Amézquita, A., Farias, I. P., & Lima, A. P. (2014). The Value of Including 605 Intraspecific Measures of Biodiversity in Environmental impact Surveys is Highlighted by the 606 Amazonian Brilliant-Thighed Frog (Allobates Femoralis). Tropical Conservation Science, 7(4), 811-607 828. doi:https://doi.org/10.1177/194008291400700416 608 Stickler, C. M., Coe, M. T., Costa, M. H., Nepstad, D. C., McGrath, D. G., Dias, L. C. P., . . . Soares-Filho, B. 609 S. (2013). Dependence of hydropower energy generation on forests in the Amazon Basin at local

- and regional scales. *Proceedings of the National Academy of Sciences, 110*(23), 9601.
- 611 doi:<u>https://doi.org/10.1073/pnas.1215331110</u>
- Turgeon, K., Trottier, G., Turpin, C., Bulle, C., & Margni, M. (2021). Empirical characterization factors to
 be used in LCA and assessing the effects of hydropower on fish richness. *Ecological Indicators*,
 121, 107047. doi:https://doi.org/10.1016/j.ecolind.2020.107047
- 615 Vié, J.-C., Richard-Hansen, C., & Fournier-Chambrillon, C. (2001). Abundance, use of space, and activity 616 patterns of white-faced sakis (Pithecia pithecia) in French Guiana. *American Journal of*
- 617 *Primatology*, 55(4), 203-221. doi:https://doi.org/10.1002/ajp.1055
- 618