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Abstract:	
The human hippocampal formation plays a central role in Alzheimer’s disease (AD) progression, cognitive traits, 
and the onset of dementia; yet its molecular states in AD remain uncharacterized. Here, we report a 
comprehensive single-cell transcriptomic dissection of the human hippocampus and entorhinal cortex across 
489,558 cells from 65 individuals with varying stages of AD pathology. We transcriptionally characterize major 
brain cell types and neuronal classes, including 17 glutamatergic and 8 GABAergic neuron subpopulations. 
Combining evidence from human and mouse tissue-microdissection, neuronal cell isolation and spatial 
transcriptomics, we show that single-cell expression patterns capture fine-resolution neuronal anatomical 
topography. By stratifying subjects into early and late pathology groups, we uncover stage-dependent and cell-
type specific transcriptional modules altered during AD progression. These include early-stage cell-type specific 
dysregulation of cellular and cholesterol metabolism, late-stage neuron-glia alterations in neurotransmission, 
and late-stage signatures of cellular stress, apoptosis, and DNA damage broadly shared across cell types. Late-
stage signatures show signs of convergence in hippocampal and cortical cells, while early changes diverge; 
highlighting the relevance of characterizing molecular pathology across brain regions and AD progression. 
Finally, we characterize neuron subregion-specific responses to AD pathology and show that CA1 pyramidal 
neurons are the most transcriptionally altered while CA3 and dentate gyrus granule neurons the least. Our study 
provides a valuable resource to extend cell type-specific studies of AD to clinically relevant brain regions affected 
early by pathology in disease progression. 
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Introduction	
Late-onset Alzheimer’s disease (AD) is a progressive disorder characterized by stereotypical, decades-long 
accumulation of extracellular neuritic plaques and intracellular neurofibrillary tangles across multiple brain 
regions, a complex pathophysiological process commonly leading to clinical symptoms of cognitive impairment1–

4. Great progress has been made in identifying the association of environmental and genetic risk factors for the 
disease, yet exploiting this knowledge for rational preventive and therapeutic intervention remains a major 
biomedical challenge2,5. Empirical case-control studies have analyzed the molecular composition of human brain 
tissue using genomic, transcriptomic, and epigenomic profiling technologies6–10. Diverse molecular pathways 
have been recurrently found to be dysregulated in AD, with alterations in metabolic, bioenergetic, proteostatic, 
cytoskeletal, inflammatory, and synaptic processes becoming broadly recognized as signatures of molecular AD 
pathophysiology11,12. The diversity of implicated processes suggests that both constitutive and specific 
homeostatic functions of interacting neuronal and glial cells are impaired in AD, and that distinguishing their 
relative contribution requires going beyond tissue-level resolution experiments3. 

We recently reported the first single-cell transcriptomic analysis of AD, investigating gene expression alterations 
in cells of the prefrontal cortex, a brain region severely affected late in disease progression13. In addition to 
recognized AD-associated molecular pathways, our previous study showed prominent alteration of 
oligodendrocyte lineage cells, broad and cell-type-specific transcriptional dysregulation, and changes in the 
directionality of gene perturbations across cell types. Together, our previous observations highlighted the 
importance of single-cell-resolution studies for brain disease research, an approach now being applied to diverse 
human neurodegenerative14–16, and neurodevelopmental disorders17,18. 

The hippocampus (HIP) is one of the earliest brain structures affected in AD progression, and it is also a central 
locus for several domains of cognitive function altered in AD19. Despite its central importance in dementia and 
neurodegeneration, however, the human hippocampus and surrounding retrohippocampal regions remain 
uncharacterized at single-cell resolution in the context of aging and AD pathology. The hippocampus is part of 
the hippocampal formation, a brain structure additionally composed by the medial and lateral entorhinal cortex 
(EC), the subicular complex (Sub), and the dentate gyrus (DG)19. These structures display early progressive 
signs of pathology and are known to host selectively vulnerable neuronal populations 20–22. Only a handful of 
studies have analyzed hippocampal transcriptional profiles of single-cells in mice23–25 or pathology-free human 
samples26,27. Characterizing the transcriptional architecture of the human hippocampal region at single-cell 
resolution in the context of aging and pathology is crucial for understanding the molecular pathophysiology of 
AD onset and progression across glia, neurons, and their functional circuits. 

Here, we report a comprehensive single-cell dissection of the aged human hippocampus and entorhinal cortex, 
enabling the molecular characterization of their cellular diversity and the transcriptional manifestation of AD in 
early-affected structures. We profile a total of 112 human post-mortem brain samples from 65 aged individual 
donors with variable degrees of pathology, generating and analyzing 489,558 high-quality single-nucleus 
transcriptomes. We integrate our data with existing human and mouse tissue-microdissection, neuronal sorting, 
spatial, and single-cell transcriptomic datasets to aid interpretation and annotation of the human cell diversity 
uncovered. Our results reveal a unique cellular-level view of neuropathology in the human hippocampus and 
entorhinal cortex, demonstrate that human cellular expression patterns capture fine-resolution neuronal 
anatomical topography, and reveal modular gene expression alterations that manifest early or late in pathology 
progression across brain structures and cell types. Overall, our analysis reveals the importance of sampling 
early-affected brain regions and early pathological stages to characterize progressive patterns of molecular 
pathology. Our generated data, cell annotations, and expression patterns provide a valuable resource for 
investigating early Alzheimer’s disease pathology at single-cell resolution. 
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Results	

Single-nucleus	RNA-seq	profiling	of	human	hippocampus	
 
We selected 31 individuals with positive pathological diagnosis of AD (AD group) and 34 individuals with negative 
diagnosis (no AD pathology group, NoAD), balancing for male:female ratio (16:15 in AD, 17:17 in NoAD), age 
(72-95 years, average 85:84), and postmortem interval (0.86-12 hours, average 6:6.5). Considering pathology 
staging, we selected a balanced number of subjects with early/limbic (Braak stage 3 or 4, n=17); and 
late/neocortical (Braak 5 or 6, n=17) involvement of neurofibrillary tangle (NFT) pathology (Fig. 1a). AD subjects 
present high levels of both β-amyloid and Tau pathology, as well as increased cognitive decline; with incremental 
levels of both pathology types from early to late Braak stages, and with no differences in age or post-mortem 
time intervals (pmi) (Extended Data Fig. 1a, b). All individual donors are participants in the Religious Order 
Study (ROS) or the Rush Memory and Aging Project (MAP), collectively known as ROSMAP28. From 43 of the 
individuals, we obtained postmortem tissue samples extracted from both the hippocampus and the entorhinal 
region, from 19 only hippocampal, and from 3 only entorhinal samples. Therefore, we processed a total of 62 
hippocampal and 48 entorhinal samples encompassing 65 different individuals. All tissue samples were obtained 
without prior microdissection of anatomical subdivisions (Fig. 1b). To characterize the cellular transcriptomic 
landscape of the samples we performed single-nucleus RNA sequencing (snRNA-seq) using 10x Genomics 
Chromium chemistry v3 platform, producing a dataset of 574,582 single-nucleus transcriptomes. We processed 
and filtered the initial data based on standard quality metrics (Methods), resulting in 489,558 high-quality cells 
(85%) that we analyzed for the rest of the manuscript. To this end, we designed an integrative computational 
framework combining graph-clustering algorithms to identify coherent cellular populations, with external human 
and mouse data sources to facilitate interpretation of transcriptomic patterns (Fig. 1b). Data generated herein 
will be publicly accessible with a data use agreement through the ROSMAP data compendium (see ‘Data 
availability’).	
 

Cellular	diversity	of	human	hippocampus	and	entorhinal	cortex	
 
To identify and annotate major cell types and subpopulations, we performed two rounds of graph-based 
clustering analysis (Extended Data Fig. 1c, Methods). We used the cell groups resulting from the first round to 
identify major brain cell types. On the basis of expression patterns and statistical overrepresentation of known 
marker genes, we reproducibly identified cell clusters matching signatures of 8 major brain cell groups supported 
by independent reference sources29,30 (Extended Data Fig. 1d,e). Cell groups include excitatory (Ex) and 
inhibitory (In) neurons, astrocytes (Ast), oligodendrocytes (Oli), oligodendrocyte progenitor cells (Opc), microglia 
(Mic), vascular cells (enriched for endothelial and pericyte markers), and choroid plexus cells. 
	
To further dissect cell heterogeneity at higher resolution, we performed within-cell group analysis in a second 
clustering round, identifying multiple subgroups for each major cell group. Similar subcluster marker-based 
annotation identified small coherent subgroups consistent with T-cell, Fibroblast (Fib), Endothelial (Endo), 
Pericyte (Per), Smooth muscle cell (SMC), and Ependymal cell signatures. By integrating annotations at both 
levels, we defined unified labels for 13 major cell types (Fig. 1c, Extended Data Fig. 1d, e). Because neuronal 
cells displayed the most apparent within-cell type variability across regions (HIP, EC), and between AD diagnosis 
groups, as evidenced by segregating patterns in 2D projection plots (Fig. 1c, d), we performed an independent 
analysis to characterize and interpret neuronal subpopulations more thoroughly (see subsection below). This 
analysis resulted in the identification of subpopulations from all major hippocampal subregions (DG, CA fields, 
Sub, EC), as well as cardinal interneuron subtypes (Sst, Vip, Pvalv) (Fig. 1c). 
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Genes preferentially expressed across cell types showed strong enrichment of reference gene marker sets29,30 
(Extended Data Fig. 1e), and cell type expression profiles were strongly correlated between donors, with higher 
correlation (average Pearson r=0.96) for high-abundance cell types (average number of cells = 1,229 per donor) 
and lower (r=0.78) for low-abundance cell types (average number of cells = 22 per donor) (Extended Data Fig. 
1f-g). To corroborate cell annotations, we confirmed that cross-cell expression patterns of well-established gene 
markers clearly define cell neighborhoods within a 2D projection plot. Neuronal cells are marked by SYT1 
expression, which further separate into two major cell groups corresponding to excitatory (NRGN) and inhibitory 
(GAD1) neurons (Fig 1e). Glial cells separate oligodendrocyte (MBP), oligodendrocyte progenitor (VCAN), 
astrocytes (AQP4), and microglia (CSF1R) cells. In addition, low-abundance cell groups showed localized 
expression of markers of immune and vascular-related cells, including T-cells (SKAP1), endothelial cells (VWF), 
pericytes (PDGFRB), and fibroblasts (LAMA2, CEMP); as well as 2 small groups of ependymal and choroid 
plexus cells (TTR). Cell type proportions are broadly consistent across donors and pathological groups (Fig. 1f). 
 
Single-cell	patterns	recover	hippocampal	spatial	cytoarchitecture	

To further characterize neuronal diversity, we performed an independent analysis focusing only on neuronal 
cells. We computationally sorted neuronal nuclei from the HIP and EC datasets to build and cluster an integrative 
cell network for each neuronal class (Excitatory Glutamatergic and Inhibitory GABAergic neurons) (Fig. 2a, b, 
Extended Data Fig. 2a, b). After data integration, subsets of glutamatergic neurons clearly segregated by brain 
region, a pattern not observed in GABAergic neurons. The two neuronal classes show contrasting mixing 
patterns in 2D-projection plots (Fig. 2c), with only glutamatergic neurons having clusters constituted exclusively 
of HIP cells. To quantify this pattern, we estimated for each cluster the distribution of cells isolated from each 
region and confirmed a strong frequency imbalance between brain regions across clustering subgroups of 
glutamatergic but not GABAergic neurons (Fig. 2d, e). This result is consistent with observations from cortical 
studies in humans13 and mouse31, suggesting that, unlike other neuronal classes or glial cells, excitatory neurons 
show strong region specific transcriptional patterns. 	

To interpret the transcriptomic heterogeneity uncovered through joint clustering analysis, and to investigate its 
potential relationship with anatomical substructure and spatial cytoarchitecture, we compiled existing human and 
mouse transcriptomic data considering laser-microdissected32, spatial33, single-cell24, and neuron-sorted34 
information. For each available dataset, annotated anatomical subregion, and neuron type, we quantified 
expression and signature profiles that we then used as reference to compare and interpret our single-nucleus 
data (Methods, Supplementary Table 1). We considered cell-sorted references for pyramidal neurons of the 
CA subfields and subiculum, granule cells of the dentate gyrus, and tissue references for all major subdivisions 
of the hippocampal formation (DG, CA fields, Sub, EC, and layers therein).  

We first examined the relationship between cell type expression profiles and the anatomical distribution of 
principal cells in the hippocampus. Consistent with hippocampal cytoarchitecture (Fig. 2f), correlation analysis 
of human snRNA cell types (Supplementary Table S2) with mouse spatial transcriptomes (Supplementary 
Table S1) showed that cell type signatures robustly segregate samples by layer rather than subdivision, with 
presence or absence of neuronal signatures as the most discriminative pattern (Fig. 2h). The subdivisions of the 
hippocampus are structured in 4 and 3 layers spanning the CA fields (SLM, SR, PL, SO) and dentate gyrus (PL, 
GC, ML), respectively (described in Fig. 2f, g). In accordance with layer cytoarchitecture, PL and GC layers 
clustered together, showing high correlation with neuronal signatures; while SLM and ML correlated with glial 
signatures (Fig. 2h, Extended Data Fig. 2c). SO, and SR layers of the CA subfields showed a less defined 
pattern, presenting weaker correlations with oligodendrocyte and astrocyte cell signatures, respectively; as well 
as absence of neuronal transcriptional signatures (Extended Data Fig. 2c). These patterns are consistent with 
observed cell body and commissural fiber distributions across subfields and layers19, explaining the clear 
segregation of neuronal and nonneuronal signatures.  
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The close correspondence between recovered snRNA cell type patterns and hippocampus cytoarchitecture 
indicates that transcriptional variation across hippocampal subdivisions strongly reflects the distributions of the 
major transcriptional cell classes uncovered with snRNA-seq and suggests that the mouse spatial transcriptomic 
atlas33 provides an appropriate comparative reference for human data interpretation. To investigate whether 
similar conclusions emerge from human tissue, we profiled a subset of subdivisions and layers from 2 
pathologically-unaffected donors using laser capture microdissection followed by RNA sequencing (LCM-seq). 
We observed patterns highly consistent with those observed when comparing with mouse data (Supplementary 
Fig. 2d), further supporting the potential of snRNA-seq to dissect tissue-level heterogeneity and the suitability of 
cross-species analysis to aid interpretation.	

Molecular	characterization	of	neuronal	diversity 

Given that layers and not anatomical subdivisions are primarily discriminated by the presence or absence of 
neuron signatures (Fig. 2h), we next tested whether the specificity of different human neuronal subpopulations 
recovered by joint clustering analysis (Extended Data Fig. 2a, b) recapitulates hippocampal and entorhinal 
substructure. We focused on excitatory glutamatergic neurons, which have a spatially and anatomically 
patterned cytoarchitecture19. Notably, when measuring the transcriptomic similarity between human 
subpopulations and mouse spatial segments, we found that human excitatory neurons capture distinctive 
expression patterns that broadly group together adjacent hippocampal formation subdivisions (Fig.2i, Extended 
Data Fig. 3a), suggesting the embedding of anatomical cytoarchitectural information within unbiased snRNA 
profiles. Correlation analysis and hierarchical clustering segregated 4 neuronal subpopulations strongly 
correlating with the granule cell layer of the dentate gyrus (DG), and 2 unique subgroups strongly correlating 
with the pyramidal layer of the CA1 and CA3 subfields. The remaining clusters mapped to areas spanning the 
subicular complex and different layers of the EC in the mouse (Fig.2i, Extended Data Fig. 3a). We leveraged 
this anatomical information to infer interpretable distinctions underlying the cluster partitioning patterns of human 
neuronal cells. 

To further interpret the identity of human neuronal subpopulations, we extracted, reanalyzed, and compared 
mouse hippocampal and retrohippocampal single-cell transcriptomic data reported as part of the Allen Institute’s 
cell type database 24. Transcriptomic similarity between human subpopulations and mouse reference cell types 
confirmed most of the associations recovered by tissue-resolution spatial transcriptomic comparison, while 
suggesting higher resolution mapping identities for 5 subpopulations without a clear anatomical assignment 
(Extended Data Fig. 3a, b). To define a consensus interpretation and annotation for all human subpopulations, 
we next integrated the best-matching anatomical regions and cell types obtained from mouse spatial and single-
cell transcriptomic comparisons with those obtained in analogous comparisons with mouse cell-sorted neurons 
and human microdissected tissue samples (Extended Data Fig. 3c, Supplementary Table S3). Applied to all 
excitatory clusters, this analysis resulted in the identification of 14 well-defined glutamatergic subpopulations, 
with signatures of DG granule cells (DG), and pyramidal neurons from subfields CA1 and CA3, entorhinal cortex 
(ECL2-6), Subiculum (Sub), para-, post-, and presubiculum (PPP); and 3 smaller groups. Best mouse cell type 
matches suggest that these latter groups represent cells from the area prostriata (APr), deep layer neurons 
marked by Car3 (Car3L6), and a heterogeneous group with mixed signatures reminiscent of Cajal–Retzius cells 
along with progenitor and neuronal markers (CRmx) (Fig. 3a). We confirmed that the identified subpopulations 
show similar relative distributions and associations at single-cell level in human and mouse, as evidenced by the 
spatial distribution in 2D projection plots (Fig. 3a-c), as well as similar preferential expression patterns of marker 
genes (Fig. 3d, e), and global transcriptional similarity (Fig. 3f).  

Unlike glutamatergic neurons, GABAergic neurons did not show strong regional segregation (Fig. 2c, d), and 
thus we interpreted GABAergic neurons based on similarity with reference GABAergic mouse cell types, rather 
than their anatomical structures (Extended Data Fig. 3d). We identified 5 human neuronal subpopulations 
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consistent with signatures of major GABAergic subclasses (Pvalb, Pvalb2, Sst, Vip, Lamp), and 3 additional 
subpopulations mapping to mouse Lamp.Lh6, Pax6, and Sncg types. We confirmed that this level of 
interpretation recovers similar relative distribution and association of subpopulations at single-cell level in human 
and mouse (Fig. 3h-j), and consistent expression patterns of marker genes (Fig. 3k, l) and global transcriptional 
similarity (Fig. 3m). In addition to interrogating the expression of known marker genes, we identified 
discriminatory genes that show highly specific expression (Bonferroni-corrected pval<0.01, logFC>1, negative 
binomial mixed model (NBMM)) across human excitatory and inhibitory subpopulations (Fig. 3g, n; 
Supplementary Table S4). 

	
Modular	AD-associated	expression	changes	
 
We next used our high-resolution cellular and spatial annotations to study whether the molecular manifestation 
of AD pathology differs across regions, cell types, and neuronal subpopulations (Fig. 4a). To systematically 
characterize and dissect such differences at cell-type resolution, we measured AD-associated expression 
changes independently for each dissected brain region (HIP, EC) and for each major cell type, while correcting 
for age, sex, and postmortem time interval. In addition, because the AD phenotype is inherently complex and 
heterogeneous13,35, we considered AD effects at two neuropathological stages: changes happening at an 
early/limbic (Braak 3 or 4) or late/neocortical (Braak 5 or 6) stage, each relative to stages with low or undetectable 
pathology (Braak stage 0, 1, or 2) (Supplementary Table S5). We confirmed that our pathological group 
definitions were reflected in both β-amyloid and NFT pathology, which were both higher in late-stage individuals, 
and in cognition, which was lower in late-stage individuals (Extended Data Fig. 1a, b). 
 
We identified 2,495 neuropathology-associated genes that show at least one significant expression change (p-
value < 0.01, negative binomial mixed model (NBMM)) across comparisons. Subsets of these genes are 
expressed preferentially in all major neuronal or glial cell types (Fig. 4b), with the largest subset being 
preferentially expressed in excitatory neurons, followed by microglia (Fig. 4c), suggesting that neuropathology 
is associated with functional alterations in multiple cell types. However, despite a dominant pattern of cell-type-
preferential expression (i.e., genes having higher expression in a given cell type relative to others), we also 
observed that a large portion of neuropathology differential genes show broad base level expression (detected 
in >10% of the cells of a given type) in more than one cell type, with 31.5% (n=786) of the genes being expressed 
in all major cell types (Extended Data Fig. 4a). These broadly-expressed neuropathology-associated genes 
include ADAM10, SORL1, BIN1, PARP1, IGFR1, AKT3, and EIF2AK4, which indeed involve core cellular 
functions, including cellular metabolism, intracellular transport, and stress response (Extended Data Fig. 4a, 
Supplementary Table S6). GO enrichment analysis supports this observation, with an overrepresentation of 
genes involved in metabolic, bioenergetic, proteostatic, cytoskeletal, inflammatory, and synaptic biological 
processes within the complete set of neuropathology-associated genes, indicating that these broadly-acting 
biological processes are systematically altered across multiple cell types in AD (Fig. 4d, Supplementary Table 
S6).  
 
To analyze the specific context in which expression alterations occur, we grouped all neuropathology-associated 
genes into modules, based on the similarity of their association scores for each combination of neuropathological 
stage, brain region, and cell type (together defining a gene-wise neuro-pathology association profile) (see 
Methods, Supplementary Table S7); and then characterized groups of genes with similar association profiles 
(Fig. 4a, Supplementary Fig. S4b-c). We identified 35 gene modules with consistent association patterns 
across stages, brain regions, and cell types; ranging from 5 to 272 genes in size (median=45 genes) and 
capturing both glial and neuronal alterations (Fig. 4e, f; Supplementary Table S8). Hierarchical clustering of 
gene association scores (Fig. 4f) primarily grouped pathological stages and cell types, rather than brain regions; 
suggesting that stage-dependent cell type association with pathology are broadly consistent between 
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hippocampal and entorhinal cell types, with few exceptions in neurons. Notably, we identified three distinct 
categories of modules with respect to their stage-dependent response to pathology (Fig. 4e). Two groups were 
characterized by consistently increased (n=15 modules, 1,147 genes) or decreased (n=10 modules, 294 genes) 
expression levels across pathology stages and involve changes in all cell types, except astrocytes. The 
remaining group (n=10 modules, 1,034 genes) includes modules with a stage-dependent and qualitatively 
distinct response to pathology, presenting increased followed by decreased expression or vice versa. 
 
Consistently-increased modules with strong early response in OPCs and oligodendrocytes (M9, M14) implicate 
exocytosis, immune response, and inflammation genes (e.g., TOMM40, CD63, STAT3, and IRF2); those with 
increased expression in microglia (M10) implicate cell cycle, protein translation, and unfolded protein response 
genes (e.g., EIF4G1, CDKN1A, and BAX); while early neuronal modules (M2, M16) implicate energy metabolism, 
mitochondria, and oxidative phosphorylation genes (e.g, EGR1, COX6C, OXA1L, ATP6V1H). Consistently-
increased modules with a strong late response capture the upregulation of AD GWAS risk genes such as 
ADAM10, SORL1, PARP1, APOE, and SNCA in glial cells (M13, oligodendrocytes; M12, microglia); and of genes 
involved in neurotransmission and apoptosis in neurons (e.g., BAD, CASP6, CAMK2B, GNAI2). Consistently-
decreased modules were less prominent and involve synaptic signaling, axon guidance, and protein transport 
genes; including major neurotransmitter receptors (e.g., GRIN2A, GRM5/7, GABRA3, CHRNA7) affected in 
neuronal cells (Supplementary Fig. S4d).  
 
Approximately half of the modules (n=19, ~54%) include one or more genes previously associated with AD 
and/or with another major neurodegenerative disorder (PD, ALS, HD, dementia), including TOMM40, APP, 
SLC2A3, PARP1, APOE, and SNCA. A total of 19 AD-associated GWAS genes are also differentially expressed 
and are included within modules. Furthermore, 2 of the modules (M9 and M12) are significantly associated with 
gene-level GWAS risk scores for AD (FDR <0.05, ranked GSEA) with M9 having the strongest association (FDR 
<0.0005). In contrast, we did not find any association between AD neuropathology-associated modules and 
GWAS risk for either schizophrenia or type 2 diabetes (Fig. 4e, f, Supplementary Table S8), indicating that 
differentially expressed genes capture AD risk genes specifically. Notably, while module M12 includes the 
apolipoprotein APOE and is specifically perturbed in microglia, consistent with well-established associations 
between AD risk and cell type specificity13,36; the more strongly associated M12 includes the mitochondrial 
translocase TOMM40 and the DNA excision repair protein ERCC1, and it is specifically altered in Opc; 
suggesting potential additional roles of oligodendrocyte lineage cells mediating AD genetic risk. 
 
Overall, these results uncover stage and cell type specific transcriptional responses to AD pathology, suggesting 
early and strong activation of metabolic, cell cycle, and immune alterations in specific cell types; along with an 
incremental activation of neurotransmission and apoptotic processes involving primarily neuronal cells. 
 
Stage-dependent	transcriptional	alterations	
 
We next focused on alterations with contrasting and stage-dependent responses to AD pathology, by directly 
comparing late and early module association changes (Fig. 5a). Astrocytes showed the most extreme stage-
dependent responses, suggesting that these cells are dynamically responsive to AD pathology in stage 
progression. We observed increased early-stage expression of genes involved in cholesterol metabolism and 
transport (e.g., LDLR, SOAT1, ABCA1, HMGCS1, MSMO1), and in inflammation (e.g., IL6R, JAK2, STAT1) 
(both captured by module M4). Inflammation genes were also increased in OPCs, albeit less strongly. Astrocytes 
in addition showed early-stage decreased expression of neurotransmission and fatty acid metabolism genes, 
including glutamate transporters, enzymes, and receptors (e.g., SLC1A2, GLUD1, GLS, GRIA2; module M6); 
suggesting dysregulation in homeostatic support for neuronal neurotransmission. Finally, astrocytes showed 
increased late-stage expression of β-amyloid toxicity and neuroinflammation genes (e.g., CSF1, CD44, FOS, 
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IKBKB; module M5), both processes commonly reported as potentially having mediating roles in AD progression 
37,38 (Fig. 4e, f; Fig. 5a).  
 
In addition to astrocytic responses, we also detected strong but less specific stage-dependent alterations in 
neurons. In particular, module M3 captured late-stage increased expression of genes involved in DNA damage, 
growth factor signaling, and cellular stress (e.g., BIN1, CREB1, HDAC2, EGFR, NFKBIA, RHOA, SPP1, SESN2, 
BAG6, CDKN2AIP, FZR1). This response primarily occurs in excitatory neurons, but also in oligodendrocyte 
lineage cells and inhibitory neurons, suggesting broad stress response activation in late pathology stages. 
 
To investigate the extent to which the molecular pathological signatures recovered herein in early affected 
regions extend to those affected late in AD progression, we compared our results with data from the prefrontal 
cortex. To this end, we first reanalyzed our previously published single-nucleus transcriptomes of the prefrontal 
cortex13 to infer analogous AD-associated expression differences and association scores in the two pathological 
stages used here (early/limbic Braak 3 or 4, and late/neocortical Braak 5 or 6); while accounting for age, sex, 
and postmortem time intervals (Supplementary Table S7). We then used prefrontal cortex data to quantify the 
average stage-dependent association of the module alterations uncovered across cells of the hippocampal and 
entorhinal areas (Fig. 5b). We found that only late-stage module responses were consistently recovered in both 
regions (cor=0.69, p-val=4.5e-06), while early responses diverged (Fig. 5c); highlighting the importance of 
sampling tissue from early-affected regions to capture the unique cellular environment of early molecular 
pathology, and suggesting that late-stage cellular responses to a certain degree tend to converge towards 
multicellular molecular signatures suggestive of neurotransmission dysregulation, cellular stress, and DNA 
damage.	
	
Specificity	of	neuronal	molecular	pathology	
 
We next sought to pinpoint specific anatomical structures and neuronal subtypes where AD-associated changes 
preferentially occur, by quantifying the association between gene expression levels and neurofibrillary tangle 
pathology (NFT) burden for each neuronal subtype separately (Supplementary Table S9). Given the 
intracellular and selective character of NFT pathology 22, we used a targeted approach to uncover molecular 
processes potentially mediating neuronal dysfunction, specifically focusing on anatomical structures and 
neuronal populations that are robustly annotated, directly targeted during tissue recollection, and expected to 
include neurons that are vulnerable to neurodegeneration21,39. For glutamatergic neurons, we focused on CA1, 
CA3, and DG subtypes from the hippocampus (Fig. 6a) and ECL2, ECL2/3, ECL3, ECL5, and ECL6 from the 
entorhinal cortex (Fig. 6b). 
 
We first investigated whether the AD-associated gene modules previously discovered at cell-type resolution 
capture transcriptional NFT responses occurring broadly or preferentially across anatomical structures and 
neuronal subtypes. We found that several of these modules overlap with NFT-associated changes occurring 
preferentially across neuronal subtypes, highlighting the relevance of a targeted subpopulation-level analysis 
(Fig. 6c). Among NFT-upregulated modules, we found that neurotransmission and apoptosis-related module M1 
was broadly upregulated across most glutamatergic subpopulations, with stronger changes in CA1 and in 
superficial to midlayer EC neurons (ECL2-L3) among excitatory neurons, and only in Vip among inhibitory 
neurons. By contrast, cellular stress and DNA damage-related M3 showed specific up-regulation in ECL3 
neurons, but only modest NFT-associated changes in other anatomical regions. Among NFT-downregulated 
modules, metabolism-related M8 captured changes in specific subsets of both excitatory and inhibitory neurons, 
suggesting shared dysregulated metabolic changes across neuronal groups, while synaptic signaling and 
transmission-related M7 captures genes specifically downregulated in CA1 and EC L2/3 glutamatergic neurons. 
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We next sought to uncover additional alterations that were not captured at cell-type resolution, by analyzing 
neuronal subtype-specific responses to NFT pathology directly. These responses showed that glutamatergic 
neuron types are globally more transcriptionally responsive to NFT pathology than GABAergic types, as 
measured both by a global summary statistic (median absolute association scores -log10(pval), NBMM), and by 
the total number of genes with a significant response to NFT (FDR<0.05, NBMM) (Fig. 6d). Within glutamatergic 
subpopulations, principal pyramidal cells showed more changes than granule cells of the dentate gyrus, with 
pyramidal neurons of the CA1 field changing the most, followed by EC neurons of layers L5 and L2, and with 
CA3 neurons changing the least (Fig. 6d).  
 
We identified a total of 557 highly specific NFT-responsive genes across the 9 neuronal subtypes considered 
(Fig. 6e-h, Supplementary Table 10), with the vast majority (N=489, 87.7%) presenting expression changes in 
only one anatomical region and neuronal subtype and only a few being perturbed in 4 or more anatomical regions 
and neuronal subtypes (Fig. 6f). Among recurrent gene perturbations we found the cAMP-dependent signaling 
molecule PRKAR2A involved in the regulation of lipid and glucose metabolism, the immune responsive enzyme 
IP6K2, the cell adhesion molecule LRRC4B involved in excitatory synaptic formation, and the DNA binding 
protein CHD3 involved in chromatin remodeling; all of which were overexpressed across anatomical regions and 
neuronal subtypes. Neuronal-subtype specificity is also evidenced in the fact that only a fraction (189, 33.3%) of 
NFT-responsive genes were also found to be differentially expressed at cell-type resolution and by the molecular 
processes involved, which include key processes for neuronal function, such as cellular communication, synaptic 
signaling, and neurotransmission (Fig. 6i).  
 
Consistent with signatures of intercellular proteostatic stress, we observed that NFT-upregulated genes involve 
actin cytoskeleton and endocytosis primarily in CA1 and ECL2/3 neurons, and ubiquitin mediated proteolysis 
more broadly. In addition, we detected recurrent upregulation of several viral-related pathways, suggesting an 
inflammatory neuronal component consistent with recent findings in mouse models and human cortical AD 
samples40. Unlike EC neuron types, NFT-responsive genes in CA1 neurons involve the upregulation of KEEG 
neurodegenerative disease pathways, including AD, Hungtington’s, and Parkinson’s disease; along with 
increased insulin and chemokine signaling, and the specific downregulation of glutamatergic synaptic and 
calcium signaling genes. Together these changes are suggestive of concomitant intercellular stress and 
neurotransmission dysregulation. EC neurons, in contrast, show partial upregulation of glutamatergic and 
GABAergic synaptic genes in both superficial (L2/3, L3) and deep layer (L6) neurons, while the later also shows 
specific downregulation of neurodegenerative disease pathways. 
 
Discussion	
We report the first (to our knowledge) single-nucleus transcriptomic atlas encompassing the aged human 
hippocampus and entorhinal cortex in the context of early and late stages of AD pathology. Using integrative 
data analysis, we reproducibly identified brain cell types and anatomically annotated subtypes, including specific 
glutamatergic and GABAergic neuronal subpopulations largely consistent with mouse and human anatomical 
and cellular transcriptomic signatures. We show that the anatomical topography of human hippocampal structure 
is strongly reflected in its single-cell neuronal molecular topography: the closer the hippocampal substructures 
are anatomically, the more similar their neuronal transcriptomes are. These results are consistent with tissue-
level observations in the brain as a whole32 and across the neocortex 31, and our findings demonstrate that single-
cell analysis can recover the cell types and subtypes underlying spatial anatomical associations observed at 
tissue-level resolution. Our single-cell datasets and computational integrative analyses revealed that the 
architecture of the human hippocampus transcriptome is characterized largely by structured glutamatergic 
neuronal heterogeneity and the ratio of neuronal to glial signatures, rather than GABAergic heterogeneity.  

Our characterization of early-stage (Braak 3,4) and late-stage (Braak 5,6) transcriptional changes uncovered 
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consistent and coordinated expression changes that suggest a molecular manifestation of pathology that is 
highly stage- and cell type specific and broadly consistent across hippocampal and entorhinal major cell types. 
Only late-stage expression changes are globally consistent with those observed in the prefrontal cortex, 
suggesting convergent late-stage responses across these cortical and subcortical regions, but a distinct and 
specific cellular response to the local hippocampal environment in early stages of pathological progression. 
Future work will help elucidate to what extent these observations generalize to other brain regions, and whether 
such consistency is related with the lower heterogeneity of glial relative to neuronal cells observed across 
studies13,17,23,31. 

While most previous work has focused on characterizing dysregulated cell type specific functions that might 
contribute to AD, including inflammatory responses of microglia41 and astrocytes41,42, potential myelination 
defects of affected oligodendrocyte lineage cells13, and pericyte-mediated blood-brain barrier dysfunction43,44; 
our data suggest that alterations to the intercellular modulatory role of glial in neurotransmission might have a 
contributing role in AD. We found extensive expression and recurrent transcriptional alteration of genes directly 
involved in synaptic communication and transport mechanisms in both astrocytes and oligodendrocyte lineage 
cells, including glutamate transporters (SLC1AA2), processing enzymes (GLUD1, GLS), and receptor subunits 
(e.g., GRM3, GRID2, GRM7). Astrocytes showed a particular dynamic and stage-dependent response to AD 
pathology, involving early dysregulation of cholesterol metabolism and neurotransmission, but late 
neuroinflammation; a pattern not observed in other glial cells, which our data suggest present more consistent 
changes in pathology progression. 

In neuronal cells, our results show that glutamatergic neurons are more affected transcriptionally than GABAergic 
neurons by NFT pathology, and that distinct subpopulations vary in their degree of transcriptomic alteration. 
Patterns of alteration in glutamatergic neurons reveal an anatomical pattern of neuronal impact across human 
hippocampal substructures, with CA1 pyramidal neurons most affected, followed by pyramidal neurons of 
entorhinal deep and mid layers, and ending up with CA3 neurons and DG granule cells which show the least 
effect. These observations are consistent with the selective vulnerability of CA1 and EC pyramidal cells11,21,39, 
and suggest that observed transcriptomic responses may reflect molecular processes relevant for neuronal 
dysfunction. Potentially among the latter, we found that CA1 neurons show simultaneous downregulation of 
homeostatic neuronal functions and upregulation of processes suggestive of neuronal stress, including metabolic 
alterations, cytoskeletal transport dysfunction, inflammatory responses, and genes involved in 
neurodegeneration. The resulting data resource put forward herein will open up opportunities for future studies 
following a more targeted approach to human neuronal vulnerability and its molecular basis. 

Finally, although rich and extensive, the breadth of cellular diversity discovered in this study might still be limited 
by lack of samples from anatomical substructures targeted by microdissection. We approached this limitation 
computationally by including the transcriptomic signatures of existing, anatomically-annotated samples from 
mouse and human in our analysis. It should be noted that our study was primarily targeted to the hippocampal 
and entorhinal region, information of the parahippocampal and subicular structures is limited. Future work will 
complement our data by considering extensive anatomical microdissection of hippocampus-surrounding regions 
to further characterize the progression of neuronal alterations. Overall, our single-cell analysis of the human 
hippocampus and entorhinal cortex highlights the diversity of cells within the hippocampal formation and the 
effect of cellular specificity and pathological stage progression in AD. Our data and results will provide a valuable 
resource to guide the mechanistic study of neuronal vulnerability in the context of the human brain, and to 
contrast observations and predictions from animal and human in-vitro models of the disease. 
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Methods	 
Data reporting  

No statistical methods were used to predetermine sample size. 

ROSMAP subject selection. 65 individuals were selected from the The Religious Orders Study and Rush 
Memory and Aging Project (ROSMAP), two longitudinal cohort studies of aging and dementia that collect 
extensive clinical data and perform detailed post-mortem pathological evaluations, as previously described28. 
For the purpose of this study, we considered a pathological diagnosis of AD to define subject groups. Based on 
the modified NIA-Reagan diagnosis of Alzheimer’s disease, 31 individuals were classified as having a positive 
pathological diagnosis of AD (AD group) and 34 individuals a negative diagnosis (no AD pathology group, NoAD). 
Pathological evaluation relies on both neurofibrillary tangles (Braak) and neuritic plaques (CERAD), and it is 
done without knowledge of clinical information. Pathology groups were balanced by male:female ratios (16:15 in 
AD, 17:17 in NoAD), age (72-95 years, average 85:84), and postmortem interval (0.86-12 hours, average 6:6.5). 
Three additional groups were defined based on involvement of neurofibrillary tangle (NFT) pathology as 
assessed by Braak staging: reference stage (Braak stage 0, 1, 2; n=31), early/limbic stage (Braak stage 3 or 4, 
n=17); and late/neocortical stage (Braak 5 or 6, n=17). Detailed description on clinical and pathological data 
collection has been previously reported45. The Religious Orders Study and Rush Memory and Aging Project 
were approved by an Institutional Review Board (IRB) of Rush University Medical Center. Informed consent, an 
Anatomical Gift Act, and a repository consent were obtained from each subject. ROSMAP data can be requested 
at https://www.radc.rush.edu. 

Isolation of nuclei from frozen post-mortem brain tissue. The protocol for the isolation of nuclei from frozen 
post-mortem brain tissue was adapted from a previous study (Mathys et al. Nature 2019). All procedures were 
carried out on ice or at 4°C. In brief, post-mortem brain tissue was homogenized in 700 µl homogenization buffer 
(320 mM sucrose, 5 mM CaCl2, 3 mM Mg(CH3COO)2, 10 mM Tris HCl pH 7.8, 0.1 mM EDTA pH 8.0, 0.1% 
IGEPAL CA-630, 1 mM β-mercaptoethanol, and 0.4 U µl!" recombinant RNase inhibitor (Clontech)) using a 
Wheaton Dounce tissue grinder (15 strokes with the loose pestle). Then the homogenized tissue was filtered 
through a 40-µm cell strainer, mixed with an equal volume of working solution (83% OptiPrep density gradient 
medium (Sigma-Aldrich), 5 mM CaCl2, 3 mM Mg(CH3COO)2, 10 mM Tris HCl pH 7.8, 0.1 mM EDTA pH 8.0, and 
1 mM β-mercaptoethanol) and loaded on top of an OptiPrep density gradient (750 µl 30% OptiPrep solution 
(30% OptiPrep density gradient medium,134 mM sucrose, 5 mM CaCl2, 3 mM Mg(CH3COO)2, 10 mM Tris HCl 
pH 7.8, 0.1 mM EDTA pH 8.0, 1 mM β-mercaptoethanol, 0.04% IGEPAL CA-630, and 0.17 U µl!" recombinant 
RNase inhibitor) on top of 300 µl 40% OptiPrep solution (40% OptiPrep density gradient medium, 96 mM sucrose, 
5 mM CaCl2, 3 mM Mg(CH3COO)2, 10 mM Tris HCl pH 7.8, 0.1 mM EDTA pH 8.0, 1 mM β-mercaptoethanol, 
0.03% IGEPAL CA-630, and 0.12 U µl!" recombinant RNase inhibitor). The nuclei were separated by 
centrifugation (5 min, 10,000 g, 4 °C). A total of 100 µl of nuclei was collected from the 30%/40% interphase and 
washed with 1 ml of PBS containing 0.04% BSA. The nuclei were centrifuged at 300g for 3 min (4 °C) and 
washed with 1 ml of PBS containing 0.04% BSA. Then the nuclei were centrifuged at 300g for 3 min (4 °C) and 
re-suspended in 100 µl PBS containing 0.04% BSA. The nuclei were counted and diluted to a concentration of 
1,000 nuclei per microliter in PBS containing 0.04% BSA. 

Droplet-based snRNA-seq. For droplet-based snRNA-seq, libraries were prepared using the Chromium Single 
Cell 3′ Reagent Kits v3 according to the manufacturer’s protocol (10x Genomics). The generated snRNA-seq 
libraries were sequenced using NextSeq 500/550 High Output v2 kits (150 cycles) or NovaSeq 6000 S2 Reagent 
Kits. 
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snRNA-seq data preprocessing. Gene counts were obtained by aligning reads to the GRCh38 genome using 
Cell Ranger software (v.3.0.2) (10x Genomics). To account for unspliced nuclear transcripts, reads mapping to 
pre-mRNA were counted. After quantification of pre-mRNA using the Cell Ranger count pipeline, the Cell Ranger 
aggr pipeline was used to aggregate all libraries (without equalizing the read depth between groups) to generate 
a gene-count matrix. The Cell Ranger 3.0 default parameters were used to call cell barcodes. 

Cell inclusion criteria Outlier cells with less than 500 or more than 10,000 genes detected were excluded, and 
only genes detected in at least 10 cells were considered. The following quality measures were quantified for 
each cell: (1) the number of genes for which at least one read was mapped (indicative of library complexity); (2) 
the total number of counts; (3) the total number of counts mapping to mitochondrial genes, and (4) the percentage 
of reads mapped to mitochondrial genes (used to approximate the relative amount of endogenous RNA and 
commonly used as a measure of cell quality). Outlier cells with extremely high total counts and/or mitochondrial 
read percentage were excluded. Cut-off values for exclusion were determined empirically through examination 
of descriptive plots of quality metrics. Initial QC metric computation and filtering was performed using the software 
package scanpy46. Nuclear-encoded protein coding genes were considered for downstream analyses. 

Clustering analysis and QC filtering All clustering analyses, dimensionality reduction, and visualization steps 
were performed using our computational analysis framework ACTIONet reported in 47 and available at 
(https://github.com/shmohammadi86/ACTIONet/tree/R-release). Briefly, for each round of clustering, single 
value decomposition (SVD) is initially performed for feature (gene) dimensionality reduction and selection, 
producing a low-rank approximation of the normalized count matrix. This reduced data representation is 
subsequently decomposed multiple times to define a multiresolution and low dimensional cell state 
representation for each individual cell. This final cell state representation is used to build a cell network or 
manifold, whose structure captures relationships in transcriptomic state similarity at single-cell resolution. Cell 
similarity and network construction based on these representations has been shown to recover biological cellular 
associations with improved performance relative to more conventional methods47. To avoid biased cell mixing 
due to independent sequencing batches or potential technical artifacts, a batch correction step considering 
subject membership as indicator vector was performed as part of the initial dimensionality reduction. This step 
is achieved using ACTIONet’s function reduce.and.batch.correct.ace.Harmony, which internally uses the data 
integration procedure reported in48 and implemented in the software package Harmony 
(https://github.com/immunogenomics/harmony). To identify discrete groups of cells with similar transcriptomic 
signatures (cell clusters), the Leiden graph-based clustering algorithm49 is applied to the resulting cell network. 
The same methodology was applied in the second clustering round, using cell type annotated subsets of cells 
as input. As part of QC filtering steps, clusters representing only cells from one individual, suspected to recover 
doublet cells, or to be composed of presumed low-quality cells, were excluded from downstream analyses. 
Doublet or low-quality cluster status was determined empirically based on the examination of cell associations 
in 2D plots, the presence of mixed gene markers from distinct cell types, and extreme QC metric values. The 
latter relative to those commonly observed in other subclusters of the same cell type. To ensure reproducibility 
of annotations, and to facilitate high-resolution identification of region-specific and low-abundant cell types, as 
well as to enforce a more stringent QC filtering process; HIP and EC datasets were analyzed and annotated 
separately, and a joint manifold was subsequently reconstructed for joint 2D visualization (Extended data Fig. 
1c, d). 

Neuron joint clustering analysis Gutamatergic excitatory and GABAergic inhibitory neurons previously 
annotated at group level during clustering analyses were extracted separately from the HIP and EC datasets. 
Cells from both HIP and EC were then analyzed jointly by integrative clustering analysis using ACTIONet’s 
pipeline, including a Harmony-based batch correction and data integration step. Briefly, normalization, 
dimensionality reduction, network construction, and clustering steps were applied jointly to neuronal cells from 
both brain regions, considering subject membership as indicator vector during the reduction-batch correction 
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step. This procedure was applied to Gutamatergic and GABAergic neurons separately and resulted in the 
identification of the neuronal subpopulations interpreted and annotated throughout the study (Fig. 2a-c, Extended 
data Fig. 2a, b). 

External data sources. Reference cell type marker genes were obtained from PsychENCODE29 and 
PanglaoDB30. Spatial transcriptomic data from mouse hippocampal and parahippocampal regions was obtained 
from33. Neuron-sorted transcriptomic data from mouse principal hippocampal cells was obtained from34. Mouse 
hippocampal and retrohippocampal single-cell transcriptomic data reported in50 was obtained from the Allen 
Institute’s cell type database(https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-whole-cortex-and-
hippocampus-smart-seq). Human tissue-resolution transcriptomic data from laser-microdissected hippocampal 
subregions reported in 32 was obtained from51. Summary profiles corresponding to all these data sets and used 
in integrative analyses throughout the study are reported in Supplementary Table S1. Genes genetically 
associated with AD based on a genome-wide association study (GWAS) were obtained from10, considering 
genes reported as significantly associated with AD in gene-based association tests (GWGAS). MAGMA gene-
level GWAS association scores for AD (ID 4091), Schizophrenia (ID 3982) and Type 2 Diabetes (ID 4176) were 
obtained from (https://atlas.ctglab.nl/traitDB), selecting in each case the most recent study with the largest 
sample size. Genes associated with neurodegenerative disorders were extracted from genesets curated in the 
DisGeNET collection52, using the keywords Parkinson, Amyotrophic, Dementia, dementia, and Hungtinton to 
keep those associated with related degenerative disease. For gene module and pathology associated gene 
interpretation,  the following reference gene sets were extracted from the gene set enrichment analysis server 
Enrichr53: GO_Biological_Process_2018, KEGG_2019_Human, and Elsevier_Pathway_Collection. Genes 
associated with neuropathology and neuroinflammation were extracted from nanoString gene panels 
(https://www.nanostring.com/).    

Mouse single-cell transcriptomic reanalysis Cells isolated from hippocampal and parahippocampal areas 
(hippocampus, entorhinal cortex, para-, post-, and pre-subiculum, and subiculum) annotated with region labels 
HIP, ENTm, ENTl, PAR-POST-PRE, and SUB-Pro were extracted from the original data downloaded from 
(https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-whole-cortex-and-hippocampus-smart-seq). Due 
to its high similarity with one of the human subclusters uncovered herein, the mouse cluster 1_CR was also 
extracted and included in reanalysis. Subsequently, cells with class label Glutamatergic or GABAergic were 
separately extracted and reanalyzed. The resulting datasets were normalized, analyzed, and visualized following 
a similar pipeline to the ones used for human data analysis: the standard pipeline of the ACTIONet framework. 
To directly contrast human and mouse relative neuron type similarity and localization, reported mouse subclass-
level annotations were considered. 

Cell type interpretation and annotation A transcriptional profile and a transcriptional signature were defined 
for each cluster, subcluster, cell type, and neuron subpopulations, and these were used to aid interpretation of 
cell groups and subgroups based on gene expression patterns. A profile was defined by the average expression 
across group member cells. A signature was defined by the total sum of the pair-wise expression fold-change of 
a given profile relative to each of the other profiles. Genes with high signature values for a given group represent 
preferentially expressed genes and tend to correspond to well-known cell type markers. Signatures were used 
throughout the study to unbiasedly aid interpretation by quantifying the degree to which genes with known 
biological meaning show unexpectedly high preferential expression values within a given cell group, and to 
assess global transcriptomic similarity across datasets. Marker genes previously curated as part of the 
PsychENCODE consortium29 were used to assign and quantify cell type interpretations to the different cell 
groups. Interpretations were independently verified using an additional curated cell-type marker compendium 
available in PanglaoDB30. To compare the cell groups with external transcriptomic data sources, transcriptional 
profiles and signatures were similarly computed for the external reference dataset. The Pearson correlation 
coefficients between cell groups and reference dataset signatures were used as measures of 
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similarity/consistency, and top-ranking reference conditions across datasets were examined to determine best-
matching and independently supported interpretations and labels (Extended data Fig. 3). 

Preferential gene expression in neuronal subpopulation Preferential expression was determined by testing 
whether a gene is overexpressed in cells of a given neuron subpopulation relative to the rest of neurons of the 
same type (Glutamatergic or GABAergic), while considering cell-subject membership associations. All 
comparisons were formalized by fitting a negative binomial mixed model to account for cell-subject membership 
associations. All models were implemented using the R package Nebula54. The analysis was conducted in the 
joint data set, including all annotated neuronal cells from the HIP and EC samples. Genes were considered as 
preferentially expressed according to the following criteria: FDR < 0.01 and logFC>1. 

Gene expression changes in AD pathology Gene expression associations were assessed using a fast 
implementation of a negative binomial mixed model that accounts for both subject-level and cell-level 
overdispersion54. To estimate the association between gene expression and Braak stage groups, while 
accounting for sex, age of death, postmortem interval. and additional covariates related with cell quality, the 
following model formulation was used  

~Braak+sex+age_death+pmi+pct_counts_mt, 

where Braak and sex are discrete variables specifying Braak group (early, Braak 3 or 4; late, Braak 5 or 6; and 
reference, Braak 0, 1 or 2); and sex, and age_death, pmi, and pct_counts_mt are numerical variables specifying 
the age of death, the postmortem time interval, and the percentage of counts mapping to mitochondrial genes, 
respectively. Additionally, total counts per cell were used as offset in the model specification. Using this 
formulation, expression levels in early and late stages were each compared versus the reference stage with no 
or with low pathology. All association models were implemented using the R package Nebula 
(https://github.com/lhe17/nebula). 

Neuropathology gene module analysis For each gene, a gene neuropathology association profile was defined 
by concatenating gene association scores for each combination of Braak stage (early or late), brain region 
(hippocampus, entorhinal cortex), and cell type (excitatory neuron, inhibitory neuron, astrocyte, oligodendrocyte, 
Opc, microglia). Association scores were measured by the logarithm of the p-value estimated by the NBMM 
multiplied by 1 or -1 when the expression of the gene increased or decreased relative to the reference stage. 
This resulted in the operational definition of a gene neuropathology association profile as a signed numeric 
vector, where each of 20 scores measures the degree to which the expression of a gene is positively 
(overexpression) or negatively (underexpression) associated with a given pathological stage in a given brain 
region and cell type. To measure gene neuropathology association profile similarity, profiles were first mean-
centered and scaled and then used to compute pairwise Pearson correlation coefficients, resulting in a profile 
similarity matrix (Extended data Fig. 4). To identify groups of genes with consistent profiles (gene modules), 
while considering the directionality (sing) of associations, the signed version of the Leiden graph-clustering 
algorithm49 as implemented in the function Leiden.clustering of the ACTIONet package was used. The output of 
this methodology are groups of genes with measurably similar neuropathological stage associations across brain 
regions and cell types. Only genes having an association p-value < 0.01 in at least one of the comparisons were 
considered. To minimize potential false-positive association, only associations of genes whose expression was 
reliably detected in a given cell type were considered (nonzero read counts in at least 10% of the cells of a given 
type). 

Neuronal type specific NFT association analysis Associations between gene expression levels and NFT 
burden within neuronal subpopulations were assessed using a negative binomial mixed model. To estimate 
associations, while accounting for sex, age of death, postmortem interval and additional covariates related with 
cell quality, the following model formulation was used  
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~nft+Sex+age_death+pmi+pct_counts_mt + total counts, 

where nft represents the measurement of neurofibrillary tangle burden, as determined by microscopic 
examination of silver-stained slides. Only genes having an estimated FDR<0.05 were considered as NFT-
responsive. All association models were implemented using the R package Nebula54. 

Gene overrepresentation analysis Overrepresentation of marker gene sets within cell groups for cell 
annotation was assessed by permutation tests as implemented in the ACTIONet package function 
annotate.profile.using.markers, considering cell type or cell group signature profiles as input profiles. Briefly, 
tests assess whether genes as a group tend to have unexpectedly high values, as defined in the input profiles 
and measured by a z-score statistic. Rank-based gene set enrichment analyses (GSEA) were performed using 
the R package (https://bioconductor.org/packages/release/bioc/html/fgsea.html). Gene Ontology gene set 
enrichment analyses were performed using the R package gprofiler255 considering gene lists as input and the 
default gene set background. 
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Figure	legends 

Figure 1. snRNA-seq profiling and cell type annotation. a, Study cohort description by AD pathology groups: 
positive pathological diagnosis (red), negative diagnosis (blue). Pathology groups are further divided according 
to Braak stage. b, Experimental design couples RNA sequencing of nuclei isolated from hippocampal and 
entorhinal samples with computational analysis for stringent QC and extensive cellular and anatomical 
annotation to characterize AD-associated cell-type specific and stage-dependent transcriptional alterations. c-d, 
Two-dimensional ACTIONet representation of all high-quality cells (n=489,558) included in downstream analysis 
and labeled by major cell types and neuronal populations (c), by brain region (d, top), and by AD status (d, 
bottom). e, Expression patterns of representative marker genes projected across cells localize in cell type 
neighborhoods consistent with annotations. f, Neuropathological measurements and fraction of cells of a given 
type (columns) by individual donor (rows). 

Figure 2. Integrative neuronal analysis and cytoarchitectural interpretation.  

a, Joint clustering analysis of HIP and EC cells used to identify neuronal subgroups. b, Projection of 
glutamatergic (blue) and GABAergic (green) neurons to cell space by brain region. c, Two-dimensional 
ACTIONet representation of glutamatergic (n=121,717) and GABAergic (n=45,193) neurons labeled by brain 
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region (HIP, brown, EC, green). d., Fraction of glutamatergic (left) and GABAergic neurons isolated from HIP 
(brown) of EC (green) samples by subpopulations identified by joining clustering (columns). e, Comparison of 
the ratio of HIP to EC fractions recovered in glutamatergic (blue) vs GABAergic (green) neurons. P-value based 
on a two-sided wilcoxon rank-sum test. f-g, Schematic illustration of hippocampal layer cytoarchitecture (f) and 
major hippocampal formation subdivisions (g) modeled after mouse reference. h, Similarity between human cell 
type profiles and mouse hippocampal layered signatures computed from spatial transcriptomics data. i, Similarity 
between human glutamatergic subpopulation signatures and mouse hippocampal and retrohippocampal 
substructure profiles computed from spatial transcriptomics data. Similarity is measured using the pearson 
correlation coefficient.  

Figure 3. Annotation of neuronal subpopulations.  

a-b, Two-dimensional ACTIONet representation of glutamatergic neurons (n=121,717) labelled by 
subpopulations deduced from integrative data interpretation (a) and AD status (b). c, Two-dimensional 
ACTIONet representation of glutamatergic neurons reanalyzed from mouse (retro)hippocampal scRNA data 
reported by the Allen institute of Brain science and labeled by analogous subpopulation. d-e, Expression of 
representative orthologous glutamatergic marker genes projected across cells localize in subpopulation 
neighborhoods consistent with annotation in human (d) and mouse (e). f, Similarity between human 
glutamatergic subpopulation signatures (columns) and mouse hippocampal and retrohippocampal transcriptional 
cell types of the Allen Institute cell type reference (rows). g, Average expression patterns of genes detected as 
preferentially expressed across human glutamatergic subpopulations. h-i, Two-dimensional ACTIONet 
representation of GABAergic neurons (n=45,196) labelled by subpopulations deduced from comparison with 
reference mouse transcriptomic cell types (h) and AD status (i). j, Two-dimensional ACTIONet representation of 
GABAergic neurons reanalyzed from mouse (retro)hippocampal scRNA data reported by the Allen institute 
labeled by analogous subpopulation. k-l, Expression of representative orthologous GABAergic marker genes 
projected across cells localize in subpopulation neighborhoods consistent with annotation in human (k) and 
mouse (l). m, Similarity between human GABAergic subpopulation signatures (columns) and mouse 
transcriptional cell types of the Allen Institute cell type reference (rows). g, Average expression patterns of genes 
detected as preferentially expressed across human GABAergic subpopulations. Similarity between human and 
mouse signatures is measured using the Pearson correlation coefficient. 

Figure 4. Modular stage-specific gene expression changes in AD pathology.  

a, Analysis pipeline consists of (I) the estimation AD-associated expression changes happening at an early/limbic 
(Braak 3 or 4) or late/neocortical (Braak 5 or 6) stage, relative to stages with low or undetectable pathology 
(Braak stage 0, 1, or 2), and independently by brain region (HIP, EC) and major cell type; (II) the definition of a 
neuropathology association profile by concatenating gene association scores for each combination of 
neuropathology stage, brain region, and cell type; and (III) the identification of gene modules based on 
neuropathology association profile similarity. b, Relative average expression of neuropathologically-associated 
genes across major cell types. c, Number of neuropathology associated genes with preferential expression in a 
given cell type (bars). d, Representative GO biological processes overrepresented within neuropathology 
associated genes. e-f, Modules of neuropathologically-associated genes capture stage-dependent and cell type 
specific changes as measured by average module association scores (e) and gene-neuropathology association 
scores (f). Association scores are computed by the negative logarithm of the p-values estimated by a negative 
binomial mixed model signed by the directionality of expression change. 

Figure 5. Stage-dependent expression alterations and cross regional convergence.  

a, Module association scores ordered by the difference in the magnitude of association with late and early 
neuropathology stages (x-axis) and the maximum absolute association score (y-axis). Modules that capture 
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genes with consistent downregulation across stages as highlighted in blue, those with consistent upregulation 
with red, and those in inconsistent changes in orange. Representative molecular pathways and genes are 
highlighted for the modules with most extreme stage-dependency (rectangles), along with their association 
scores across cell types (boxplot). b, Average module association scores by pathology stage (early, Braak 3 or 
4; late Braak 5 or 6) and brain region (HIP/EC, left; PFC, right). Association scores are computed by the negative 
logarithm of the p-values estimated by a negative binomial mixed model signed by the directionality of expression 
change. c, Correlation between HIP/EC and PFC average module association in early and late pathology stages. 

Figure 6. Neuron-type specific molecular pathology 

a-b, Two-dimensional ACTIONet representation of principal hippocampal glutamatergic neurons (n=46,737) (a) 
and principal hippocampal glutamatergic neurons (57,459) (b) labelled by subpopulations deduced from 
integrative data interpretation. c, Enrichment test assessing and quantifying whether module genes tend to 
present NFT-responses within neuron types. d, NFT-responsive gene count across neuron types. e, Association 
patterns of significant (FDR<0.05, NBMM) NFT-responsive genes across neuron types. f, Number of genes 
perturbed in one or more neuron types in response to NFT. g-h, Top 5 downregulated (g) and upregulated (h) 
genes in response to NFT within neuron types. i, Top GO biological processes overrepresented within NFT-
responsive genes. j-k, Top 3 downregulated (j) and upregulated (k) KEGG pathways in response to NFT within 
neuron types. 

 

Extended	Data	Figure	legends	

Extended Data Fig. 1 Sample pathological status and cell-type characterization. 

a, Comparison of β-amyloid (left) neurofibrillary tangle (middle) and global cognition (right) measurements 
between AD groups. b, Comparison of age and postmortem time interval (pmi) between AD groups. P-values 
based on two-sided wilcoxon rank-sum test for AD vs no AD comparisons, and Kruskal–Wallis test for differences 
across Braak stages.  c, Clustering analysis workflow. d, Two-dimensional ACTIONet projection of all annotated 
cells across hippocampal and entorhinal samples (n = 489,558 from 31 pathology and 34 no-pathology 
individuals). e, Enrichment analysis (resampling test) within each of the annotated cell types (rows) of genes 
previously identified as markers by two independent resources (columns). f, Interindividual pairwise profile 
correlation values (Pearson correlation coefficients) by cell type (columns). g, Number of individuals for which at 
least 10 cells of a given type were recovered. 

Extended Data Fig. 2 Joint neuronal clustering and hippocampal cytoarchitectural interpretation 

a-b, Joint clustering analysis of HIP and EC neurons for glutamatergic (a) and GABAergic (b) groups labeled by 
cluster in Two-dimensional ACTIONet cell representations. c, Comparison of correlation scores between each 
human cell type signatures and signatures of hippocampal layers computed from mouse spatial transcriptomics 
data. Comparisons are performed across layers using a Kruskal–Wallis test. d, Similarity between human cell 
type profiles and human hippocampal layered signatures obtained by laser capture microdissection followed by 
RNA sequencing (LCM-seq) from human hippocampal tissue.  

Extended Data Fig. 3 Integrative data analysis for human neuronal interpretation. 

a-b, Similarity between human glutamatergic neuronal subpopulation signatures (columns) and all mouse 
hippocampal and retrohippocampal substructure signatures computed from spatial transcriptomics data (rows) 
(a), and all mouse hippocampal and retrohippocampal reference transcriptional cell types reported by the Allen 
Institute (rows) (b). c, Integrative analysis of similarity measures for human glutamatergic neuronal 
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subpopulations versus mouse signatures at single-cell, spatial, and cell type resolution (top three heatmaps, 
respectively), and versus human tissue and layer resolution (bottom two heatmaps, respectively). d, Similarity 
between human GABAergic neuronal subpopulation signatures (columns) and all mouse hippocampal and 
retrohippocampal reference transcriptional GABAergic cell types reported by the Allen Institute (rows). 

Extended Data Fig. 4 Module analysis of neuropathology associated genes. 

a, Number of genes expressed at base label (nonzero counts in at least 10% of the cell of a given cell type) in 
one or more cell types. b, Similarity between pairs of 2,495 neuropathology association profile. c, Module size 
all identified modules measured in number of genes. Red lines highlight modules passing the arbitrary cut-off of 
5 genes. d, Enrichment scores of molecular pathways and processes (columns) from multiple references within 
modules (rows). Enrichment was measured by testing overrepresentation based on expectations from 
hypergeometric distribution. 

 

Supplementary	tables 

Supplementary Table S1. Human and mouse reference expression profiles 

Supplementary Table S2. Human cell type and neuronal subpopulation expression profiles 
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Supplementary Table S5. Region, cell type, and AD trait specific expression changes 

Supplementary Table S6. Neuropathology-associated genes cell type expression patterns and GO 
categories. 
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