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ABSTRACT

High-throughput experimentation has revolutionized data-driven experimental sciences and opened1

the door to the application of machine learning techniques. Nevertheless, the quality of any data2

analysis strongly depends on the quality of the data and specifically the degree to which random3

effects in the experimental data-generating process are quantified and accounted for. Accordingly4

calibration, i.e. the quantitative association between observed quantities with measurement responses,5

is a core element of many workflows in experimental sciences. Particularly in life sciences, univariate6

calibration, often involving non-linear saturation effects, must be performed to extract quantitative7

information from measured data. At the same time, the estimation of uncertainty is inseparably8

connected to quantitative experimentation. Adequate calibration models that describe not only the in-9

put/output relationship in a measurement system, but also its inherent measurement noise are required.10

Due to its mathematical nature, statistically robust calibration modeling remains a challenge for many11

practitioners, at the same time being extremely beneficial for machine learning applications. In this12

work, we present a bottom-up conceptual and computational approach that solves many problems13

of understanding and implementing non-linear, empirical calibration modeling for quantification14

of analytes and process modeling. The methodology is first applied to the optical measurement of15

biomass concentrations in a high-throughput cultivation system, then to the quantification of glucose16

by an automated enzymatic assay. We implemented the conceptual framework in two Python pack-17

ages, with which we demonstrate how it makes uncertainty quantification for various calibration tasks18

more accessible. Our software packages enable more reproducible and automatable data analysis19

routines compared to commonly observed workflows in life sciences. Subsequently, we combine20

the previously established calibration models with a hierarchical Monod-like differential equation21

model of microbial growth to describe multiple replicates of Corynebacterium glutamicum batch22

microbioreactor cultures. Key process model parameters are learned by both maximum likelihood23

estimation and Bayesian inference, highlighting the flexibility of the statistical and computational24

framework.25

Keywords nonlinear calibration · calibration modeling · quantitative measurement · process modeling · ODE26

modeling · maximum likelihood · Python · Bayesian methods · uncertainty quantification27

1 Introduction28

1.1 Calibration in life sciences29

Calibration modeling is an omnipresent task in experimental science. Particularly the life sciences make heavy use of30

calibration modeling to achieve quantitative insights from experimental data. The importance of calibration models31
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(also known as calibration curves) in bioanalytics is underlined in dedicated guidance documents by EMA and FDA [1,32

2] that also make recommendations for many related aspects such as method development and validation. While liquid33

chromatography and mass spectrometry are typically calibrated with linear models [3], a four- or five-parameter logistic34

model is often used for immuno- or ligand-binding assays [2, 4–6]. The aforementioned guidance documents focus on35

health-related applications, but there are countless examples where (non-linear) calibration needs to be applied across36

biological disciplines. From dose-response curves in toxicology to absorbance or fluorescence measurements, or the37

calibration of on-line measurement systems, experimentalists are confronted with the task of calibration.38

At the same time, recent advances in affordable liquid-handling robotics facilitate lab scientists in chemistry and39

biotechnology to (partially) automate their specialized assays (e.g. [7, 8]). Moreover, advanced robotic platforms for40

parallelized experimentation, monitoring and analytics [8, 9] motivate on-line data analysis and calibration for process41

control of running experiments.42

1.2 Generalized computational methods for calibration43

Experimental challenges in calibration are often unique to a particular field and require domain knowledge to be solved.44

At the same time, the statistical or computational aspects of the workflow can be generalized across domains. With the45

increased amount of available data in high-throughput experimentation comes the need for equally rapid data analysis46

and calibration. As a consequence, it is highly desirable to develop an automatable, technology-agnostic and easy-to-use47

framework for quantitative data analysis with calibration models.48

From our perspective of working at the intersection between laboratory automation and modeling, we identified a set of49

requirements for calibration: Data analyses rely more and more on scripting languages such as Python or R, making the50

use of spreadsheet programs an inconvenient bottleneck. At various levels, and in particular when non-linear calibration51

models are involved, the statistically sound handling of uncertainty is at the core of a quantitative data analysis.52

Before going into detail about the calibration workflow, we would like to highlight its most important aspects and53

terminology based on the definition of calibration by the International Bureau of Weights and Measures (BIPM) [10]:54

2.39 calibration: "Operation that, under specified conditions, in a first step, establishes a relation55

between the quantity values with measurement uncertainties provided by measurement standards and56

corresponding indications with associated measurement uncertainties and, in a second step, uses this57

information to establish a relation for obtaining a measurement result from an indication."58

2.9 measurement result: "[...] A measurement result is generally expressed as a single measured59

quantity value and a measurement uncertainty."60

The "first step" from the BIPM definition is the establishment of a relation that we will call calibration model henceforth.61

In statistical terminology, the relationship is established between an independent variable (BIPM: quantity values) and a62

dependent variable (BIPM: indications) and it is important to note that the description of measurement uncertainty is a63

central aspect of a calibration model. In the application ("second step") of the calibration model, the quantification of64

uncertainty is a core aspect as well.65

Uncertainty arises from the fact that measurements are not exact, but subject to some form of random effects. While66

many methods assume that these random effects are distributed according to a normal distribution, we want to stress67

that a generalized framework for calibration should not make such constraints. Instead, domain experts should be68

enabled to choose a probability distribution that is best suited to describe their measurement system at hand.69

Going beyond the BIPM definition, we see the application of calibration models two-fold:70

• Inference of individual independent quantity values from one or more observations.71

• Inferring the parameters of a more comprehensive process model from measurement responses obtained from72

(samples of) the system.73

For both applications, uncertainties should be a standard outcome of the analysis. In life sciences, the commonly used74

estimate of uncertainty is the confidence interval. The interpretation of confidence intervals however is challenging, as75

it is often oversimplified and confused with other probability measures [11, 12]. Furthermore, their correct implementa-76

tion for non-linear calibration models, and particularly in combination with complex process models, is technically77

demanding. For this reason, we use Bayesian credible intervals that are interpreted as the range in which an unobserved78

parameter lies with a certain probability [13]. In 2.3 we go into more details about the uncertainty measures and how79

they are obtained and interpreted.80

Even though high-level conventions and recommendations exist, the task of calibration is approached with different81

statistical methodology across the experimental sciences. In laboratory automation, we see a lack of tools enabling prac-82

titioners to build tailored calibration models while maintaining a generalized approach. At the same time, generalized83

calibration models have the potential to improve adequacy of complex simulations in the related fields.84
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While numerous software packages for modeling biological systems are available, most are targeted towards complex85

biological networks and do not consider calibration modeling or application to large hierarchical datasets. Notable86

examples are Data2Dynamics [14] or PESTO [15], both allowing to customize calibration models and the way the87

measurement error is described. However, both tools are implemented in MATLAB and are thus incompatible with88

data analysis workflows that leverage the rich ecosystem of scientific Python libraries. Here, Python packages such as89

PyCoTools3 [16] for the popular COPASI software [17] provide valuable functionality, but are limited with respect90

to custom calibration models, especially in a Bayesian modeling context. To the best of our knowledge, no Python91

framework exists so far that provides customized calibration models that are at the same time compatible with Bayesian92

modeling, provide profound uncertainty analysis and modular application with other libraries.93

1.3 Aim of this study94

This study aims to build an understanding of how calibration models can be constructed to describe both location and95

spread of measurement outcomes such that uncertainty can be quantified. In two parts, we demonstrate a toolbox for96

calibration models on the basis of application examples, thus showing how it directly addresses questions typical for97

quantitative data analysis.98

In part one (Section 4.1) we demonstrate how to construct such calibration models based on a reparametrized asymmetric99

logistic function applied to a photometric assay. We give recommendations for obtaining calibration data and introduce100

accompanying open-source Python software that implements object-oriented calibration models with a variety of101

convenience functions.102

In part two (Section 4.2) we show how calibration models can become part of elaborate process models to accurately103

describe measurement uncertainty caused by experimental limitations. We introduce a generic framework for refining104

a template process model into a hierarchical model that flexibly shares parameters across experimental replicates105

and connects the model prediction with observed data via the previously introduced calibration models. This generic106

framework is applied to build an ordinary differential equation (ODE) process model for 24 microbial growth curves107

gained in automated, high-throughput experiments. Finally, we demonstrate how the calibration model can be applied108

to perform maximum likelihood estimation or Bayesian inference of process model parameters while accounting for109

non-linearities in the experimental observation process.110

Although this paper chooses biotechnological applications, the presented approach is generic and the framework thus111

applicable to a wide range of research fields.112

2 Theoretical Background113

2.1 Probability theory for calibration modeling114

Probability distributions are at the heart of virtually all statistical and modeling methods. They describe the range of115

values that a variable of unknown value, also called random variable, may take, together with how likely these values116

are. This work focuses on univariate calibration tasks, where a continuous variable is obtained as the result of the117

measurement procedure. Univariate, continuous probability distributions such as the Normal or Student’s-t distribution118

are therefore relevant in this context. Probability distributions are described by a set of parameters, such as {µ, σ} in119

the case of a Normal distribution, or {µ, scale, ν} in the case of a Student’s-t distribution.120

To write that a random variable "rv" follows a certain distribution, the ∼ symbol is used: rv ∼ Student’s-t(µ, scale, ν).121

The most commonly found visual representation of a continuous probability distribution is in terms of its probability122

density function (PDF, Figure 1), typically written as p(rv).123

The term rv conditioned on d is used to refer to the probability that an observation of rv takes the value d. It is written124

as p(rv | d) and corresponds to the value of the PDF at position d.125

A related term, the likelihood L, takes the inverse perspective and is proportional to the probability of making the126

observation d, given that rv has a certain value (Equation 1). In practice, L(rv | d) is often easy to access, whereas127

p(d | rv) is hard to compute analytically. Therefore, most methods for the estimation of model parameters (Section 2.2)128

exploit the proportionality and just use L.129

L(rv | d) ∝ p(d | rv) (1)

When only considering the observed data, the probability of the random variable conditioned on data (p(rv | d), can be130

obtained by normalizing the likelihood by its integral (Equation 2).131
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p(rv | d) =
L(rv | d)∫
L(rv | d)

(2)

In situations where only limited data is available, a Bayesian statistician argues that prior information should be taken132

into account. The likelihood can then be combined with prior beliefs into a posterior probability according to Bayes’133

rule Equation 3.134

p(rv | d) =
p(rv) · L(rv | d)∫
p(rv) · L(rv | d)

(3)

According to Equation 3, the posterior probability p(rv | d) of the random variable rv given the data is equal to the135

product of prior probability times likelihood, divided by its integral. From the Bayesian perspective, Equation 2 can136

be understood as a special case of Bayes’ rule Equation 3 with flat (uninformative) prior information. For a thorough137

introduction on Bayesian methods, we refer the interested reader to [18].138

Figure 1: Comparison between Normal and Student-t distribution
In the left chart, the probability density function (PDF) of a Normal distribution, as well as two Student’s-t distributions with
varying degree of freedom (ν) are shown. Both distributions are parametrized by a location parameter µ that is equal to the mean
and mode of these distributions. In addition to µ, the Normal is parametrized by its standard deviation parameter σ, influencing
the spread of the distribution. In contrast, the Student’s-t distribution has two spread parameters {scale, ν} and is characterized
by more probability mass in the tails of the PDF, not approaching 0 as quickly as the PDF of the Normal. With increasing ν, the
Student’s-t distribution becomes more similar to the Normal distribution. The log probability density (right) of the Normal dis-
tribution accelerates has a quadratic dependency on the distance to the mean, whereas the log-PDF of the Student’s-t distribution
does not go to extreme values as quickly. Because of this property, the Student’s distribution causes less numerical problems at
extreme values.

2.2 Parameter estimation139

A mathematical model ϕ is a function that describes the state of system variables by means of a set of parameters. The140

model is a representation of the underlying data generating process, meaning that the model output from a given set of141

parameters is imitating the expected output in the real system. From a known list of parameters θ, a model can make142

predictions of the system variables, in the following denominated as y⃗pred. In Machine Learning, this quantity is often143

called ˆ⃗y.144

y⃗pred = ϕ(θ⃗) (4)

A predictive model can be obtained when the parameters are estimated from observed experimental data y⃗obs. In this145

process, the experimental data is compared to data predicted by the model. In order to find the prediction matching146

the data best, different approaches of parameter estimation can be applied, sometimes also referred to as inference or147

informally as fitting.148

To obtain one parameter vector, optimization of so-called loss functions or objective functions can be applied. In149

principle, these functions compare prediction and measurement outcome, yielding a scalar that can be minimized.150

Various loss functions can be formulated for the optimization process.151

In the following, we first consider a special case, least squares estimation, before coming to the generalized approach of152

maximum likelihood estimation (MLE). The former, which is often applied in biotechnology in the context of linear153

regression, is specified in the following equation.154

4
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L = (y⃗obs − y⃗pred)
2 (5)

Here, the vectors y⃗obs and y⃗pred represent one observed time series and the corresponding prediction. If several time155

series contribute to the optimization, their differences (residuals) can be summed up:156

L =
N∑

n=0

(y⃗obs, n − y⃗pred, n)
2 (6)

To keep the notation simple, we will in the following use Yobs and Ypred to refer to the set of N time series vectors.157

However, the vectors might be of different length and thus Y should not be interpreted as a matrix notation. In later158

chapters, we will see how the Python implementation handles the sets of observations (Section 3.2.4).159

Coming back to the likelihood functions introduced in the previous chapter, the residual-based loss functions are a160

special case of a broader estimation concept, the maximum likelihood estimation (MLE):161

θ⃗MLE = argmax
θ⃗

L(θ⃗ | Yobs) (7)

Here, a probability density function is used to quantify how well observation and prediction, the latter represented by162

the model parameters, match. In case of a Normal-distributed likelihood with constant noise, the result of MLE is the163

same as a weighted least-squares loss [19]. In comparison to residual-based approaches, the choice of the PDF in a164

likelihood approach leads to more flexibility, for example covering heteroscedasticity or measurement noise that cannot165

be described by a Normal distribution.166

As introduced in Section 2.1, an important extension of the likelihood approach is Bayes’ theorem (Equation 3).167

Applying this concept, we can perform Bayesian inference of model parameters:168

p(θ⃗ | Yobs) =
p(θ⃗) · L(θ⃗ | Yobs)∫
p(θ⃗) · L(θ⃗ | Yobs)

(8)

θ⃗MAP = argmax
θ⃗

p(θ⃗ | Yobs) (9)

Similar to MLE, a point estimate of the parameter vector with highest probability can be obtained by optimization169

(Equation 9), resulting in the maximum a posteriori (MAP) estimate. While the MLE is focused on the data-based170

likelihood, MAP estimates incorporate prior knowledge p(θ⃗) into the parameter estimation.171

To obtain the full posterior distribution p(θ⃗ | Yobs), which is describing the probability distribution of parameters172

given the observed data, one has to solve Equation 8. The integral, however, is often intractable or impossible to solve173

analytically. Therefore, a class of algorithms called Markov chain Monte Carlo (MCMC) algorithms is often applied to174

find numerical approximations for the posterior distribution (for more detail, see Section 3.2.6).175

The possibility to not only obtain point estimates, but to obtain a whole distribution describing the parameter vector, is176

leading to an important concept: uncertainty quantification.177

2.3 Uncertainty quantification of model parameters178

When aiming for predictive models, it is important to not only estimate one parameter vector, but to quantify how179

certain the estimation is. In the frequentist paradigm, uncertainty is quantified with confidence intervals. When applied180

correctly, they provide a useful measure, for example in hypothesis testing where the size of a certain effect in a181

study is to be determined. However, interpretation of the confidence interval can be challenging and it is frequently182

misinterpreted as the interval that has a 95% chance to contain the true effect size or true mean [11]. However, to obtain183

intervals with such a simple interpretation, further assumptions on model parameters are required [12].184

In Bayesian inference, prior distribution provide these necessary assumptions and the posterior can be used for185

uncertainty quantification. As a consequence, Bayesian credible intervals can indeed be interpreted as the range in186

which an unobserved parameter lies with a certain probability [13]. The choice of probability level (e.g. 90 %) or187

interval bounds is arbitrary. Consequently, there are many equally valid flavors of credible intervals. The most important188

ones are:189

• Highest posterior density intervals (HDI) are chosen such that the width of the interval is minimized190
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• Equal-tailed intervals (ETI) are chosen such that the probability mass of the posterior below and above the191

interval are equal192

• Half-open credible intervals specify the probability that the parameter lies on one side of a threshold193

In the scope of this paper, we will solely focus on the Bayesian quantification of parameter uncertainty. Note that194

uncertainty of parameters should not be confused with the measurement uncertainty mentioned in the context of195

calibration in Section 1.2, which will be further explained in the following section.196

2.4 Calibration models197

Coming back to the BIPM definition of calibration (Section 1.1), we can now associate aspects of that definition198

with the statistical modeling terminology. In Figure 2 (left), the blue axis "independent" variable corresponds to the199

"quantity values" from the BIPM definition. At every value of the independent variable, the calibration model (green)200

describes the probability distribution (green slices) of measurement responses. This corresponds to the "indications201

with associated measurement uncertainties" from the BIPM definition.202

Neither the formal definition, nor the conceptual framework presented in this study impose constraints on the kind of203

probability distribution that describes the measurement responses. Apart from the Normal distribution, a practitioner204

may choose a Student’s-t distribution if outliers are a concern. The Student’s-t distribution has a v parameter that205

influences how much probability is attributed to the tails of the distribution (Figure 1), or in other words how likely it is206

to observe extreme values. Depending on the measurement system at hand, a Lognormal, Gamma, Weibull, Uniform207

or other continuous distributions may be appropriate. Also discrete distributions such as the Poisson, Binomial or208

Categorical may be chosen to adequately represent the observation process.209

For some distributions, including Normal and Student’s-t, the parameters may be categorized as location parameters210

affecting the median or spread parameters affecting the variance, while for many other distributions the commonly211

used parameterization is less not as independent. The parameters of the probability distribution that models the212

measurement responses must be described as functions of the independent variable. In the example from Figure 2,213

a Student’s-t distribution with parameters {µ, scale, ν} is used. Its parameter µ is modeled with a logistic function,214

the scale parameter as a 1st order polynomial of µ and ν is kept constant. It should be emphasized that the choice of215

probability distribution and functions to model its parameters is completely up to the domain expert.216

Figure 2: Relationship of independent and dependent variable
The distribution of measurement responses (dependent variable) can be modeled as a function of the independent variable. This
measurement response probability distribution (here: Student’s t) is parametrized by its parameters the mean µ (solid green line)
and spread parameters σ and ν. Some or all of the distributions parameters are modeled as a function of the independent variable.

When coming up with the structure of a calibration model, domain knowledge about the measurement system should217

be considered, particularly for the choice of probability distribution. An exploratory scatter plot can help to select an218

adequate function for the location parameter of the distribution (µ in case of a Normal or Student’s-t). A popular choice219

for measurement systems that exhibit saturation kinetics is the (asymmetric) logistic function. Many other measurement220

systems can be operated in a "linear range", hence a 1st order polynomial is an equally popular model for the location221

parameter of a distribution. To describe the spread parameters (σ, scale, ν, . . .), a 0th (constant) or 1st order (linear)222

polynomial function of the location parameter is often a reasonable choice.223
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After specifying the functions in the calibration model, the practitioner must fit the model (Section 2.2) and decide to224

stick with the result, or modify the functions in the model. This iteration between model specification and inspection,225

is a central aspect of modeling. A general recommendation is to find the simplest model that is in line with domain226

knowledge about the measurement system, while minimizing the lack-of-fit.227

The term lack-of-fit is used to describe systematic deviation between the model fit and data. It refers not only to the trend228

of location and spread parameters, but also to the kind of probability distribution. A residual plot is often instrumental to229

diagnose lack-of-fit and discriminate it from purely random noise in the observations. In Figure 3, different calibration230

models (top), residuals (middle) and the spread of data points along the predicted probability distribution (bottom)231

illustrate how to diagnose a lack-of-fit. A well-chosen model (D) is characterized by the random spread of residuals232

without systematic deviation and the equivalence of the modeled and observed distribution. When enough calibration233

data points are available, the modeled and observed distributions can be compared via the occupancy of percentiles.234

Figure 3: Diagnostic plots of model fits
Linear and logistic models were fitted to synthetic data to show three kinds of lack-of-fit error (columns 1-3) in comparison to
a perfect fit (column 4). The underlying structure of the data and model is as follows: A: Homoscedastic linear model, fitted to
homoscedastic nonlinear data B: Homoscedastic linear model, fitted to heteroscedastic linear data C: Homoscedastic linear model,
fitted to homoscedastic linear data that is Lognormal-distributed D: Heteroscedastic logistic model, fitted to heteroscedastic
logistic data The raw data (blue dots) and corresponding fit is visualized in the top row alongside a density band that corresponds
to the regions of highest likelihood according to the model. The residual plots in the middle row show the distance between the
data and the modeled location parameter (green line). The bottom row shows how many data points fall into the percentiles of the
predicted probability distribution. Whereas the lack-of-fit cases exhibit systematic under- and over-occupancy of percentiles, only
in the perfect fit case all percentiles are approximately equally occupied.

Whereas the BIPM definition uses the word uncertainty in multiple contexts, we prefer to always use the term to235

describe uncertainty in a parameter, but never to refer to measurement noise. In other words, the parameter uncertainty236

can often be reduced by acquiring more data, whereas measurement noise is inherent and constant. In the context of237

calibration models, the methods for uncertainty quantification (Section 2.3) may be applied to the calibration model238

parameters, the independent variable, or both. Uncertainty quantification of calibration model parameters can be useful239

when investigating the structure of the calibration model itself, or when optimization does not yield a reliable fit.240

Because the independent variable is in most cases the parameter of interest in the application of a calibration model,241

the quantification of uncertainty about the independent variable is typically the goal. To keep the examples easy and242

7
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understandable, we fix calibration model parameters at their maximum likelihood estimate; however, we would like to243

point out that calibr8 does not make this restriction.244

Figure 4: Uncertainty about the independent variable
An intuition for inferring the independent variable from an observed dependent variable is to cut (condition) the green probability
distribution model at the observed value (blue slices) and normalize its area to 1. The resulting (blue) slice is a potentially asym-
metric probability distribution that describes the likelihood of the observation, given the independent variable. Its maximum (the
maximum likelihood estimate) is the value of the independent variable that best describes the observation. For multiple observa-
tions, the probability density function for the independent variable corresponds to the product of the PDFs of the observations.
The red shoulders mark the regions outside of the 90 % equal-tailed interval.

In Figure 4, the green likelihood bands on the ground of the 3D plot represent a calibration model with fixed parameters.245

To quantify the independent variable with associated Bayesian uncertainty, it must be considered as a random variable.246

Accordingly, p(rvindependent | d) from either a likelihoodist (Equation 2) or Bayesian (Equation 3) perspective is the247

desired outcome of the uncertainty quantification.248

Given a single observed dependent variable, the likelihoodist p(rvindependent | d) (Equation 2) corresponds to the249

normalized cross-section of the likelihood bands at the observed dependent variable (Figure 4, blue slices). With250

multiple observations, p(rvindependent | d) becomes the product (superposition) of the elementwise likelihoods (Figure 4,251

blue slice at the axis). For a Bayesian interpretation of p(rvindependent | d) (Equation 3), the blue likelihood slice is252

superimposed with an additional prior distribution (not shown). More practical details on uncertainty quantification of253

the independent variable in a calibration model are given in Section 4.254

2.5 Process models255

Most research questions are not answered by inferring a single variable from some observations. Instead, typical256

questions target the comparison between multiple conditions, the value of an latent (unobservable) parameter, or257

the inter- and extrapolation of a temporally evolving system. For example, one might extract a latent parameter that258

constitutes a key performance indicator, or make decisions based on predictions (extrapolation) of new scenarios. Data259

analysis for all of these and many more scenarios is carried out with models that are tailored to the system or process260

under investigation. Such models are typically derived from theoretical (textbook) understanding of the process under261

investigation and in terms of SI units, but are not concerned with the means of making observations. Henceforth, we262

use the term process model (ϕtextpm) to describe such models and discriminate them from calibration models (ϕtextcm)263

that are explicitly concerned with the observation procedure.264

Whereas calibration models are merely univariate input/output relationships of a measurement system, process models265

may involve many parameters, hierarchy, multivariate predictions or more complicated functions such as ordinary266

or partial differential equations (ODEs, PDEs). For example, they may predict a temporal evolution of a system267

with differential equations, sharing some parameters between different conditions, while keeping others local. In268

life-sciences, time series play a central role, hence our application example is also concerned with a temporally evolving269

system.270

Nevertheless, calibration models ϕtextcm and process models ϕtextpm are models, and the methods for estimation271

of their parameters (Section 2.2) as well as uncertainty quantification (Section 2.3) apply to both. As described in272

Section 2.3, the likelihood L is the ultimate all-rounder tool in parameter estimation. The key behind our proposed273
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discrimination between calibration and process models is the observation that a calibration model can serve as a modular274

likelihood function for a process model (Equation 10).275

Ypred = ϕpm(θ⃗pm)

L(θ⃗pm | Yobs) = L(Ypred | Yobs)

L(Ypred | Yobs) ∝ p(Yobs | ϕcm(Ypred, θ⃗cm))

(10)

Conceptually separating between calibration models and process models has many advantages for the data analysis276

workflow in general. After going into more detail about the implementation of calibration models and process models277

in Section 3, we will demonstrate their application and combination in Section 4.278

3 Material and methods279

3.1 Experimental workflows280

3.1.1 Automated microbioreactor platform281

All experiments were conducted on a so-called automated microbioreactor platform. In our setup, a BioLector Pro282

microbioreactor system (m2p-labs GmbH, Baesweiler, Germany), is integrated into a Tecan Freedom EVO liquid283

handling robot (Tecan, Männedorf, Switzerland). The BioLector pro is a device to quasi-continuously observe biomass,284

pH and dissolved oxygen (DO) during cultivation of microorganisms in specialized microtiter plates (MTPs). These285

rectangular plates comprise multiple reaction cavities called "wells", usually with volumes in microliter or milliliter286

scale. The BioLector allows to control temperature and humidity while shaking the plates at adjustable frequencies287

between 800 and 1500 rpm.288

The liquid handler, which allows to take samples for at-line measurements during cultivation, is surrounded by a laminar289

flow hood to ensure sterile conditions for liquid transfer operations. Next to the BioLector Pro, various other devices are290

available on the platform, including an Infinite® M Nano+ microplate photometer (Tecan, Männedorf, Switzerland), a291

cooling carrier and a Hettich Rotanta 460 robotic centrifuge (Andreas Hettich GmbH & Co. KG, Tuttlingen, Germany).292

The overall setup is similar to the one described by Unthan et al. 2015 [8]. The automated platform enables to perform293

growth experiments with different microorganisms, to autonomously take samples of the running process and to perform294

bioanalytical measurements, e.g. quantification of glucose. It is thus a device for miniaturised, automated bioprocess295

cultivation experiments.296

In this work, we used pre-sterilized, disposable 48-well FlowerPlates® (MTP-48-B, m2p-labs GmbH, Baesweiler,297

Germany) covered with a gas-permeable sealing film with a pierced silicone layer for automation (m2p-labs GmbH,298

Baesweiler, Germany). The biomass was quasi-continuously detected via scattered light [20] at gain 3 with 4 minutes299

cycle time to obtain backscatter measurements. DO and pH were not measured since they are not relevant for the300

application examples. Both cultivation and biomass calibration experiments were conducted in the BioLector Pro at301

30 °C, 3 mm shaking diameter, 1400 rpm shaking frequency, 21% headspace oxygen concentration and ≥ 85% relative302

humidity.303

3.1.2 Strain, media preparation and cell banking and cultivation304

The wild-type strain Corynebacterium glutamicum ATCC 13032 [21] was used in this study. If not stated otherwise, all305

chemicals were purchased from Sigma–Aldrich (Steinheim, Germany), Roche (Grenzach-Wyhlen, Germany) or Carl306

Roth (Karlsruhe, Germany) in analytical quality.307

Cultivations were performed with CGXII defined medium with the following final amounts per liter of distilled water:308

20 g D-glucose, 20 g (NH4)2SO4, 1 g K2HPO4, 1 g KH2PO4, 5 g urea, 13.25 mg CaCl2 · 2 H2O, 0.25 g MgSO4 · 7 H2O,309

10 mg FeSO4 · 7 H2O, 10 mg MnSO4 ·H2O, 0.02 mg NiCl2 · 6 H2O, 0.313 mg CuSO4 · 5 H2O, 1 mg ZnSO4 · 7 H2O,310

0.2 mg biotin, 30 mg protocatechuic acid. 42 g/L MOPS were used as buffering agent and the pH was adjusted to 7.0311

using 4 M NaOH.312

A working cell bank (WCB) was prepared from a shake flask culture containing 50 mL of the described CGXII medium313

and 10 % (v/v) brain heart infusion (BHI) medium (37 g/L). It was inoculated with 100 µl cryo culture from a master314

cell bank stored at -80°C. The culture was incubated for approximately 16 hours in an unbaffled shake flask with 500 ml315

nominal volume at 250 rpm, 25 mm shaking diameter and 30 °C. The culture broth was then centrifuged at 4000× g for316

10 minutes at 4 °C and washed once in 0.9% sterile NaCl solution. After centrifugation, the pellets were resuspended317

in a suitable volume of NaCl solution to yield a suspension with an optical density at 600 nm (OD600) of 60. The318

suspension was then mixed with an equal volume of 50% (w/v) sterile glycerol, resulting in cryo cultures of OD600≈30.319
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Aliquots of 1 mL were quickly transferred to low-temperature freezer vials, frozen in liquid nitrogen and stored at320

-80°C.321

3.1.3 Algorithmic planning of dilution series322

All calibration experiments require a set of standards (reference samples) with known concentrations, spanning across323

sometimes multiple orders of magnitude. Traditionally such standards are prepared by manually pipetting a serial324

dilution with a 2x dilution factor in each step. This can result in a series of standards whose concentrations are evenly325

spaced on a logarithmic scale. While easily planned, a serial dilution generally introduces inaccuracies that accumulate326

with an increasing number of dilution steps. It is therefore desirable to plan a dilution series of reference standards such327

that the number of serial dilution steps is minimized.328

To reduce the planning effort and allow for a swift and accurate preparation of the standards, we devised an algorithm329

that plans liquid handling instructions for preparation of standards. Our DilutionPlan algorithm considers constraints330

of a (R× C) grid geometry, well volume, minimum and maximum transfer volumes to generate pipetting instructions331

for human or robotic liquid handlers.332

First, the algorithms reshapes a length R · C vector of sorted target concentrations into the user specified (R × C)333

grid typically corresponding to a microtiter plate. Next, it iteratively plans the transfer- and filling volumes of grid334

columns subject to the volume constraints. This column-wise procedure improves the compatibility with multi-channel335

manual pipettes, or robotic liquid handlers. Diluting from a stock solution is prioritized over the (serial) dilution from336

already diluted columns. The result of the algorithm are (machine readable) pipetting instructions to create R ·C single337

replicates with concentrations very close to the targets. We open-sourced the implementation as part of the robotools338

library [22].339

As the accuracy of the calibration model parameter estimate increases with the number of calibration points, we340

performed all calibrations with the maximum number of observations that the respective measurement system can make341

in parallel. The calibration with 96 glucose and 48 biomass concentrations is covered in the following chapters.342

3.1.4 Glucose assay calibration343

For the quantification of D-glucose, the commercial enzymatic assay kit "Glucose Hexokinase FS" (DiaSys Diagnostic344

Systems, Holzheim, Germany) was used. For the master mix, four parts buffer and one part enzyme solution were345

mixed manually. The master mix was freshly prepared for each experiment and incubated at room temperature for at346

least 30 minutes prior to the application for temperature stabilization. All other pipetting operations were performed347

with the robotic liquid handler. For the assay, 280 µL master mix were added to 20 µL analyte in transparent 96-well348

flat bottom polystyrol plates (Greiner Bio-One GmbH, Frickenhausen, Germany) and incubated for 6 minutes, followed349

by absorbance measurement at 365 nm. To treat standards and cultivation samples equally, both were diluted by a factor350

of 10 (100 µL sample/standard + 900 µL diluent) as part of the assay procedure.351

As standards for calibration, 96 solutions with concentrations between 0.075 and 50 g/L were prepared from fresh352

CGXII cultivation medium (Section 3.1.2) with a 50 g/L concentration of D-glucose. The DilutionPlan algorithm353

(Section 3.1.3) was used to plan the serial dilution procedure with glucose-free CGXII media as the diluent, resulting354

in 96 unique concentrations, evenly distributed on a logarithmic scale. Absorbance results from the photometer were355

parsed with a custom Python package and paired with the concentrations from the serial dilution series to form the356

calibration dataset used in Section 4.1.2. 83 of the 96 concentration/absorbance pairs lie below 20 g/L and were used to357

fit a linear model in Section 4.1.1.358

3.1.5 Biomass calibration359

Calibration data for the biomass/backscatter calibration model Figure 9 was acquired by measuring 48 different biomass360

concentrations at cultivation conditions (Section 3.1.2) in the BioLector Pro. 100 mL C. glutamicum WT culture was361

grown overnight on 20 g/L glucose CGXII medium (Section 3.1.2) in two unbaffled 500 mL shake flasks with 50 mL362

culture volume each (N=250 rpm, r=25 mm). The cultures were harvested in the stationary phase, pooled, centrifuged363

and resuspended in 25 mL 0.9 %w/v NaCl solution. The highly concentrated biomass suspension was transferred into a364

magnetically stirred 100 mL trough on the liquid handler, for automated serial dilution with logarithmically evenly365

spaced dilution factors from 1× to 1000×. The serial dilution was prepared by the robotic liquid handler in a 6× 8366

(48-well square) deep well plate (Agilent Part number 201306-100) according to the DilutionPlan (Section 3.1.3).367

6x 800 µL of biomass stock solution were transferred to previously dried and weighed 2 mL tubes, immediately after all368

transfers of stock solution to the 48 well plate had occurred. The 2 mL tubes were frozen at -80 °C, lyophilized over369

night, dried again at room temperature in a desiccator over night and finally weighted again to determine the biomass370

concentration in the stock solution.371

After a column in the 48 well plate was diluted with 0.9 %w/v NaCL solution, the column was mixed twice by372

aspirating 950 µL at the bottom of the wells and dispensing above the liquid surface. The transfers for serial dilutions373
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(columns 1 and 2) and to the 48 well FlowerPlate were executed right after mixing to minimize the effects of biomass374

sedimentation as much as possible. The FlowerPlate was sealed with a gas-permeable sealing foil (product number375

F-GP-10, m2p-labs GmbH, Baesweiler, Germany) and placed in the BioLector Pro device. The 1 h BioLector process376

for the acquisition of calibration data was programmed with shaking frequency profile of 1400, 1200, 1500, 1000 rpm377

while maintaining 30 °C chamber temperature and measuring backscatter with gain 3 in cycles of 3 minutes.378

The result file was parsed with a custom Python package and backscatter measurements made at 1400 rpm shaking379

frequency were extracted. A log(independent) asymmetric logistic calibration model was fitted as described in380

Section 4.1.2. The linear calibration model for comparison purposes (Figure 14) was implemented with its intercept381

fixed to the background signal predicted by the asymmetric logistic model (µBS(0
g
L )). It was fitted to a subset of382

calibration points approximately linearly spaced at 30 different biomass concentrations from 0.01 to 15 g/L.383

3.1.6 Microbial growth experiment384

Cultivations with C. glutamicum were performed in the automated microbioreactor platform (Section 3.1.1) under385

the described conditions. CGXII medium with 20 g/L glucose and without BHI was used as cultivation medium. To386

start the growth experiments, the liquid handler was used to transfer 20 µL of a WCB aliquot into the first column of387

FlowerPlate wells, which were pre-filled with 780 µL medium. These wells were run as a preculture. When precultures388

reached a backscatter readout of 15, which corresponds to a cell dry weight of approximately 10 g/L, the inoculation of389

the main culture wells was triggered. 780 µL medium were distributed into each main culture well (columns 2-8) and390

allowed to warm up for approximately 15 minutes. Preculture wells A01 and B01 were pooled and 20 µL culture broth391

was transferred to each main culture well, resulting in 800 µL final volume. The theoretical biomass concentration at392

the start of the main cultures is 0.25 g/L accordingly. This strategy was used to avoid a lag-phase with non-exponential393

growth.394

Backscatter measurements of biomass concentration were acquired continuously, while main culture wells were395

harvested at predetermined time points to measure glucose concentrations in the supernatant. The time points were396

chosen between 0 and 15 hours after the inoculation of main cultures to cover all growth phases. For harvesting, the397

culture broth was transferred to a 1 mL deep-well plate by the liquid handler. The plate was centrifuged at 3190× g at398

4 °C for 5 minutes and the supernatant was stored on a 1 mL deep well plate chilled to 4 °C. The glucose assay was399

performed after all samples were taken.400

3.2 Computational methods401

All analyses presented in this study were performed with recent versions of Python 3.7, PyMC3 ==3.11.2 [23],402

ArviZ >=0.9 [24], PyGMO >=2.13 [25], matplotlib >=3.1 [26], NumPy >=1.16 [27], pandas >=0.24 [28, 29],403

SciPy >=1.3 [30] and related packages from the Python ecosystem. For a full list of dependencies and exact versions404

see the accompanying GitHub repository and supporting information.405

The two packages presented in this study, calibr8 and murefi , may be installed via semantically versioned releases on406

PyPI. Source code, documentation and detailed release notes are available through their respective GitHub projects [31,407

32].408

3.2.1 Asymmetric logistic function409

The asymmetric, five-parameter logistic function (also known as Richard’s curve) was previously shown to be a good410

model for many applications [33], but it is often defined in a parameterization (Equation 11) that is non-intuitive. Some411

parametrizations even introduce a sixth parameter to make the specification more intuitive, but this comes at the cost of412

structural non-identifiability [34, 35]. Furthermore, in the most commonly found parametrization (Equation 11), one413

parameter is constrained to be strictly positive. We also found that structural non-identifiability between the parameters414

makes it difficult to define an initial guess and bounds to reliably optimize a model based on this parametrization.415

f(x) = LL +
LU − LL

(1 + e−B(m−x))1/v

LL, LU , B,m ∈ R
v ∈ R>0

(11)

To make calibration model fitting more user friendly, we reparameterized the commonly used form such that all five416

parameters are intuitively interpretable and structurally independent Figure 5. With our reparameterization (Equation 12),417

the 5-parameter asymmetric logistic function is parameterized by lower limit LL ∈ R, upper limit LU ∈ R, inflection418
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point x-coordinate Ix ∈ R, slope at inflection point S ∈ R and an asymmetry parameter c ∈ R. At c = 0, the y-419

coordinate of the inflection point lies centered between LL and LU . Iy moves closer to LU when c > 0 and accordingly420

closer to LL when c < 0 (Figure 5, black and gray curves). An interactive version of Figure 5 can be found in a Jupyter421

notebook in the calibr8 GitHub repository ([31]).422

Figure 5: Reparametrized Asymmetric Logistic Function
When parametrized as shown in Equation 12, each of the 5 parameters can be manipulated without influencing the others. Note
that, for example, the symmetry parameter c can be changed without affecting the x-coordinate of the inflection point (Ix), or the
slope S at the inflection point (gray vs. black).

For readability and computational efficiency, we used SymPy [36] to apply common subexpression elimination to423

Equation 12 and our implementation respectively (Code 6). The step wise derivation from Equation 11 to Equation 12424

is shown in Appendix A.1 and in a Jupyter notebook in the calibr8 GitHub repository ([31]).425

f(x) = LL +
LU − LL

(es2·(s3·(Ix−x)+ c
s2

) + 1)s1

s0 = ec + 1

s1 = e−c

s2 = s
(s0·s1)
0

s3 =
S

LU − LL

LL, LU , Ix, S, c ∈ R

(12)

3.2.2 calibr8 package for calibration models and modular likelihoods426

With calibr8 we present a lightweight Python package that specializes on the definition and modular implementation427

of non-linear calibration models for calibration and modeling workflows.428

The calibr8 application programming interface (API) was designed such that all calibration models are implemented429

as classes that inherit from calibr8.CalibrationModel, which implements properties and methods that are common430

to all calibration models (Figure 6). The common interface simplifies working with calibration models in a data431

analysis or modeling workflow. For example, the CalibrationModel.objective can be used to create objective432

functions to optimize the model parameters. The objective relies on the loglikelihood method to compute the sum433

of log-likelihoods from independent and dependent variables. It uses the predict_dependent method internally to434

obtain the parameters of the probability distribution describing the dependent variables, conditioned on the independent435

variable.436

Through its inheritance-based design, the calibr8.CalibrationModel gives the domain expert full control over the437

choice of trend functions and probability distributions. Conveniently, calibr8 already implements functions such438

as polynomial, logistic and asymmetric_logistic, as well as base classes for commonly found models. By439

leveraging these base models, the implementation of a user-defined calibration model reduces to just a few lines of code440
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Figure 6: calibr8 Class Diagram
All calibr8 models inherit from the same CalibrationModel class that defines attributes, properties and method sig-
natures that are common to all calibration models. Some methods, like save() or objective() are implemented by
CalibrationModel directly, whereas others are implemented by the inheriting classes. Specifically the loglikelihood and the
predict_* methods depend on the choice of the domain expert. With a suite of Base*T classes, calibr8 provides base classes
for models based on Students-t distributed observations. A domain expert may start from any of these levels to implement a cus-
tom calibration model for a specific application.

(Code 1 and Code 2).441

The implementations depicted in Figure 6 are fully compatible with aesara.Variable inputs, resulting in442

TensorVariable outputs. Aesara is a graph computation framework that auto-differentiates computation graphs443

written in Python and compiles functions that evaluate with high performance [37]. This way, the loglikelihood444

function of a CalibrationModel can be auto-differentiated and compiled, to facilitate efficient computation with445

optimization or gradient-based MCMC sampling algorithms (Section 3.2.6). For more details about the implementation,446

please refer to the documentation and code of the calibr8 package ([31]).447

Convenience features To facilitate modeling workflows, calibr8 implements convenience functions for optimization448

(fit_scipy, fit_pygmo) and creation of diagnostic plots (calibr8.plot_model) as shown in Figure 8 and Figure 9.449

As explained in Section 2.4 the residual plot on the right of the resulting figure is instrumental to judge the quality of450

the model fit.451

Standard properties of the model, estimated parameters and calibration data can be saved to a JSON file via the452

CalibrationModel.save method. The saved file includes additional information about the type of calibration model453

and the calibr8 version number (e.g. Code 9) to support good versioning and data provenance practices. When the454

CalibrationModel.load method is called to instantiate a calibration model from a file, standard properties of the455

new instance are set and the model type and calibr8 version number are checked for compatibility.456
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3.2.3 Numerical inference457

To numerically infer the posterior distribution of the independent variable, given one or more observations,458

infer_independent implements a multi-step procedure. The three outputs of this procedure are A a vector of459

posterior probability evaluations, densely resolved around the locations of high probability mass, and B the bounds of460

the equal-tailed, and highest-density intervals (ETI, HDI) corresponding to a user specified credible interval probability.461

In the first step, the likelihood function is integrated in the user specified interval [lower, upper] with462

scipy.integrate.quad. Second, we evaluate its cumulative density function (CDF) at 10 000 locations in463

[lower, upper] and determine locations closest to the ETI99.999 %. Next, we re-evaluate the CDF at 100 000 loca-464

tions in the ETI99.999 % to obtain it with sufficiently high resolution in the region of highest probability. Both ETI and465

HDI with the (very close to) user specified ci_prob are obtained from the high resolution CDF. Whereas the ETI is466

easily obtained by finding the CDF evaluations closest to the corresponding lower and upper probability levels, the HDI467

must be determined through optimization (Equation 13).468

HDI = [a, a+ d] = argmin
a,d

{
∞ if CDF(a+ d)− CDF(a) < ci_prob
d otherwise

(13)

3.2.4 murefi package for building multi-replicate ODE models469

Models of biochemical processes are traditionally set up to describe the temporal progression of an individual system,470

such as a reaction vessel. Experimental data, however, is commonly obtained from multiple reaction vessels in parallel,471

often run under different conditions to maximize information gain. This discrepancy between the prototypical model472

of the biological system and the heterogeneous experimental data to be fitted is typically resolved by replicating the473

model for all realizations of the biological system in the dataset. Along with the replication of the model, some model474

parameters may be kept global, while others can be local to a subset of the replicates, for example due to batch effects475

or different start conditions.476

With a Python package we call murefi (multi-replicate fitting), we implemented data structures, classes and auxiliary477

functions that simplify the implementation of models for such heterogeneous time series datasets. It seamlessly478

integrates with calibr8 to construct likelihood-based objective functions for optimization or Bayesian inference. To479

enable the application of efficient optimization or sampling algorithms, the use of automatic differentiation to obtain480

gradients of the likelihood w.r.t. input parameters is highly desirable. Various methods for automatic differentiation of481

ODE models are available, but their efficiency is closely connected to the implementation and size of the model [38]. In482

murefi we implemented support for sunode [39], a recently implemented Python wrapper around the SUNDIALS suite483

of nonlinear and differential/algebraic equation solvers [40]. When used in the context of a PyMC3 model, a process484

model created with calibr8 and murefi can therefore be auto-differentiated, solved, optimized and MCMC-sampled485

with particularly high computational efficiency.486

Structure of time series data and models To accommodate for the heterogeneous structure of time series experiments487

in biological applications, we implemented a data structure of three hierarchy levels. The murefi.Timeseries object488

represents the time and state vectors t⃗, y⃗ of a single state variable or observation time series. To allow association of489

state and observed variables via calibr8 calibration models, the Timeseries is initialized with independent_key490

and dependent_key. Multiple Timeseries are bundled to a murefi.Replicate, which represents either the491

observations obtained from one reaction vessel, or the predictions made by a process model. Consequently, the492

murefi.Dataset aggregates replicates of multiple reaction vessels, or the model predictions made for them (Figure 7493

center). To allow for a separation of data preprocessing and model fitting in both time and implementation, a494

murefi.Dataset can be saved as and loaded from a single HDF5 file [41, 42].495

To describe a reaction system by a system of ordinary differential equations, a new class is implemented by subclassing496

the murefi.BaseODEModel convenience type. In the constructor of the class, the names and order of parameters and497

state variables are defined, whereas the differential equations are implemented in a dydt class method. An example is498

shown in Code 3 with the implementation of the Monod kinetics for microbial growth.499

Parameter mapping and objective function In addition to a murefi model instance, a murefi.Dataset and500

calibration models, a murefi.ParameterMapping must be defined to facilitate the creation of an objective function.501

This mapping specifies whether parameters are local or global and the rules with which they are shared between502

replicates. The ParameterMapping may be represented as a table, assigning each element of replicate-wise parameter503

vectors to constants or names of parameters in a comprehensive parameter vector. In Figure 7, the parameter mapping is504

depicted by arrows mapping elements of a 3-element comprehensive parameter vector to 2-element parameter vector of505

the replicate-wise models. A table-representation of the parameter mapping used to fit the Monod model in Section 4.2506

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.30.450546doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450546
http://creativecommons.org/licenses/by/4.0/


Bayesian calibration, process modeling and uncertainty quantification in biotechnology

Figure 7: Data structures and computation graph of murefi models
Elements in a comprehensive parameter vector are mapped to replicate-wise model instances. In the depicted example, the model
instances for both replicates "B1" and "B2" share θ1,global as the first element in their parameter vectors. The second model
parameter θ2 is local to the replicates, hence the full parameter vector (left) is comprised of three elements. Model predictions
are made such that they resemble the structure of the observed data, having the same number of time points for each predicted
time series. An objective function calculating the sum of log-likelihoods is created by associating predicted and observed time
series via their respective calibration models. By associating the calibration models based on the dependent variable name, a
calibration model may be re-used across multiple replicates, or kept local if, for example, the observations were obtained by
different methods.

is shown in Table 2.507

Model predictions are made such that the time points of the predicted time series match those of the observed data508

(Figure 7, center). Based on the (in)dependent_key, the predicted and observed Timeseries can be associated with509

each other and passed to the corresponding CalibrationModel.loglikelihood method to calculate L(θ⃗ | Yobs).510

Note that this procedure conveniently allows for calibration models to be shared by multiple replicates, as well as511

making observations of one state variable with more than one analytical method.512

An objective function performing the computation depicted in Figure 7 can be created with a single call to a convenience513

function. For compute-efficient optimization and specifically Bayesian parameter estimation, the elements in the514

parameter vector can also be Aesara tensors, resulting in the creation of a symbolic computation graph. The computation515

graph can not only be statically compiled, but also auto-differentiated, if all operations in the graph are also auto-516

differentiable. This is already the case for standard calibr8 calibration models and is also available for murefi -based517

process models when the sunode [39] package is installed.518

3.2.5 Optimization519

In this work optimization algorithms are involved at multiple steps of the workflow. Unless otherwise noted we used520

scipy.optimize.minimize with default settings to obtain the MLEs of calibration and process models. Our implementation521

to compute HDIs (Section 3.2.3) uses scipy.optimize.fmin, as we found that the convergence with the underlying522

Nelder-Mead simplex algorithm was more reliable than with gradient-based optimizers from scipy.optimize.minimize.523

Initial guesses, as well as parameter bounds for maximum-likelihood optimization, were motivated from prior assump-524

tions or exploratory plots of the data. Based on the intuitive parametrization of the asymmetric logistic (Section 3.2.1)525

we specified initial guesses for calibration models such that the model prediction from the guessed parameter vector was526

at least in the same order of magnitude as the data. For maximum likelihood estimation of process model parameters,527

the guessed parameters were motivated from prior assumptions. Likewise, we specified bounds to be realistic both528

biologically and based on exploratory scatter plots of the data.529

3.2.6 MCMC sampling530

In contrast to optimization, MCMC sampling follows a very different paradigm. Whereas in maximum likelihood531

estimation the likelihood function is iteratively evaluated to find its maximum, Bayesian inference aims to approximate532

the posterior probability distribution according to Equation 8.533

Most sampling algorithms draw the posterior samples in the form of a Markov chain with a equilibrium distribution that534

matches the posterior probability distribution. While early MCMC algorithms, such as Random-walk Metropolis [43]535

are conceptually simple and easy to implement, they are computationally ineffective on problems with more than just a536

handful of dimensions [44, 45]. Instead of implementing inefficient algorithms by hand, practitioners can rely on state537
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of the art libraries for Bayesian inference. These libraries apply automatic transformations, provide diagnostic tools and538

implement much more efficient sampling algorithms that often use gradients dL
dθ for higher computational efficiency.539

Probabilistic programming languages/libraries (PPL), such as PyMC3 [46], Pyro [47], Stan [48] or Tensorflow Probabil-540

ity [49] use automatic differentiation and typically implement at least one of the gradient-based sampling algorithms541

Hamiltonian Monte Carlo (HMC) or No-U-Turn Sampling (NUTS) [45]. PyMC3, the most popular Python-based PPL,542

implements both gradient-based (HMC, NUTS) as well as gradient-free algorithms, such as Differential Evolution543

MCMC (DE-MCMC) [50], DE-MCMC-Z [44] or elliptical slice sampling [51] in Python, allowing easy integration544

with custom data processing and modeling code. In this study, PyMC3 was used to sample posterior distributions with545

either DE-MCMC-Z (pymc3.DEMetropolisZ) or NUTS.546

547

MCMC sampling of the process model Whereas in DE-MCMC, proposals are informed from a random pair548

of other chains in a "population", the DE-MCMC-Z version selects a pair of states from its own history, the "Z"-549

dimension. Compared to DE-MCMC, DE-MCMC-Z yields good results with less chains that can run independently.550

The pymc3.DEMetropolisZ sampler differs from the original DE-MCMC-Z in a tuning mechanism by which a551

tune_drop_fraction of by default 90% of the samples are discarded at the end of the tuning phase. This trick reliably552

cuts away unconverged "burn-in" history, leading to faster convergence.553

pymc3.DEMetropolisZ was applied to sample the process model in Section 4.2.3. MCMC chains were initialized554

at the MAP to accelerate convergence of the DE-MCMC-Z sampler in the tuning phase. 50 000 tuning iterations per555

chain were followed by 500 000 iterations to draw posterior samples for further analysis. The DEMetropolisZ settings556

remained fixed at (λ = 2.38√
2·d (default), ϵ = 0.0001) for the entire procedure.557

The R̂ diagnostic from ArviZ [24] was used to check for convergence (all R̂ ≈ 1, Appendix A.3).558

3.2.7 Visualization techniques559

Plots were prepared from Python with a combination of matplotlib [26], ArviZ and PyMC3. We used POV-Ray to560

produce Figure 2 and Figure 4 and https://diagrams.net for technical drawings. Probability densities were visualized561

with the pymc3.gp.utils.plot_gp_dist helper function that overlays many polygons corresponding to percentiles562

of a distribution, creating the colorful bands seen in Figure 15 and others. Posterior predictive samples were obtained563

by randomly drawing observations from the calibration model, based on independent values sampled from the posterior564

distribution. If not stated otherwise, the densities plotted for MCMC prediction results were obtained from at least565

1000 posterior samples. The pair-plot of 2-dimensional kernel density estimates of posterior marginals (Figure 17) was566

prepared with ArivZ.567

4 Results and discussion568

4.1 Application: Implementing (non-)linear calibration models with calibr8569

A common application of calibration models in life sciences are enzymatic assays, where the quantification of glucose570

is one out of many popular examples. In this section, data from a glucose assay is used as a demonstration case for571

building calibration models with calibr8 . First, the linear range of the assay is described by the corresponding linear572

calibration model to then explore an extended concentration range by implementing a calibration model with logistic573

trend of the location parameter. We examine a second calibration example that is nonlinear in its nature, namely the574

backscatter/biomass relationship of measurements with a BioLector Pro device (Section 3.1.1), to then demonstrate575

how uncertainty estimates for biomass concentrations can be easily obtained with calibr8 .576

4.1.1 Linear calibration model577

To acquire data for the establishment of a calibration model, 96 glucose standards between 0.001 and 50 g/L were578

subjected to the glucose assay. A frequent approach to calibration modeling in life sciences is to identify the linear579

range of an assay and to discard measurements outside this range. From a previous adaptation of the glucose assay580

for automation with liquid handling robotics, the linear range was expected to be up to 2 g/L (Holger Morschett,581

personal communication, 2019). Since samples are diluted by a factor of 10 before the assay, 83 glucose standards with582

concentrations below 20 g/L remain for a linear calibration model.583

As described in Section 2.4, calibration models use a probability distribution to describe the relation between independent584

variable and measurement outcome, both subject to random noise. In this example, we chose a Student-t distribution,585

thus the change of location parameter µ over the independent variable determines the trend of the calibration model.586

calibr8 provides a convenience class BasePolynomialModelT that was used to implement a glucose calibration587
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model with linear trend (Code 1). For the spread parameter scale, we also chose a linear function dependent on µ to588

account for increasing random noise in dependency of the absorbance readout of the assay. Both can easily be adapted589

by changing the respective parameters mu_degree and scale_degree passed to the constructor of the convenience590

class. The degree of freedom ν in a BasePolynomialModelT is estimated from the data as a constant.591

Code 1: Implementation of glucose/absorbance calibration model using convenience type
1 class LinearGlucoseCalibrationModelV1 (base. BasePolynomialModelT ):592

2 def __init__(self , ∗, independent_key :str=’S’, dependent_key :str=’A365 ’):593

3 super ().__init__(594

4 independent_key = independent_key ,595

5 dependent_key = dependent_key ,596

6 mu_degree =1,597

7 scale_degree =1598

8 )599

Figure 8: Linear (top) and logistic (bottom) calibration model of glucose assay
A calibration model comprising linear functions for both the location parameter µA365 and the scale parameter of a Student-t
distribution was fitted to calibration data of glucose standard concentrations (0.05-20 g/L) and absorbance readouts by maximum
likelihood estimation (A-C). The calibration data used to fit the linear model is the 0.05-20 g/L subset of standards that were
spaced evenly on a log-scale up to 50 g/L (B, E). Likewise, a calibration model with a 5-parameter asymmetric logistic func-
tion for the µ parameter of the Student-t distribution was fitted to the full 0.05-50 g/L calibration dataset (D-E). In both models,
the scale parameter was modeled as a 1st-order polynomial function of µ and the degree of freedom ν as a constant. Standard
concentrations were spaced evenly on a log-scale between 0.05 and 20 g/L (B, E). The extended range of calibration standard con-
centrations up to 50 g/L reveals a saturation kinetic of the glucose assay (A, D) and depending on the glucose concentration, the
residuals (C, F) with respect to the modeled location parameter are scattered by approximately 5 %. Modeling the scale parameter
of the distribution as a 1st-order polynomial function of µ describes the broadening of the distribution at higher concentrations
(C).

The calibration model resulting from MLE of location and spread parameters was plotted with another calibr8600

convenience function (Figure 8 A-C). The plot shows the calibration model and measurement data (Figure 8 A), the601

same relation with a logarithmic x-axis (Figure 8 B) and the relative residuals of data and model predictions (Figure 8 C).602

As it is often recommended for biological assays, the glucose concentrations of the dilution series were evenly spaced603
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on a logarithmic scale [52, 53], thus ensuring a higher accuracy of the model in the low-concentrated area (Figure 8 B).604

To evaluate the quality of the linear calibration model, the residuals of data and model prediction were analyzed605

(Figure 8 C). Overall, the residuals lie between ±5% of the observed values, demonstrating the high precision of the606

data. For concentrations higher than 0.6 g/L, an s-shaped trend is observed in the residuals, meaning that data first lies607

below and then above the linear model prediction. This indicates a lack-of-fit as described in Section 2.4. However,608

the discrepancy might also be caused by errors in the serial dilution that was pipetted with the robotic liquid handler,609

resulting in deviations from the expected linear relation. Moreover, it can be seen that the relative spread of residuals610

is quite constant, meaning that the absolute deviation increases with higher concentrations (Figure 8 C). Although611

the linearly increasing scale parameter accounts for this rise of the underlying random noise, it can be seen that it is612

slightly overestimated by the model since all data points above 2 g/L lie within a 90 % probability interval.613

In comparison to simple linear regression, which is often evaluated by the coefficient of determination R2 alone, the614

demonstrated diagnostics allow to judge whether the choice of model is appropriate. In this case, a more sophisticated615

model for the spread of the Student-t distribution could be chosen to reduce the lack-of-fit. Moreover, all data points616

lying above 20 g/L were not considered so far to allow for a linear model. In the following, we will therefore modify617

the existing calibration model to include a logistic function for the location parameter.618

4.1.2 Logistic calibration model619

Although linear calibration models are useful in many cases, some relations in datasets are non-linear in their nature.620

Moreover, restricting analytical measurements to an approximately linear range instead of calibrating all concentrations621

of interest can be limiting. If the order of magnitude of sample concentrations is unknown, this leads to laborious dilution622

series or repetition of measurements to ensure that the linear range is met. In contrast, non-linear calibration models623

allow to describe complex relationships and, in case of biological assays, to reduce these time- and material-consuming624

workflows.625

Many recommendations for experimental design in calibration can be found in literature (e.g. [52]). Having determined626

the range of interest for the calibration model, it should be exceeded in both directions if possible, thus ensuring627

that the relevant concentrations are well-covered. This way, all model parameters, including limits where applicable,628

can be identified from the observed data. Afterwards, the expected relationship between dependent and independent629

variable is to be considered. Since the glucose assay readout is based on absorbance in a plate reader (Section 3.1.4),630

which has a lower and upper detection limit, a saturation effect at high glucose concentrations is expected. In our631

demonstration example, glucose concentrations of up to 50 g/L were targeted to cover relevant concentration for632

cultivation (Section 4.2) and at the same time to exceed the linear range towards the upper detection limit.633

Sigmoidal shapes in calibration data, e.g. often observed for immunoassays, can be well-described by logistic func-634

tions [33]. In the calibr8 package, a generalized logistic function with 5 parameters is used in an interpretable form635

(Section 3.2.1). It was used to implement a calibration model where the location parameter µ is described by a logistic636

function dependent on the glucose concentration. A respective base class BaseAsymmetricLogisticT is provided by637

calibr8 (Appendix A.1). Using the whole glucose dataset up to 50 g/L, parameters of the new calibration model were638

estimated (Figure 8 D-F).639

Overall, the logistic trend of the location parameter matches the extended calibration data well (Figure 8 D, E). Since the640

scale parameter of the Student-t distribution is modeled as a linear function dependent on µ, the width of the likelihood641

bands approaches a limit at high glucose concentrations (Figure 8 F). For concentrations greater than 3 g/L, no residuals642

lie outside of the 90 % probability interval, indicating that the distribution spread is overestimated as it was before.643

Importantly, a direct comparison between the two calibration models (Figure 8 C, F) reveals a high similarity in the644

reduced range (< 20 g/L). This demonstrates how a non-linear model extends the range of concentrations available for645

measurement and modeling while improving the quality of the fit. For the glucose assay, truncating to a linear range646

thus becomes obsolete.647

While non-linear models were so far shown to be useful to extend the usable concentration range of an assay,648

other applications do not allow to linearly approximate a subrange of measurements. Such an example is the on-649

line detection of biomass in growth experiments, where the non-invasive backscatter measurement of a BioLector650

Section 3.1.1 does not allow for dilution of the cell suspension during incubation. To model the distribution of651

backscatter observations as a function of the underlying biomass concentration, a structure similar to the glucose652

calibration model was chosen. In contrast, the location parameter µ was modeled by a polynomial function of653

the logarithmic cell dry weight (CDW). The final CDW/backscatter calibration model was implemented using the654

calibr8.BaseLogIndependentAsymmetricLogisticT convenience class Code 2.655

Code 2: Implementation of CDW/backscatter calibration model using convenience type
1 class BioLectorCDWBackscatterModelV1 ( calibr8 . BaseLogIndependentAsymmetricLogisticT ):656

2 def __init__(self , ∗, independent_key :str=’X’, dependent_key :str=’BS’):657

3 super ().__init__(658

4 independent_key = independent_key ,659
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5 dependent_key = dependent_key ,660

6 scale_degree =1661

7 )662

Figure 9: Calibration model of biomass-dependent backscatter measurement
Backscatter observations from two independent calibration experiments (1400 rpm, gain=3) on the same BioLector Pro were
pooled. A non-linearity of the backscatter/CDW relationship is apparent already from the data itself (A). The evenly spaced
calibration data (B) are well described with little lack-of-fit error (C). At low biomass concentrations the relative spread of the
measurement responses starts at ca. 20 % and reduces to approximately 2 % at concentrations above 10 g/L.

Two independent experiments were conducted to obtain calibration data as described in Section 3.1.5. The model663

was fitted to pooled data using the calibr8.fit_pygmo convenience function. As shown in Figure 9, the model664

accurately describes the nonlinear correlation between biomass concentration and observed backscatter measurements665

in the BioLector Pro device (Figure 9 A, B). Non-linearity is particularly observed for biomass concentrations below666

10 g/L (Figure 9 A). Moreover, the residual plot (Figure 9 C) mainly shows a random distribution; solely residuals667

between 1 and 3 g/L indicate a lack-of-fit. To assess the potential influence, the resulting uncertainty in estimated668

biomass concentrations has to be considered, which will be further discussed in Section 4.1.3. Overall, the chosen669

logistic calibration model describes the calibration data well and is thus useful to transform backscatter measurements670

from the BioLector device into interpretable quantitative biomass curves.671

In summary, this section illustrated how calibration models can be built conveniently with calibr8 and showed that672

the asymmetric logistic function is suitable to describe many relationships in biotechnological measurement systems.673

Having demonstrated how concentration/readout relations can be described by different calibration models, a remaining674

question is how to apply those calibration models. An important use-case is to obtain an estimate of concentrations in675

unknown samples, where uncertainty quantification is a crucial step.676

4.1.3 Uncertainty quantification on independent variables677

After establishing a calibration model, the practitioner can in most cases consider the parameters of the model as fixed.678

Characterization of measurement reproducibility is thereby externalized into the calibration procedure, where random679

noise is inherently described by the spread of a probability distribution. The calibration model can then be put into680

application for the quantification of the independent variable from new observations. As introduced before, not only a681

single value of the independent variable is desired, but also a measure of uncertainty about it.682

Quantifying the uncertainty in the independent variable as a continuous probability density is not only intuitive to683

visually interpret (Section 2.4), but also flexible with respect to the question of interest. To quantify the uncertainty684

numerically, various kinds of credible intervals (Section 2.3) can be obtained. For example, one might estimate the685

equal-tailed interval in which the independent variable lies with 90 % probability, or alternatively the probability that it686

lies above a certain threshold.687

In calibr8 , the CalibrationModel.infer_independent method is used to perform the uncertainty quantification688

from one or more observations. Internally, it uses the loglikelihood method of the calibration model and numerically689

integrates the sum of log-likelihoods over a user-specified range of plausible independent variables (Section 3.2.3). The690
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resulting calibr8.NumericPosterior is equivalent to Equation 14, where the prior p(x) is specifying the plausible691

range.692

p(x | y⃗obs) =
L(x | y⃗obs) · p(x)∫∞

−∞ L(x | y⃗obs) · p(x) dx
=

L(x | y⃗obs) · p(x)∫ b

a
L(x | y⃗obs) dx

where p(x) = Uniform(a, b)

(14)

For convenience, the CalibrationModel.infer_independent method automatically determines median and credi-693

ble interval (ETI and HDI) bounds. It determines vectors for the independent variable and the conditional probability694

density that can be plotted without further processing.695

Figure 10: Independent variable PDFs in various observation scenarios
Posterior densities inferred from various numbers of observations corresponding to different biomass concentrations are
shown (A). The ends of the drawn lines in A indicate the 95 % equal-tailed interval. Near biomass concentrations of 0, the
posterior density is asymmetric (A, blue), indicating that very low concentrations can not be distinguished. As the number of
observations grows, the probability mass is concentrated and the ETIs shrink (A, oranges). The choice of a Student-t distribution
model can lead to a multi-modality of the inferred posterior density when observations lie far apart (B). For asymmetric distri-
butions, the median (dashed line) does not necessarily coincide with a mode and equal-tailed and highest-density intervals (ETI,
HDI) can be different. Maximum likelihood estimates from individual observations, as obtained via predict_independent are
shown as arrows. Note: y⃗obs and the model’s ν parameter were chosen at extreme values for illustrative purposes.

In Figure 10, various inferences obtained with infer_independent are illustrated with a biomass calibration model.696

For example, observations in the lower or upper saturation of the measurement system typically result in one-sided697

probability densities, and repetitive observations result in a narrowing of the distribution (Figure 10, A).698

When the calibration model assumes the possibility of outliers (Student-t distributed measurement responses), the699

observation of drastically different measurement responses can translate into a multi-modal posterior belief in the700

independent variable. The intuition behind this multi-modality is that a subset of observations are "outliers" from the701

perspective of the remaining observations and vice versa. In the example shown in Figure 10, the three observations702

around 0.5 could be "outliers", or the ones around 1.3, but from the data alone both are equally likely. Hence the703

posterior belief in the biomass concentration is bimodal.704

The Bayesian, or likelihood-based perspective on uncertainty in the independent variable (Equation 14) allows for705

quantification of uncertainty even with single observations, close to zero, or close to saturation limits of the measurement706

system. Calibration models built with calibr8 are easy to set up, visualize and diagnose and can thus be flexibly707

integrated into existing data analysis workflows of various domains. Moreover, the set-up in a versatile, object-oriented708

programming language such as Python allows to use calibr8 in high-throughput, automated experiments where709

hundreds of calibration models must be fitted. Next, we will build upon the presented biomass and glucose calibration710
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models and demonstrate how combining them with a bioprocess model enables to gain insight into the growth phenotype711

of a biotechnological model organism, C. glutamicum.712

4.2 Application 2: Process modeling of bacterial growth713

A real-world experimental procedure is often not a textbook example, but rather a heterogeneous dataset, e.g. comprising714

multiple measurement types or varying process conditions. We use the term process model, as introduced in Section 2.5,715

to describe the complete underlying chemical or biological process, but not the experimental observations that are716

made of it. These input/output relations of the measurement system are explicitly described by calibration models. In717

this application example, we demonstrate how object-oriented calibr8 calibration models from Section 4.1 can be718

combined with an ODE bioprocess model to describe a heterogeneous dataset of bacterial growth curves.719

The simplest experimental setup to obtain a bacterial growth curve is a so-called batch cultivation. Under laboratory720

conditions, such batch cultivations can be performed in a variety of cultivation systems such as shake flasks, bioreactors721

or microbioreactors. From a data science perspective, the cultivation systems differ mostly by how many independent722

cultivations are performed in parallel and by the kind and number of observations made per cultivation. In the domain723

of bioprocess development, a large number of cultivations must be conducted to find best-performing producer strains724

and media compositions. For these applications, microbioreactors offer an increased cultivation throughput combined725

with non-invasive on-line measurements of pH, dissolved oxygen tension (DO) and, in case of the BioLector, also726

biomass [54]. However, all three signals are obtained optically and must be calibrated against the true variable of727

interest (Section 3.1.1, Section 3.1.5). Furthermore, confounding factors are known for all three measurement methods,728

mandating special rigor in the design and analysis of quantitative experiments. For example, the optode-based pH and729

DO measurements can be influenced by media components, or the backscatter signal by morphology changes.730

To facilitate a simple application example, we grew Corynebacterium glutamicum in a BioLector Pro device (Sec-731

tion 3.1.2). This bacterium is a well-known industrially applied microorganism that exhibits textbook-like exponential732

growth kinetics when grown on carbon sources such as glucose [55]. A preculture was grown in the BioLector wells733

A01 and B01 and used to automatically inoculate 28 main culture wells (A02 through F08). We thus avoided a lag734

phase of adaptation at the beginning of the growth curve, which greatly simplifies the process model (Section 3.1.2). As735

we will see later on, the pipetting error of the robotic liquid handler at the small inoculation volume must be considered736

when setting up the process model, highlighting the need to adapt the data analysis to the peculiarities of the experiment.737

Before going into the details of the process model for this application example, we would like to emphasize that the738

same modeling techniques can be applied to other domain specific examples.739

4.2.1 Building an ODE process model for bacterial growth experiments740

The simplest model for microbial growth is the Monod kinetics differential equation model of substrate-limited741

exponential growth [56]. Similar to how the famous Michaelis-Menten kinetics describe enzymatic reaction rates, the742

Monod kinetics model the specific growth rate as a function of substrate concentration. Under the assumptions of743

homogeneous mixing, unlimited nutrient supply and constant ambient conditions, the Monod model can be applied744

to batch cultivations of bacterial, fungal, plant or cell cultures that grow with a maximum growth rate µmax until a745

substrate, typically a carbon source, is depleted.746

The Monod model (Equation 15) has five parameters including the initial conditions for substrate concentration S0747

and biomass concentration X0. The maximum growth rate µmax specifies the specific exponential growth rate that the748

organism can achieve under the modeled conditions. The actual specific growth rate µ(t) is modeled as a function of749

µmax, the current substrate concentration S and a parameter KS that corresponds to the substrate concentration at which750

µ(t) = µmax
2 . The last parameter YXS, called biomass yield, describes the amount of substrate consumed per unit of751

formed biomass.752

dX

dt
= µmax ·X · S

KS + S
dS

dt
= −YXS ·

dX

dt
S,X, µmax,KS , YXS ∈ R>0

(15)

The experiment to be modeled in this application example was devised such that Monod-like growth behavior of753

C. glutamicum wild-type could be expected (Section 3.1.2). We grew 28 parallel batch cultures that were sampled754

to measure glucose concentrations in addition to the high resolution backscatter time series. The resulting dataset755

comprises 28 replicates, each with backscatter time series of varying length and a time series of length 1 for the glucose756

absorbance readout. Building upon our Python package murefi for flexible multi-replicate fitting, we loaded the raw757
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observations into a murefi.Dataset object (Section 3.2.4). The package was designed to simplify the definition and758

parameter estimation of process models that describe all replicates in a dataset simultaneously.759

To build such elaborate process models with murefi, the user must specify the process model corresponding to a760

single replicate, as well as a set of rules that describe how parameters of this model are shared across replicates.761

The Monod kinetics in this application example were implemented in just a few lines of code by subclassing from762

murefi.BaseODEModel (Code 3).763

Code 3: Implementation of Monod ODE model using murefi.BaseODEModel convenience type
1 class MonodModel ( BaseODEModel ):764

2 def __init__(self ):765

3 super ().__init__(766

4 theta_names =( ’S0 ’, ’X0’, ’mu_max ’, ’K_S ’, ’Y_XS ’),767

5 independent_keys =[ ’S’, ’X’]768

6 )769

7770

8 def dydt(self , y, t, theta ):771

9 S, X = y772

10 mu_max , K_S , Y_XS = theta773

11 dXdt = mu_max ∗ S ∗ X / (K_S + S)774

12 dSdt = −1 / Y_XS ∗ dXdt775

13776

14 return [777

15 dSdt ,778

16 dXdt ,779

17 ]780

For heterogeneous datasets, the rules for sharing process model parameters across replicates can be complex and hard781

to implement and most modeling workflows require the practitioner to often change the parametrization. In murefi ,782

the ParameterMapping class supports the modeler by specializing in the tedious translation of parameter sharing rules783

into a function (.repmap(...)) that takes a single parameter vector and transforms it into replicate-specific parameter784

vectors. At the same time, it provides mechanisms for specifying fixed parameters, initial guesses and bounds on the785

parameters. Reading a spread sheet with parameters into Python is an easy way of initializing the ParameterMapping786

(Figure 11).787

Figure 11: Tabular DataFrame representation of a parameter mapping
With columns corresponding to the parameter names of a naive Monod process model, the parametrization of each replicate,
identified by a replicate ID (rid) is specified in a tabular format. Parameter identifiers that appear multiple times (e.g. S0) corre-
spond to a parameter shared across replicates. Accordingly, replicate-local parameters names simply do not appear multiple times
(e.g. X0_A06). Numeric entries are interpreted as fixed values and will be left out of parameter estimation. Columns do not need
to be homogeneously fixed/shared/local, but parameters can only be shared within the same column.

Unique names specify that a parameter is only estimated from the indicated replicate (e.g. X0_A02) while shared names788

correspond to global parameters (e.g. S0). For the application example at hand, a parameter mapping was defined such789

that the parameter X0 is local to each replicate while S0, µmax and YXS are shared across all replicates. For the Monod790

substrate affinity constant KS , literature reports values of approximately 0.00005-0.1 g/L for Escherichia coli [57]),791

while no data is available for C. glutamicum. Because it is practically non-identifiable at the resolution of our dataset,792

KS was fixed to an arbitrary, but numerically harmless value of 0.02 g/L. In Figure 11, this is expressed by the numerical793

column entries.794

A likelihood function for parameter estimation was created using the murefi.objectives.for_dataset convenience795
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function (Code 4). The objective is independent of the parameter estimation paradigm and was applied for optimization796

via MLE (Section 4.2.2) and sampling by MCMC (Section 4.2.3) in the scope of this work.797

4.2.2 Estimating ODE process model parameters by maximum likelihood798

First, we determined maximum likelihood estimates of the process model parameters through optimization. In few799

lines of code, the calibration models from Section 4.1 and dataset are loaded (Code 4, ll. 2-4), the process model is800

instantiated (Code 4, l. 1) and the ParameterMapping is specified with bounds and guesses (Code 4, ll. 7-21). The801

objective (Code 4, ll. 22-27) can directly be used for an optimization algorithm (Code 4, ll. 28-32), in this case one802

from the popular Python library scipy. A table with MLE parameters can be found in Appendix A.3.803

Code 4: MLE of process model parameters
1 model = MonodModel ()804

2 dataset = murefi . load_dataset (" cultivation_dataset .h5")805

3 cm_biomass = BioLectorCDWBackscatterModelV1 .load(" biomass_cm_logistic .json")806

4 cm_glucose = LogisticGlucoseCalibrationModelV1 .load(" glucose_cm_logistic .json")807

5 df_mapping = pandas . read_excel (" parameter_mapping .xlsx", index_col =’rid ’)808

6809

7 theta_mapping = murefi . ParameterMapping (810

8 df_mapping ,811

9 bounds ={812

10 "S0": (15 , 20) ,813

11 "X0": (0.01 , 0.4) ,814

12 " mu_max ": (0.4 , 0.5) ,815

13 "Y_XS": (0.3 , 1)816

14 },817

15 guesses ={818

16 "S0": 17,819

17 "X0": 0.01 ,820

18 " mu_max ": 0.4 ,821

19 "Y_XS": 0.5822

20 }823

21 )824

22 objective = murefi . objectives . for_dataset (825

23 dataset =dataset ,826

24 model =model ,827

25 parameter_mapping = theta_mapping ,828

26 calibration_models =[ cm_glucose , cm_biomass ]829

27 )830

28 mle_result = scipy . optimize . minimize (831

29 objective ,832

30 x0= theta_mapping .guesses ,833

31 bounds = theta_mapping . bounds834

32 )835

Figure 12 shows the observations alone (A) and combined with MLE results (B) for glucose (absorbance) and biomass836

(backscatter). The replicates were sampled at different times to measure glucose concentrations; the end of a time series837

is indicated by an arrow and the replicate name (Figure 12, A). Overall, the backscatter time series show a very high838

reproducibility, which demonstrates the effect of pooling precultures before inoculation (Section 3.1.2). The model839

describes the observations so accurately that they can only be distinguished in the inset plot (Figure 12, B). Here, a small840

difference between different replicates can be observed, which is caused by different initial biomass concentrations due841

to inevitable pipetting errors in the automated inoculation of the main cultures. It becomes evident that replicate-wise842

X0 parameters were necessary to account for this effect. The different initial biomasses are also visible from the spread843

of data points at the beginning of the growth curve (Figure 12, B). For the biomass, the only period of systematic844

deviation between model prediction and observations is at the time of entry into the stationary phase, the phase where845

substrate is depleted and growth stops. Here, the biomass signal overshoots while the Monod kinetics predict a rapid846

change to a constant signal. This effect in the growth curve of C. glutamicum is also known from other experiments847

with the BioLector [58] and cannot be accounted for by the otherwise useful textbook process model.848

The glucose data shows more deviation, but follows the expected textbook behaviour of exponential decay (Figure 12, B).849

Interestingly, the predictions for glucose concentrations at the end of cultivation lie slightly above 0 g
L , showing that the850

corresponding calibration model is not describing this range of concentrations well. The deviation could be caused851

by other components in the used cultivation medium that distort the measurement compared to calibration with fresh852
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Figure 12: Measurements and maximum likelihood estimate of C. glutamicum growth Monod model
Original measurement responses of on-line biomass (backscatter) and at-line endpoint glucose assay measurements (absorbance)
are shown in (A). Glucose measurements were obtained by sacrificing culture wells, hence each backscatter time series terminates
at the time of glucose assay observations. The time and well ID of sacrifices are marked by arrows, colored by row in the culti-
vation FlowerPlate. The inset plot shows a typical FlowerPlate layout. The preculture wells (data not shown) are highlighted in
green, main cultures in black.
In B, the observations and MLE predictions of the ODE process model are shown in SI units. Observations were transformed
from original units using the predict_independent method of the respective calibration model. Whereas all curves start at the
same global initial substrate concentration S0, each well has individual initial biomass concentrations, resulting in the time shifts
visible in the zoomed-in inset plot. Biomass observations in the inset plot (•) correspond to the median posterior inferred from
each backscatter observation individually.

medium as diluent. However, this was not further investigated since the substrate data has little influence on the853

parameter estimation compared to the high-resolution backscatter measurements.854

From a first inspection of MLE results, we can see that the simple Monod process model describes the high-resolution855

data very well. For more insight, we will take a look at the parameter estimation, correlations and systematic deviations856

using a Bayesian approach.857

4.2.3 Hierarchical Bayesian ODE models with calibr8 and murefi858

The results presented in the previous chapter show that the Monod model, when combined with non-linear calibration859

models for the observations, can describe the observed biological process with high accuracy. However, the precision of860

the parameter set obtained by the maximum likelihood method is still unknown. Particularly, when decisions are made861

from model-based inferences and predictions, the uncertainty about these variables is a key factor.862

The combination of (forward) sensitivity analysis with Gaussian error propagation could be applied to learn about863

the precision of the maximum likelihood estimate. Instead of maximum likelihood optimization of a parameter set,864

Bayes’ rule can be used to infer a posterior probability distribution of parameters. In comparison to the maximum865

likelihood method, the Bayesian approach allows to incorporate prior knowledge and inherently quantifies uncertainty866

and parameter correlations. Bayesian posteriors can in some (rare) cases be obtained analytically, or numerically as867

shown in Section 4.1.3. However, in most practical applications Markov chain Monte Carlo (MCMC) algorithms are868

applied. MCMC offers convergence guarantees as the number of iterations approaches infinity and can give satisfactory869

results with competitive computational performance when modern algorithms are used.870

To build a Bayesian process model, one must explicitly state prior beliefs in the model parameters in the form of871

probability distributions. For our hierarchical Monod model application example, we must specify prior beliefs872

in the ODE parameters µmax, YXS and initial conditions S0 and X0,well. Prior distributions for these parameters873

were specified to reflect biologically reasonable, but uninformative assumptions about the experiment Equation 16.874

The initial substrate concentration S0 was expected at approximately 20 g
L with a conservative 10 % relative error.875
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For Corynebacterium glutamicum wild-type, our priors for biomass yields with HDI95 %
YXS

= [0.5, 0.7] gCDW
gglucose

and876

for maximum growth rates with HDI95 %
µmax

= [0.2, 0.6] h−1 are uninformative and based on literature [59]. Our877

process model describes initial biomass concentrations on a per-well basis (Section 4.2.1), but can still infer the878

mean initial biomass concentration X0,µ as a hyperprior by modeling well-specific offsets w.r.t. the group mean as879

X0,well = X0,µ · Foffset,well. Through X0,µ the priors for all initial biomass concentrations X⃗0 are parametrized by a880

common parameter, allowing each individual X0,well to vary while concentrating around their common group mean.881

For more intuition and details about Bayesian hierarchical modeling in particular, we refer to [60].882

The experiment was programmed to inoculate main cultures to approximately 0.25 g/L (Section 3.1.2), therefore the883

prior for X0,µ was centered at 0.25 g/L with a 10 % relative error. Our prior belief in the well-specific relative offset884

Foffset,well was also modeled by a Lognormal distribution with mean 0, corresponding to the expectation that the offset885

is centered around 1 in the transformed space. A standard deviation of 20 % was chosen to account for random and886

systematic inaccuracy of the automated liquid handler at the low pipetting volume of 20 µL [58].887

X0,µ ∼ Lognormal(µ = log(0.25), σ = 0.1)

⃗Foffset ∼ Lognormal(µ = 0, σ = 0.2)

X⃗0 ∼ X0,µ · F⃗offset

S0 ∼ Lognormal(µ = log(20), σ = 0.1)

YXS ∼ Beta(µ = 0.6, σ = 0.05)

µmax ∼ Beta(µ = 0.4, σ = 0.1)

Ypred, well ∼ ϕprocess model(S0, X0,well, µmax, YXS)

L(θpm | Yobs) = p(Yobs | θem(Ypred))

(16)

When modeling with calibr8 and murefi , this specification of prior beliefs is the only overhead compared to the888

MLE method. The API of both packages was designed to be fully compatible with the probabilistic programming889

library PyMC3, such that calibr8 and murefi models can become fully Bayesian with little programming effort.890

Concretely, the objective function created by murefi accepts Aesara tensors (e.g. PyMC3 random variables) as891

inputs, resulting in a symbolic TensorVariable likelihood instead of a numeric one. The PyMC3 model for the892

hierarchical ODE process model in our application example builds upon the previously established objective893

function (Code 4, l. 22). The model code (Code 5) resembles the mathematical notation of the same model shown in894

Equation 16.895

Code 5: Specification of complete process model in PyMC3
1 with pymc3 . Model () as pmodel :896

2 # Specify a hyperprior on the initial biomass group mean:897

3 # + centered on the planned inoculation density (0.25 g/L) in main cultures898

4 # + with a 10 % standard deviation to account for pipetting errors899

5 X0_mu = pymc3 . Lognormal (’X0_mu ’, mu=numpy.log (0.25) , sd =0.10)900

6901

7 # Model the relative offset of initial biomass between each well and902

8 # the group mean with a relative pipetting error of 20 %903

9 F_offset = pymc3 . Lognormal (’F_offset ’, mu=0, sd =0.20 , shape =( N_wells ,))904

10905

11 # Thereby , the initial biomass in each well is the product906

12 # of group mean and relative offset :907

13 X0 = pymc3 . Deterministic (’X0’, X0_mu ∗ F_offset )908

14909

15 # Combine the priors into a dictionary910

16 theta = {911

17 ’S0 ’: pymc3 . Lognormal (’S0’, mu=numpy.log (20) , sigma =0.10) ,912

18 ’Y_XS ’: pymc3 .Beta(’Y_XS ’, mu =0.6 , sd =0.05) ,913

19 ’mu_max ’: pymc3 .Beta(’mu_max ’, mu =0.4 , sd =0.1) ,914

20 # unpack the vector of initial biomasses into individual scalars915

21 ∗∗{916
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22 f’X0_{well}’: X0[w]917

23 for w, well in enumerate (wells)918

24 }919

25 }920

26 # Re −use the objective function from the MLE model code921

27 L = objective ( theta )922

After the PyMC3 process model was defined, its parameters were estimated by MCMC as described in Section 3.2.6.923

Two-dimensional marginals of the posterior samples obtained from MCMC sampling are shown in Figure 13 for two924

replicates and in Figure 17 for the whole dataset.925

The pair plot visualization of the posterior reveals that some model parameters are strongly correlated with each other.926

Among those strong correlations are the pair of initial substrate concentration S0 and biomass yield YXS . Interestingly,927

even in the very narrow HDIs of X0,well and µmax, correlations were found, which is particularly clear for replicate928

D06. An interpretation is that when the initial biomass concentration is estimated at a smaller value, the maximum929

growth rate of cells must be higher to reach the same biomass level. The correlation is thus a natural consequence of the930

underlying process. Similarly, a lower initial substrate concentration results in a higher yield.931

From a modeling point of view, the plot reveals how identifiable the model parameters are from the data. Furthermore,932

strong correlations, as observed for YXS and S0, can be problematic for some optimization or MCMC sampling933

algorithms. In this case, the applied algorithm DE-Metropolis-Z [44] proved beneficial to sample the 32-dimensional934

parameter space with highly correlated parameters (Figure 13, top right). Interestingly, the strength of the correlation935

depends on the amount of data that was available for a particular replicate (Figure 17). The more data available,936

the stronger the correlation between X0 and µmax; this can also be observed for wells D04 and D06. The parameter937

estimates by MCMC are also tabulated in Appendix A.3.938

In the lower part of Figure 13, the observations as well as model predictions with parameters sampled from the939

posterior are shown. Each line in the density plot corresponds to one set of parameters sampled with the MCMC940

algorithm. The small width of the density bands express how well the parameters could be estimated from the data,941

which is in accordance to the pair plot above. The violins around the substrate data visualize the uncertainty of glucose942

concentration inferred with the calibration model alone, instead of using the process model with all evidence. The violin943

is wider than the posterior band from the process model accordingly. Similar to the the MLE results, it becomes obvious944

that the Monod model estimate is well-suited to describe the biological dataset. With calibr8 and murefi, building945

and sampling the Bayesian model needs a similar effort as MLE and the user can focus on structural requirements rather946

than cumbersome implementation. To assess the benefits of the Bayesian model in more detail, the role of different947

calibration models, the residuals and the hierarchical parameter X0 are investigated in more detail in the next section.948

4.2.4 Process and model insight through Bayesian uncertainty quantification949

From the process model fit and the uncertainty estimates in particular, conclusions about the choice of model and the950

underlying biological process can be drawn. First, to emphasize that the elaborate non-linear calibration model was951

required, we compare the process model fits obtained with a non-linear versus a linear calibration model. The more952

traditional linear biomass/backscatter correlation was fitted to calibration data as described in Section 3.1.5 and used to953

fit the D06 replicate from our dataset. For comparison, the asymmetric logistic calibration model from Section 4.1.1954

was used to estimate parameters of the same process model and data.955

On a first glance, the fit of the Monod process model using the linear biomass calibration model looks like a good956

description of the data (Figure 14 A), but does not hold up to closer inspection. The residual plots (B, C) reveal that957

using the linear calibration model results in systematically larger residuals of the process model, compared to using the958

logistic calibration model. A thorough inspection of the linear calibration model itself (D) also reveals that it already959

has a lack-of-fit of the location parameter (green line), similar to the depiction in Figure 3. We would like to point960

out that also the maximum growth rate estimated from a process model with linear biomass/backscatter calibration961

(HDI90 %
µmax

= [0.479, 0.531]) is systematically overestimated compared to the one with the logistic model (HDI90 %
µmax

=962

[0.415, 0.423]). Regarding the choice of calibration model for the biomass/backscatter relationship, we conclude that963

the linear model should no longer be used, as it results in biased parameter estimates.964

Having chosen a suitable calibration model for the variables, the choice of the Monod model itself can be investigated.965

Figure 15 shows the high-resolution biomass data and predictions from MCMC on a logarithmic y-scale (Figure 15, A)966

as well as the residuals in backscatter units (Figure 15, B). In the left subplot, the data was transformed to biomass967

concentrations with the logistic biomass calibration model. The orange intervals represent the HDI90 %
biomass inferred from968

a single observation using only the calibration model. In contrast, the blue density represents the posterior of the process969

model, which contains all observations. Naturally, the posterior from all evidence, combined through the process model,970

is much narrower than the posterior from any single observation. The plot reveals that the exponential growth assumed971
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Figure 13: Parameter correlations, data and posterior distributions of growth curves
Each kernel density estimate (KDE) in the top half shows a 2-dimensional cross-section of the full posterior, visualizing corre-
lations between some of the model parameters. For example, the topmost KDE shows that the posterior samples of Foffset,D04 are
correlated with X0,µ. Axis labels correspond to the lower- and upper-bound of 90 % HDIs. The large pair plot shows just the
marginals that are relevant for the replicates D04 and D06, whereas the small pair plot shows the dimensions for all parameters
(high resolution in appendix). In the bottom half of the figure, the kinetics of replicates D04 and D06 are drawn. The red (sub-
strate) and green (biomass) densities correspond to the distribution of predictions obtained from posterior samples, as described in
Section 3.2.7. The red violins visualize the posterior inferred from single glucose measurement responses without the use of the
process model. Likewise, the green vertical bars on the biomass concentrations show the 90% HDI.
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Figure 14: Comparison of Monod model fit with linear error model
Two Monod kinetic process models were fitted to the same observations from culture well D06 utilizing either a linear calibration
model for the biomass/backscatter relationship (D, orange) or the previously established logistic model (blue). In A the posterior
distribution of backscatter observations (density bands) is overlaid with actual backscatter observations. A linear calibration
model with fixed intercept (Section 3.1.5) D was fitted to the subset of calibration data points up to 15 g/L such that it covers
the range of biomass concentrations expected in the experiment. Residual plots of the observations compared to the posterior
predictive distribution of backscatter observations (B, C) show that the fit obtained with the logistic calibration model (blue)
has much less lack-of-fit compared to the one with the linear model (orange). Note that the backscatter residuals of ±1 % are
small compared to the amplitude of the absolute values going from close to 0 to approximately 20. The discrepancy between
the two models is also evident from the 90 % HDI of the maximum growth rate µmax of [0.415, 0.423] h−1 in the logistic and
[0.479, 0.531] h−1 in the linear case.

Figure 15: Predictions, observations and residuals of Monod model fitted to backscatter data
A: Through a logarithmic y-axis, the plot A shows that both process model (blue density) and the HDI90 %

biomass obtained from the
biomass calibation model with individual observations (orange) describe an exponentially increasing biomass concentration up to
approximately 9 hours. B: The residuals between prediction and observed backscatter (black) and the posterior predictive back-
scatter distribution (green density) show that the lack-of-fit is consistently less than ±0.25 backscatter units with the exception of
a fluctuation at the time of substrate depletion.

by the Monod model is generally suitable for the growth on glucose, since the blue density is describing the trend of972

observations well.973
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To evaluate a lack-of-fit, the residual plot (Figure 15, B) should be considered. Here, the residuals between the process974

model posterior and the observed backscatter are shown in black, the respective posterior predictive distribution of975

measurement responses (Section 3.2.3) is shown in green. The posterior predictive is the distribution of measurement976

responses that the model predicts. First, biomass concentrations are drawn from the posterior distribution. At each977

biomass concentration, another sample is taken from the Student-t distribution predicted by the biomass calibration978

model.979

First of all, a large deviation that cannot be explained with the uncertainty of the estimate can be observed after 8 hours.980

Looking at the data, e.g. in Figure 14, it can be seen that it accounts for the previously described overshoot of the981

backscatter signal at the beginning of the stationary phase (Section 4.2.2). This phenomenon cannot be explained by the982

Monod model, which assumes a constant biomass concentration after substrate depletion. Further investigations are983

needed to identify whether the change is morphological, e.g. a shrinking of cells to due carbon source depletion, or a984

decrease of biomass, e.g. by cell lysis.985

Before 8 hours, an s-shaped systematic deviation can be observed, meaning that the observations first lie above and986

then below the prediction. Apart from the influence of the overshoot, which distorts the fit, this might be explained987

by a different growth rate. It was previously shown that C. glutamicum exhibits a higher specific growth rate on988

protocatechuic acid (PCA), which is a component of the cultivation medium CGXII [59]. Upon depletion of PCA after989

the first hours of cultivation, the growth rate decreases accordingly. This is not accounted for in the Monod kinetics,990

which describe an effectively constant growth rate at substrate concentrations much higher than the KS value. To cover991

this effect, PCA must be measured, e.g. by sampling and liquid chromatography, and a more elaborate process models992

with several substrates must be utilized. Nevertheless, the very simple Monod kinetics describe the overall growth993

behaviour well and residuals are low.994

Figure 16: Posterior group mean and well-specific initial biomass concentrations X0

Variability between the growth curves in separate wells is described by well-specific initial biomass concentrations X0,well. Their
posterior probability distribution is wide if the well was sacrificed early (left) and narrows down with the number of observed
timepoints (right). Their common hyper-prior (a.k.a group mean prior) X0,µ for the mean of each X0,well was updated to a
posterior with HDI90 %

X0,µ
= [0.250, 0.288] g

L
.

In Figure 12, we have seen that the time differences in the exponential phases between replicates are well explained995

by the well-wise initial biomass concentrations X⃗0. The choice of a hierarchical process models is further evaluated996

in Figure 16, which shows the estimated X⃗0 with uncertainties for all replicates. For replicates with more evidence997

(longer time series), the posterior probability for their initial biomass concentration is concentrated in a narrow interval,998

whereas X0 in wells with little evidence was estimated with considerably more uncertainty. The posterior for the group999

mean X0,µ is concentrated at HDI90 %
X0,µ

= [0.251, 0.286] g
L , close to the theoretical concentration (0.25 g

L ) expected1000

from the experimental design.1001

Overall, the well-wise modeling of initial biomass concentrations as well as the separate modeling of replicates allowed1002
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us to account for inevitable differences between wells, while inferring the key process model parameters from all data.1003

The combination of calibr8 and murefi made it possible to construct a process models of our application example1004

with little code and apply both optimization (MLE) and Bayesian inference (MCMC) without needing to change any1005

implementation details (Code 4, Code 5). Our application example showed that Bayesian inference with ODE-based1006

process models to 28 parallel cultures with hundreds of observations is not only technically feasible, but also accessible1007

without deep understanding of probabilistic programming frameworks.1008

As implied in the famous quote by George E.P. Box – "All models are wrong, but some are useful." – also our1009

Monod kinetics process model does not describe every aspect of the data, but is a powerful tool to quantify key1010

process parameters under uncertainty. From its (in)accuracies, we can gain insight into the bioprocess and generate1011

new hypotheses about the biological process or measurement system that are yet to be understood. In our case, the1012

uncertainty quantification of process model parameters can become the cornerstone of bioprocess development by1013

facilitating robust and intuitive statistical analysis or Bayesian decision-making.1014

4.3 Comparison with existing modeling software1015

A multitude of statistical software tools exist, many of which can be used for data analyses similar to the ones presented1016

in this work. The technical complexity of performing such analyses, however, depends strongly on the technical1017

capabilities of the software package. A comparison to relevant packages with similar scope and use-cases is given in1018

Table 1.1019

For higher-throughput analyses and flexibility in the data analysis workflow, the user interface of statistical analysis1020

software is particularly important. Most tools provide interfaces for popular scripting languages such as Python, R1021

or MATLAB, but the model definition is in some cases delegated to a domain-specific programming language (DSL).1022

For a broad application of calibration models, it is important that they are modular. Software like COPASI considers1023

calibration only in the context of the ODE model and likelihoods cannot be customized. With modeling toolboxes such1024

as Data2Dynamics or PESTO, custom calibration models and likelihoods can be realized, but they must be implemented1025

manually as part of the objective function. This does not only require advanced expertise, but is also more error prone1026

than working with a PPL directly. In contrast, calibr8 separates calibration modeling entirely from the process1027

modeling workflow, thereby becoming a valuable toolbox for calibration tasks even without process modeling. Together1028

with murefi, this modular design allows to seamlessly use custom likelihood models in advanced ODE process models,1029

a feature that we have not found with other software.1030

An important criterion for usability of calibration software is the required expertise. Packages that implement the1031

foundations of model construction, auto-differentiation and definition of probability densities reduce the mathematical1032

complexity and allow users with little technical expertise to perform advanced statistical analyses. calibr8 and1033

murefi are beginner-friendly, which is also evident from the simplicity of code examples [61, 62] compared to other1034

tools [63, 64].1035

Bayesian analysis through MCMC methods is available through most modeling packages. Efficient, gradient-based1036

state-of-the-art MCMC algorithms however are only readily available with probabilistic programming languages such1037

as PyMC3 or Stan because they provide the necessary auto-differentiation of models. Finally, experimental replicates or1038

hierarchical structures require replication and nesting of ODE models. Instead of manually expanding the differential1039

equation system to match these requirements, templating approaches as they are used in murefi or COPASI can1040

facilitate rapid model construction.1041
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Table 1: Comparison with related software packages
DSL: Domain-Specific Language, GUI: Graphical User Interface

User
interfaces

Modularity of
likelihood model

Required
expertise

MCMC ODE model
construction

License

murefi,
calibr8

Python Modular Low Yes, with
auto-diff

Templated AGPLv3

PyMC3 [46] Python Manual Medium Yes, with
auto-diff

Manual Apache 2.0

COPASI,
PyCoTools3
[16, 17]

GUI, Python No Medium No Templated Artistic 2.0,
LGPL

Data2Dynamics
[14]

MATLAB,
DSL

Manual Medium Yes Manual Not
specified

PESTO [15] MATLAB Manual High Yes Manual BSD-3

Stan [48] DSL Manual High Yes, with
auto-diff

Manual BSD-3

brms [65] R, Formula-
based

Modular Low Yes, with
auto-diff

N/A GPLv2

JMP [66] GUI, HTTP
(plugin)

No Medium No N/A Proprietary

5 Conclusions1042

In this paper, we introduced the general concept of calibration models and presented calibr8, an object-oriented1043

Python toolbox that is applicable to both analytical calibration and inference of process models. Our open-source1044

software allows to easily implement and analyze calibration models by providing a number of convenience functions, for1045

example an asymmetric logistic function with an intuitive parametrization and a function to obtain the most important1046

diagnostic plots in one line of code. It thus gives users without a background in statistics access to quantitative linear1047

and non-linear calibration models, as well as Bayesian uncertainty quantification. Furthermore, the implementation1048

through a suite of extendable Python classes allows advanced modelers to customize the technique to a variety of1049

applications. In comparison to existing software, the unique combination of modular likelihood functions from calibr81050

with objectives and (hierarchical) datasets from murefi enables a fully Bayesian, Pythonic approach to calibration and1051

process modeling that could so far only be achieved by cumbersome manual implementation or combination of various1052

libraries.1053

In our work, we demonstrated how the versatile asymmetric logistic calibration model can be applied to bioanalytical1054

calibration tasks. Furthermore, we showed how combining the concept of calibration models with process models1055

allows to gain process insight into a biological process. Especially in combination with murefi, our package to set1056

up multi-replicate models, calibr8 is suitable for high-throughput experimentation because of the flexible interface1057

that allows to analyze data via optimization or MCMC. Uncertainty quantification is covered within the scope of the1058

toolbox and enables easy identification of critical parameters. By making Bayesian inference of ODE models easy to1059

implement, calibr8 and murefi bridge the gap between bioprocess modeling and an entire portfolio of methods, such1060

as Bayesian model comparison or decision-making.1061

Well-chosen calibration models eradicate the effect of systematic errors in measurements and allow the practitioner1062

to focus a data analysis on the underlying process. In our application example, the non-linear biomass calibration1063

model was required to identify lack-of-fit in the Monod model based on growth behaviour alone. We also identified1064

the biomass overshoot at the beginning of the stationary phase as an interesting target for further investigation, e.g. by1065

automated microscopy of cells during cultivation.1066

calibr8 greatly reduces the workload of calibration tasks. For example, the systematic, model-based approach allows1067

the user to quantify batch effects between calibration experiments; repetition of calibration measurements could thus1068
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be highly reduced. With calibr, we provide a versatile toolbox that we believe to be beneficial not only for the1069

biotechnology community, but for various calibration tasks in experimental sciences.1070
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A Appendix1231

A.1 Reparametrization of asymmetric logistic function1232

For simplicity of the reparameterization, the asymptote parameters LL and LU of the original Richard’s Curve (11) can1233

be omitted and substitutions b = −B and 1/v = −e−c were made such that all parameters may be real numbers (17).1234

In (18) the symmetry is already parametrized exactly as in the final result (12): As it increases, the inflection point Iy1235

moves towards the upper limit. At c = 0 it lies centered between the limits.1236

f(x) =
1

(1 + e−b(a−x))e−c

a, b, c ∈ R
(17)

In the following steps a and b are reparametrized in terms of the x-coordinate of the inflection point Ix and the slope S1237

at the inflection point respectively. Ix was obtained by solving the second derivative of the a, b, c parametrization (17)1238

for a (18):1239

f ′′(Ix) = 0

⇔ Ix = a− c

b

⇔ a = Ix +
c

b

(18)

The slope parameter was obtained by substituting x in the first derivative of the a, b, c parametrization (17) with the1240

analytical solution for Ix from (18).1241

S = f ′′(Ix)

⇔ S = b(ec + 1)−1−e−c (19)

Substituting a in (17) with a(Ix, b, c) from (18) yields a parametrization in terms of Ix, b, c (20):1242

f(x) = (eb(Ix−x+ c
b )+1)−e−c

Ix, b, c ∈ R
(20)

For a parametrization in terms of both Ix and S, their equations from (18) and (19) must be solved for a and b:1243

a =
Ixe

c

ec + 1
+

Ix
ec + 1

+
c(ec + 1)−1−e−c

S

b = S(ec + 1)(e
c+1)e−c

(21)

A parametrization in terms of Ix, S, c is then obtained by substitution of a an b in (17):1244

f(x) = (e(e
c+1)(e

c+1)e−c
·(IxS−Sx+c(ec+1)−(ec+1)ec ) + 1)−e−c

Ix, S, c ∈ R
(22)

By common subexpression elimination (22) simplifies to (23).1245

f(x) = (ex2·(IxS−Sx+ c
x2

) + 1)x1

x0 = ec + 1

x1 = e−c

x2 = xx0·x1
0

Ix, S, c ∈ R

(23)
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The final generalized parametrization (12) in terms of LL, LU , Ix, S, c was obtained by scaling slope parameter and1246

function value with LU −LL and shifting by LU . The corresponding Python implementation is shown in Code 6. For a1247

step by step derivation of (12), as well as its inverse using sympy we refer to the "Background Asymmetric Logsitc"1248

Jupyter notebook in the calibr8 repository [31].1249

Code 6: Implementation of reparameterized asymmetric logistic function
1 def asymmetric_logistic (x, theta ):1250

2 """5− parameter asymmetric logistic model.1251

31252

4 Parameters1253

5 −−−−−−−−−−1254

6 x : array −like1255

7 independent variable1256

8 theta : array −like1257

9 parameters of the logistic model1258

10 L_L: lower asymptote1259

11 L_U: upper asymptote1260

12 I_x: x− value at inflection point1261

13 S: slope at the inflection point1262

14 c: symmetry parameter (0 is symmetric )1263

151264

16 Returns1265

17 −−−−−−−1266

18 y : array −like1267

19 dependent variable1268

20 """1269

21 L_L , L_U , I_x , S, c = theta [:5]1270

22 # common subexpressions1271

23 s0 = numpy .exp(c) + 11272

24 s1 = numpy .exp(−c)1273

25 s2 = s0 ∗∗ (s0 ∗ s1)1274

26 # re −scale the inflection point slope with the interval1275

27 s3 = S / (L_U − L_L)1276

281277

29 x = numpy . array (x)1278

30 y = ( numpy .exp(s2 ∗ (s3 ∗ (I_x − x) + c / s2)) + 1) ∗∗ −s11279

31 return L_L + (L_U −L_L) ∗ y1280
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A.2 Implementation, planning and saving of calibrations1281

Code 7: Convenience class BaseAsymmetricLogisticT
1 class BaseAsymmetricLogisticT ( BaseModelT ):1282

2 def __init__(1283

3 self , ∗,1284

4 independent_key :str , dependent_key :str ,1285

5 scale_degree :int =0,1286

6 theta_names : Optional [Tuple[str ]]= None ,1287

7 ):1288

8 """ Template for a model with asymmetric logistic trend (mu)1289

9 and polynomial scale (as a function of mu).1290

101291

11 Parameters1292

12 −−−−−−−−−−1293

13 independent_key : str1294

14 name of the independent variable1295

15 dependent_key : str1296

16 name of the dependent variable1297

17 scale_degree : optional , int1298

18 degree of the polynomial model describing the scale as a function of mu1299

19 theta_names : optional , tuple of str1300

20 may be used to set the names of the model parameters1301

21 """1302

22 self. scale_degree = scale_degree1303

23 if theta_names is None:1304

24 theta_names = tuple (’L_L ,L_U ,I_x ,S,c’.split(’,’)) + tuple (1305

25 f’scale_ {d}’1306

26 for d in range ( scale_degree + 1)1307

27 ) + (’df ’ ,)1308

28 super ().__init__( independent_key , dependent_key , theta_names = theta_names )1309

Code 8: Human-readable pipetting instructions for the serial dilution of biomass for the calibration experiment
1 S e r i a l d i l u t i o n p l a n ( 0 . 0 0 1 0 2 t o 1 . 0 0 ) from a t l e a s t 12232 .0 µL s t o c k and 54368 .0 µL d i l u e n t :1310
2 P r e p a r e column 1 wi th [ 2 0 0 0 . 1727 . 1491 . 1287 . 1111 . 9 5 9 . ] µL from s t o c k and f i l l up t o 2000 µL1311
3 P r e p a r e column 2 wi th [ 5 3 8 . 4 6 5 . 4 0 1 . 3 4 6 . 2 9 9 . 2 5 8 . ] µL from s t o c k and f i l l up t o 1300 µL1312
4 P r e p a r e column 3 wi th [ 2 2 3 . 1 9 2 . 1 6 6 . 1 4 3 . 1 2 4 . 1 0 7 . ] µL from s t o c k and f i l l up t o 1300 µL1313
5 P r e p a r e column 4 wi th [ 9 2 . 8 0 . 6 9 . 5 9 . 5 1 . 4 4 . ] µL from s t o c k and f i l l up t o 1300 µL1314
6 P r e p a r e column 5 wi th [ 3 9 . 3 9 . 3 9 . 3 9 . 3 9 . 3 9 . ] µL from column 1 and f i l l up t o 1300 µL (1 s e r i a l d i l u t i o n s )1315
7 P r e p a r e column 6 wi th [ 3 9 . 3 9 . 3 9 . 3 9 . 3 9 . 3 9 . ] µL from column 2 and f i l l up t o 1300 µL (1 s e r i a l d i l u t i o n s )1316
8 P r e p a r e column 7 wi th [ 3 9 . 3 9 . 3 9 . 3 9 . 3 9 . 3 9 . ] µL from column 3 and f i l l up t o 1300 µL (1 s e r i a l d i l u t i o n s )1317
9 P r e p a r e column 8 wi th [ 3 9 . 3 9 . 3 9 . 3 9 . 3 9 . 3 9 . ] µL from column 4 and f i l l up t o 1300 µL (1 s e r i a l d i l u t i o n s )1318

Code 9: JSON file containing stored model properties.
1319

1 {1320

2 " calibr8_version ": " 6.0.0",1321

3 " model_type ": " models . LogisticGlucoseCalibrationModelV1 ",1322

4 " theta_names ": [1323

5 "L_L", "L_U", "I_x", "S", "c", " scale_0 ", " scale_1 ", "df"1324

6 ],1325

7 " theta_bounds ": [1326

8 [−Infinity , 0.3],1327

9 [2, 5],1328

10 [−50, 50],1329

11 [0, 20],1330

12 [−3, 3],1331

13 [0, 0.1],1332

14 [0, 0.06],1333

15 [1, 20]1334

16 ],1335

17 " theta_guess ": [0.1, 2.8, 1.2, 10, 1, 0.08, 0.01, 3],1336

18 " theta_fitted ": [1337

19 −8.812, 2.765, 8.246, 0.0839,1338

38

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.30.450546doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450546
http://creativecommons.org/licenses/by/4.0/


Bayesian calibration, process modeling and uncertainty quantification in biotechnology

20 2.69, 0.000374, 0.0154, 3.0071339

21 ],1340

22 " theta_timestamp ": "2021 −02 −15 T14 :27:11 Z",1341

23 " independent_key ": "glc",1342

24 " dependent_key ": "A365",1343

25 " cal_independent ": [1344

26 50.0,1345

27 27.94736842105263,1346

28 ...1347

29 0.050303309520338251348

30 ],1349

31 " cal_dependent ": [1350

32 2.6449,1351

33 2.2389,1352

34 ...1353

35 0.11661354

36 ]1355

37 }13561357
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A.3 Process model parametrization, parameter estimates and MCMC results1358

The parametrization of the batch cultivation process model was given by the tabular notation of a1359

murefi.ParameterMapping Table 2. Maximum likelihood estimates, posterior sample means, standard devia-1360

tion, HDI interval and R̂ statistic are shown in Appendix A.3. Two-dimensional kernel densities of all posterior samples1361

are shown in Figure 17.1362

Table 2: Parameter mapping for fitting of Monod kinetics
Repetitive rows were left out for clarity. The full length table has 28 rows.

replicate S0 X0 µmax KS YXS

A02 S0 X0_A02 mu_max 0.02 Y_XS

... S0 X0_A0. mu_max 0.02 Y_XS

A08 S0 X0_A04 mu_max 0.02 Y_XS

... S0 X0_... mu_max 0.02 Y_XS

D08 S0 X0_D08 mu_max 0.02 Y_XS

40

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.30.450546doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450546
http://creativecommons.org/licenses/by/4.0/


Bayesian calibration, process modeling and uncertainty quantification in biotechnology

Table 3: Parameter estimates from MLE and MCMC

MLE mean sd hdi_5% hdi_95% r_hat

S0 16.92 15.23 0.103 15.06 15.40 1.0

mu_max 0.425 0.425 0.001 0.424 0.426 1.0

Y_XS 0.673 0.747 0.005 0.739 0.756 1.0

X0_mu - 0.269 0.010 0.252 0.285 1.0

X0_A02 0.231 0.266 0.053 0.179 0.348 1.0

X0_A03 0.335 0.341 0.022 0.304 0.377 1.0

X0_A04 0.301 0.299 0.006 0.289 0.310 1.0

X0_A05 0.267 0.267 0.002 0.263 0.271 1.0

X0_A06 0.250 0.250 0.002 0.247 0.252 1.0

X0_A07 0.252 0.252 0.002 0.250 0.255 1.0

X0_A08 0.241 0.241 0.002 0.238 0.244 1.0

X0_B02 0.297 0.277 0.047 0.200 0.354 1.0

X0_B03 0.356 0.345 0.015 0.321 0.369 1.0

X0_B04 0.291 0.292 0.005 0.285 0.300 1.0

X0_B05 0.256 0.255 0.002 0.252 0.258 1.0

X0_B06 0.252 0.252 0.002 0.249 0.255 1.0

X0_B07 0.256 0.256 0.002 0.253 0.259 1.0

X0_B08 0.240 0.240 0.002 0.237 0.242 1.0

X0_C02 0.416 0.333 0.041 0.266 0.400 1.0

X0_C03 0.314 0.318 0.012 0.299 0.337 1.0

X0_C04 0.273 0.273 0.004 0.267 0.279 1.0

X0_C05 0.251 0.250 0.002 0.248 0.253 1.0

X0_C06 0.257 0.257 0.002 0.255 0.260 1.0

X0_C07 0.240 0.240 0.002 0.237 0.243 1.0

X0_C08 0.241 0.241 0.002 0.238 0.243 1.0

X0_D02 0.380 0.338 0.030 0.289 0.388 1.0

X0_D03 0.315 0.317 0.009 0.303 0.332 1.0

X0_D04 0.275 0.275 0.003 0.270 0.280 1.0

X0_D05 0.256 0.256 0.002 0.253 0.258 1.0

X0_D06 0.248 0.248 0.002 0.246 0.251 1.0

X0_D07 0.241 0.242 0.002 0.239 0.244 1.0

X0_D08 0.250 0.249 0.002 0.247 0.252 1.0
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Figure 17: Pair plot of marginal posterior distribution
Axis labels mark the 90 % HDI and subplot axis limits are set at the 98 % HDI. Units are h−1 for µmax, gglucose

gbiomass
for YXS and g

L
for

S0 and X0.
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