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Abstract

During pre-mRNA maturation 3’ end processing can occur at different polyadenylation sites

in the 3’ untranslated region (3’ UTR) to give rise to transcript isoforms that differ in the

length of their 3’UTRs. Longer 3’ UTRs contain additional cis-regulatory elements that

impact the fate of the transcript and/or of the resulting protein.

Extensive alternative polyadenylation (APA) has been observed in cancers, but the

mechanisms and roles remain elusive. In particular, it is unclear whether the APA occurs in

the malignant cells or in other cell types that infiltrate the tumor. To resolve this, we

developed a computational method, called SCUREL, that quantifies changes in 3’UTR

length between groups of cells, including cells of the same type originating from tumor and

control tissue. We used this method to study APA in human lung adenocarcinoma (LUAD).

SCUREL relies solely on annotated 3’UTRs and on control systems, such as T cell activation

and spermatogenesis gives qualitatively similar results at much greater sensitivity compared

to the previously published scAPA method.

In the LUAD samples, we find a general trend towards 3’UTR shortening not only in cancer

cells compared to the cell type of origin, but also when comparing other cell types from the

tumor vs. the control tissue environment. However, we also find high variability in the

individual targets between patients. The findings help to understand the extent and impact of

APA in LUAD, which may support improvements in diagnosis and treatment.
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Introduction

The processing of most human pre-mRNAs involves 3’ end cleavage and addition of a

polyadenosine (poly(A)) tail. Typically, there are multiple cleavage and polyadenylation sites

within a gene, and alternative polyadenylation (APA) has emerged as a major source of

transcriptome diversity (Reyes & Huber, 2018). A prevalent type of APA isoforms are those

that differ only in the length of their 3’ untranslated regions (3’ UTRs). 3’ UTRs become

shorter upon T cell activation (A. R. Gruber et al., 2014; Sandberg et al., 2008), in cancer

cells (Mayr & Bartel, 2009; Xia et al., 2014) and upon induction of reprogramming in somatic

cells (Ji & Tian, 2009). Although the responsible regulators are still to be determined, core 3’

end processing factors under the transcriptional control of cell cycle-related transcription

factors have been implicated, at least in the context of cell proliferation (Elkon et al., 2012).

Various RNA-binding proteins (RBPs) are also involved in specific cellular systems (A. J.

Gruber, Schmidt, et al., 2018; Lee et al., 2021; Martin et al., 2012; Masuda et al., 2020; So et

al., 2019).

While APA-dependent 3’ UTR shortening has been observed in many cancers (Schmidt et

al., 2018; Xia et al., 2014), it is presently unclear whether it is a manifestation of the change

in cell composition of the tissue or of functional changes in all cell types within the tumor

environment. As single cell RNA sequencing (scRNA-seq) technologies specifically capture

mRNA 3’ ends, and datasets of tumor and matched control tissue samples have started to

become available, this question can now be addressed, provided a few challenges are

overcome. First, the number of transcripts that can be reliably quantified is still low (Breda et

al., 2021), because the total number of reads obtained from individual cells is in the 103-104

range. Thus, quantifying gene expression at the isoform level is still very challenging. This
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issue can be partially circumvented by pooling the reads from cells of the same type.

Second, while 3’ biased, scRNA-seq reads do not always reach the PAS and may also result

from internal priming. Thus, identifying which reads correspond to the same 3’ end is also

not trivial. This problem can be mitigated by associating scRNA-seq reads with

already-annotated transcript 3’ ends. However, the current annotation is still far from

complete (A. J. Gruber, Gypas, et al., 2018), leading to PAS usage quantification that is

imprecise and incomplete. For this reason we developed a PAS-agnostic approach for

quantifying changes in 3’ UTR length between samples, based on the entire 3’ end read

distribution along the 3’ UTR. Applying the method to single cell sequencing data from

human lung adenocarcinoma (LUAD), we found that 3’ UTR shortening is not specific to a

cell type but rather occurs in most cell types that compose the tumor. Furthermore, our

analysis revealed that the targeted transcripts encode proteins that are involved in various

steps of protein metabolism, including synthesis at the endoplasmic reticulum (ER), transport

between ER and the Golgi network and finally secretion of proteins. Our data thus implicates

APA in the remodeling of protein metabolism in tumors.

Results

A myeloid to lymphoid switch in lung tumors

While analyses of bulk RNA-seq data revealed the shortening of 3’ UTRs in virtually all

studied cancers with respect to matched control tissue, the shortening is especially

pronounced in lung tumors (A. J. Gruber, Schmidt, et al., 2018). Thus, to better understand

the mechanism and function of APA in cancers, we identified two studies in which single cell

sequencing of lung adenocarcinoma (LUAD) and matched control tissue from multiple

patients was carried out on the same platform, 10X Genomics (Lambrechts et al., 2018;
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Laughney et al., 2020). These data enable us to not only identify 3’ UTR changes in specific

cell types, but also to assess their generality between studies and patients. We followed the

procedure described in (Lambrechts et al., 2018) to annotate the type of individual cells.

Briefly, we integrated the data with the harmony package (see Methods, Suppl. Fig. 1),

clustered the normalized gene expression vectors of all cells (Fig. 1A) with the Seurat

package (Butler et al., 2018), and annotated the type of 38’156 cells from 12 samples of the

(Lambrechts et al., 2018) study (samples 3a-d, 4a-d, 6a-d, representing 3 tumor samples

and a matched control for each of three patients) and 18’543 cells of the (Laughney et al.,

2020) study (3 pairs of tumor-matched control samples) based on known markers. We used

the markers proposed in the (Lambrechts et al., 2018) study, but also added a few markers

for mast cell (TPSAB1, TPSB2 and CPA3; (Dwyer et al., 2016) Table 1) (Fig. 1B). As

described in the initial study (Lambrechts et al., 2018), the most abundant cell types in the

tumor samples were T cells, myeloid and B cells, while the matched control samples were

dominated by myeloid and alveolar cells (Fig.1C). We further identified a small cluster of

mast cells, annotated as B cells in the initial study that did not consider mast cell markers.

We observed a similar myeloid to T cell switch between control and cancer samples from the

(Laughney et al., 2020) study (Fig. 1D). In addition, the matched control samples from this

latter study had a more homogenous cell type composition compared to those from the

(Lambrechts et al., 2018) study, consisting almost exclusively of lymphocytes and myeloid

cells (Fig. 1D).

Given that T cells are the most numerous cell type in tumor samples and that T cell

activation leads to 3’ UTR shortening (A. R. Gruber et al., 2014; Sandberg et al., 2008) we

wondered whether the pattern of 3’ UTR usage that was previously inferred from ‘bulk’

samples can be attributed to the infiltration of the tumor with activated T cells. To investigate

this possibility, we first determined the distribution of RNA molecules (unique molecular
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identifiers, UMI) per cell in various cell types in the two studies (Suppl. Fig. 2A) and the total

number of UMIs obtained from each cell type in each data set (Suppl. Fig. 2B). While T cells

were the most numerous cell type in tumors, their relatively small RNA content per cell led to

a smaller overall contribution to the total RNA pool compared to the less numerous myeloid

cells, which have substantially more RNA molecules per cell (Suppl. Fig. 2A). Thus, the

‘bulk’ RNA obtained from tumor samples is not dominated by RNA originating from T cells,

suggesting that other cell types also contribute to the 3’ UTR shortening that was previously

described in tumors. We therefore carried out a cell type-specific analysis of 3’ UTR usage in

tumors relative to matched controls.

A PAS-agnostic approach to quantify 3’ UTR shortening and

APA events

A few approaches have been proposed for assessing APA in scRNA-seq data sets (Patrick

et al., 2020; Shulman & Elkon, 2019; Wu et al., 2020). However, their robustness with

respect to the sparsity of the data and the incompleteness of PAS annotation has not been

checked (Ye et al., 2020). Thus, we developed a novel approach (single cell analysis of 3’

untranslated region lengths, SCUREL) (Figure 2A), specifically designed to circumvent these

issues and implemented in a Snakemake (Koster & Rahmann, 2012) workflow. SCUREL

enables two different comparisons of 3’ UTR length: between two different cell types in a

data set (“cell type” mode), or for the same cell type between two different conditions (e.g.

tumor and matched control tissue, “condition” mode). We frame the detection of changes in

3’ UTR length between two groups of cells as a problem of identifying the cell group from

which the reads originated by inspecting the positions where the reads map in the terminal

exons (TEs). That is, read 3’ ends are tabulated and the cumulative coverage along

individual TEs is calculated and normalized (Fig. 2B). Then, analyzing each TE individually,
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we record the fraction of reads from the two cell groups that map within an extending window

of the TE starting from the 3’ end (Fig. 2C). This yields a curve in the plane defined by the

proportions of reads in the two cell groups, which is similar to a receiver operating

characteristic (ROC). The area under this curve (AUC) indicates the similarity of TE length

between the compared cell groups. The curve is anchored at coordinates (0,0),

corresponding to the end of the TE, where no reads have been observed yet, and (1,1),

corresponding to the start of the TE, where all reads from the TE have been accounted for. If

the coverage of a TE by read 3’ ends were similar between the two groups of cells and thus

the cell group cannot be identified from the position of the reads, the curve would trace the

diagonal line. Deviations above the diagonal indicate higher coverage of the distal region of

the TE in the cell group represented on the y-axis, while deviations below the diagonal line

indicate higher coverage of the distal TE region in the cell group represented on the x-axis.

When the number of read mapping to a given TE is small, the curve will show discrete jumps

of 1/n step size (where n is the number of reads mapping to the TE), as individual reads are

encountered along the TE. This could lead to AUC values that deviate strongly from the 0.5

value expected under the assumption of similar coverage in the two cell groups. To avoid

false positives that are caused by these finite sampling effects, we constructed a background

coverage data set by randomizing the labels indicating the cell group from which each read

originated. This preserves the depth of coverage of each TE in each group of cells while

randomizing the location of each read, thus allowing us to determine changes in 3’ UTR

length that cannot be explained by the sparsity of the data. For considerations of efficiency,

we carried out the randomization once, and used the information from TEs with similar

average coverage to detect significant AUC values. That is, the distribution of AUC values

being wider for TEs with low coverage (in counts per million, CPM) compared to TEs with

high coverage (Fig. 2D), we binned TEs by the average coverage in the two cell groups (in

log(mean CPM)) and within each of the 20 bins, we used the 1% quantile of the randomized
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read data as the threshold for significant AUC values. Finally, noting that in some cases the

difference in TE exon was small and unlikely to be due to APA, we selected only those TEs

for which the read 3’ ends span a sufficiently large distance. That is, we calculated the

interquartile range (IQR) of read 3’ end positions and, if the union of these intervals for the

two cell clusters that were analyzed was larger than 200 nucleotides, we considered the

range of 3’ end variation sufficient to be indicative of APA (Fig. 2D).

SCUREL detects 3’ UTR length changes in previously characterized

systems

To validate our approach, we analyzed the dynamics of 3’ UTR length in two

well-characterized cellular systems, namely T cell activation, where 3’ UTRs become shorter,

and sperm cell development, where the 3’ UTRs are known to become longer. Furthermore,

we compared our results with those generated on these data sets by the previously

published scAPA method (Shulman & Elkon, 2019).

We annotated the mouse T cell scRNA-seq data (Pace et al., 2018) with Seurat, obtaining

1605 activated and 1535 naïve T cells (Figure 3A), with 5.8 and 1.8 million reads mapped to

TEs, respectively. Applying SCUREL, we identified 261 TEs whose length changed

significantly upon T cell activation, of which 218 (84%) became shorter (Figure 3B). These

results recapitulate those obtained from bulk RNA sequencing in a similar system (A. R.

Gruber et al., 2014). Applying the previously published scAPA method (Shulman & Elkon,

2019) (see Methods) we only obtained 14 TEs with a significant length change, 12 of which

(85%) became shorter (Figure 3C). ⅔ of the scAPA-identified targets (8 of 12 TEs) were also

identified by our method, while the 4 cases missed by SCUREL involved either very small

TE length changes (3 cases) or a difference in the annotation of the TE, because scAPA also

quantifies PAS downstream of annotated TEs. In contrast, inspection of 9 randomly chosen
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TEs identified only by SCUREL indicated that they correspond to genes with relatively low

expression, which are overlooked by scAPA (Suppl. Fig. 3). Examples of TEs from each of

these categories are shown in Fig. 3G.

We carried out a similar analysis on a mouse spermatogenesis dataset (Lukassen et al.,

2018), as it is well known that 3’ UTRs become progressively longer during the maturation of

germ cells to elongating, condensing, round spermatids and finally spermatocytes. We used

the markers described in the original publication (Lukassen et al., 2018) to annotate 386

elongating spermatids (ES) and 667 spermatocytes (SC), with 8 and 12 million reads in the

TE regions, respectively (Figure 3D). Applying SCUREL, we found 2’060 TEs whose length

changed significantly from ES to SCs, almost all of which (1’992, 97%) became longer

(Figure 3E). scAPA yielded a similar proportion of shortened TEs (but fewer in absolute

number), 96% (165 of 171 significant APA events, Figure 3F). As in the case of T cells, most

of the scAPA-identified TEs were also found by our method (146 of 165 TEs), while TE

annotation and small changes in PAS usage accounted for the cases that were unique to

scAPA. Inspection of 9 randomly chosen TEs identified only by SCUREL indicated that they

correspond to genes with relatively low expression or exclusively express one PAS or the

other (Suppl. Fig. 4).

Genes involved in protein metabolism are targets of 3’ UTR

shortening in lung cancer cells

Having established that our method reproduces previously reported patterns of 3’ UTR

length change in physiological settings, we then turned to the question of whether 3’ UTRs

are also different in lung cancer cells compared to their non-malignant counterpart, the

alveolar epithelial cells. We identified 1’330 TEs that were shorter in the 3’607 cancer
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compared to the 851 alveolar cells in the Lambrechts dataset (with 22 and 3.7 million reads

in TEs respectively), representing 98% of 1’357 significant events (Figure 4A, top). Similarly,

we identified 188 shortened TEs from the Laughney dataset of 489 cancer and 292 alveolar

cells (with 6 and 1.3 million reads in TEs respectively), representing 85% of 219 significant

events (Figure 4A, bottom). While much fewer events were found in the Laughney data set,

the majority (105 of 188 TEs, 56%) were shared with the Lambrechts dataset. To determine

whether specific biological processes are subject to APA-dependent regulation in cancer

cells, we submitted the set of 105 shared genes to functional analysis via the STRING web

server (Szklarczyk et al., 2019). This revealed that the corresponding proteins are

associated with membranes, vesicles and granules (Figure 4B,C). Interestingly, these APA

targets cover the entire lifecycle of membrane and secreted proteins, from synthesis (i.e.

translation initiation factors and ribosomal proteins), to traffic into the ER (e.g. SSR1,

SPCS3, SEC63) and Golgi (e.g. TRAPPC3, KDELR2), to proteasome-mediated degradation

(PSMD12). Some of the APA targets are surface receptors with well-known involvement in

cancers (CD44, CD47 and CD59). These results indicate that APA contributes to the

orchestration of protein metabolism and traffic in cancer cells. Examples of TEs from Figure

4B are shown in Figure 4D.

Conserved targets of 3’ UTR shortening in individual cell types

The next question we wanted to answer is whether 3’ UTR shortening affects all cells in the

tumor environment, or it is rather restricted to specific cell types. We thus carried out the

SCUREL analysis for each individual cell type for which we had at least ~20 cells in each

data set, comparing TE lengths between cells of the same type, from the tumor sample and

matched control sample. We found many more TEs becoming significantly shorter than

longer (Fig. 5A-B), across almost all cell types and in both data sets. This is summarized in

Fig. 5C, which shows that the proportion of shortened among significantly changed TEs is
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almost always greater than 0.5. By grouping all reads from the tumors and from matched

control samples, respectively, we also recapitulated the result of previous ‘bulk’ RNA-seq

data analyses (Fig. 5D). Thus, 3’ UTR shortening is not restricted to a specific cell type, but

seems to generally take place in all cell types, associated with the tumor environment.

Moreover, in spite of the differences between the studies, there was a highly significant

overlap between the targets of TE shortening in individual cell types (Fig. 5E-F). To gain

further insight into the processes that may be regulated by APA, we submitted the

intersection sets of genes exhibiting TE shortening in T lymphocytes and myeloid cells in

these studies to functional enrichment analysis. We found significant enrichments especially

in cellular components such as membranes, vesicles and granules (Fig. 5G-H), similar to

what we observed in cancer cells.

Variability in 3’ UTR shortening among individuals

Finally, we asked to what extent are the targets of 3’ UTR shortening similar across patients.

To answer this question, we analyzed individually the cells obtained from three patients in

the Lambrechts study. Interestingly, in spite of the similar histopathological classification of

the samples, one of the three samples was markedly different from the others, not exhibiting

any tendency towards 3’ UTR shortening (Fig. 6A-D). The other two samples showed highly

significant overlaps between shortened 3’ UTRs in different cell types (Fig. 6E). Analysis of

biological process enrichment in individual cell types based on the genes targeted in both of

these patients reinforced the concept that transport processes are affected in multiple cell

types (Fig. 6F). It also provided further granularity. For example, leukocyte activation and

secretion are terms enriched in the myeloid cell data, whereas metabolic processes are

enriched in T cells, interaction with immune cells in endothelial cells and interaction with

endothelial cells and angiogenesis in fibroblasts. Altogether these data demonstrate the
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power of SCUREL identifying changes in APA-related changes in 3’ UTR length, revealing

common functional themes, in spite of substantial variability between samples. A complete

table of genes with significant 3’UTR shortening across all LUAD comparisons we conducted

is available in Suppl. Table 1. The data further indicate that protein transport processes and

intercellular communication are preferential targets of APA across multiple cell types.

Discussion

The remodeling of gene expression in cancers involves, among other processes, alternative

polyadenylation. A tendency toward 3’ UTR shortening has been generally observed, though

to different extents, in virtually all studied cancers (Schmidt et al., 2018; Xia et al., 2014).

Whether this is the result of changes in the cell type composition of the tissue or to

cancer-related changes in functionality in all cell types has not been investigated so far. We

set out to answer this question, taking advantage of single cell sequencing data sets

obtained from human lung adenocarcinoma. As the sparsity of the scRNA-seq data poses

some challenges (Lähnemann et al., 2020) we sought two distinct studies that used the

same sequencing platform, to identify shared patterns of variation. Furthermore, we

developed an approach that controls for both imperfect annotation of transcript isoforms and

low read coverage in scRNA-seq.

Comparing data from cells of the same type, but originating either from tumor samples or

from matched control tissue, we found similar tendencies towards 3’ UTR shortening in the

tumor environment for most cell types. Furthermore, the proteins encoded by the transcripts

that are affected in various cell types cluster into specific functional classes, specifically the

synthesis, traffic, secretion and degradation of proteins. This implicates APA in the regulation

of protein metabolism and the organization of subcellular structure.
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Initial studies that described the phenomenon of 3’ UTR shortening in T cells and cancer

cells proposed a role in the regulation of protein levels, as short 3’ UTR isoforms are more

stable than those with long 3’ UTRs (Mayr & Bartel, 2009; Sandberg et al., 2008). However,

when the decay rates of 3’ UTR isoforms were measured, they turned out to be rather similar

(A. R. Gruber et al., 2014; Spies et al., 2013), leaving open the question of functional

differences between 3’ UTR isoforms (Mayr, 2018). More recent work uncovered additional

layers of 3’ UTR-mediated regulation. For example, a role of 3’ UTRs in the localization of

the translated protein (UDPL) has been described for a number of membrane proteins,

including the immunoglobulin family member CD47, whose localization to the cell membrane

protects host cells from phagocytosis by macrophages (Berkovits & Mayr, 2015).

Interestingly, CD47 is a conserved APA target in both LUAD datasets that we analyzed here,

its 3’ UTR becoming shorter in cancer cells compared to lung alveolar cancer cells. This

would predict decreased localization of CD47 to the surface of cancer cells, making them

more susceptible to apoptosis compared to normal alveolar cells. This may explain why

increased levels of CD47 are associated with increased cancer-free survival of patients with

lung cancers (kmplot.com, (Nagy et al., 2021)) . It will be very interesting to apply methods

for simultaneous profiling of protein and mRNA expression in single cells (Stoeckius et al.,

2017) to better understand the interplay between APA, gene expression, and membrane

localization of CD47 in cancers.

The concept that 3’ UTR shortening is associated with proliferative states was challenged in

a recent study that instead demonstrated its association with the secretion of proteins, both

in trophoblast and in plasma cells (Cheng et al., 2020). Our data fully support this notion,

extending the data to cancer cells as well as T lymphocytes and myeloid cells. As the protein

production apparatus is present in all cells, APA is a well-suited mechanism for fine-tuning
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the expression of various components in a cell type and cell state-dependent manner

(Lianoglou et al., 2013). Associating APA with protein metabolism rather than cell

proliferation makes the question of its upstream regulation ever more puzzling because the

shortening of 3’ UTRs in proliferating cells has been attributed to an increased expression of

3’ end processing factors mediated by cell cycle-associated E2F transcription factors (Elkon

et al., 2012). It will be interesting to revisit this issue in a system where the increased protein

production and secretion can be decoupled from cell proliferation, as the B cell maturation

system (Cheng et al., 2020).

In conclusion, among the many applications of scRNA-seq, analysis of cell type-dependent

polyadenylation reveals the relevance of APA as a general mechanism for regulating the

metabolism and traffic of proteins within cells. With SCUREL we provide a robust method for

detecting changes in 3’ UTR length for even low-expression genes between cell types, in a

manner that does not rely on accurate PAS annotation.

Materials and Methods

Datasets

Lung cancer samples

Lung adenocarcinoma (LUAD) and matched control samples were downloaded from the

GEO database (Barrett et al., 2013), based on the accession numbers in the original

publications. Specifically, from the (Lambrechts et al., 2018; Szklarczyk et al., 2019) data set

we used the LUAD samples listed in Table 1 of the original publication (corresponding to

patients 3, 4 and 6, 3 tumor samples and one matched control sample for each patient).

scRNA-seq data (ArrayExpress (Athar et al., 2019) accession numbers E-MTAB-6149 and
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E-MTAB-6653) were generated in this study with the 10X Genomics Single Cell 3’ V2

protocol. From the (Laughney et al., 2020) study we also used LUAD and matched control

samples, which originated from 3 donors. These samples were also generated with the 10X

Genomics Single Cell 3’ V2 protocol (accession number GSE123904).

Mouse testis samples

scRNA-seq data from the testes of two 8-week old C57BL/6J mice (Lukassen et al., 2018)

were downloaded from the GEO database (accession number GSE104556).

Mouse T cell samples

scRNA-seq data of FACS sorted T cells from the lymph nodes and spleen of C57BL/6J mice,

three infected with OVA-expressing Lysteria monocytogenes and one naive (Pace et al.,

2018) were downloaded from the GEO database (accession number GSE106268).

Execution of scAPA

scAPA (Shulman & Elkon, 2019) was downloaded from the github repository and executed

with the same genome sequence that was used throughout the study. For compatibility, the

“chr” prefix in the chromosome names was removed. The lengths of the chromosomes were

obtained with samtools faidx. The homer software (v4.11.1) required by the scAPA package

was manually downloaded from http://homer.ucsd.edu/homer/. We collected all other

requirements specified on scAPA github page in a conda environment. The removal of

duplicate reads was done by adjusting the existing umi_tools dedup command in

scAPA.shell.script.R for 10X Genomics, using the following options " --per-gene", "

--gene-tag=GX", " --per-cell ". This was necessary because according to the protocol, one

RNA fragment could result in reads that do not map at identical positions.
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Extraction of terminal exons

Terminal exons were obtained from the RefSeq genome annotations (gff), GRCm38.p6 for

mouse and GRCh38.p13 for human, with a custom script, as follows. Chromosome names

from the RefSeq assembly were converted to ENSEMBL-type names based on the

accompanying ‘assembly_report.txt’ file. Only autosomes, allosomes and mitochondrial DNA

were retained. Based on the genome annotation file, protein-coding and long non-coding

transcripts were retained, while model transcripts (‘Gnomon’ prediction; accession prefixes

XM_, XR_, and XP_) were discarded. From this transcript set, the 3’-most exons (i.e.

terminal exons, TEs) were retrieved. Overlapping TEs on the same chromosome strand

were clustered with intervaltree (v3.0.2; python package) and from each cluster, the longest

exon was kept. The resulting set of TEs was sorted by chromosome and start position and

saved to a BED-formatted file. TE IDs were converted to gene names with biomaRt (v

2.46.3) using the ensembl BioMart database. Duplicate gene names were discarded.

Processing of scRNA-seq reads

The workflow can start from mapped reads in cellranger-compatible format, a file with cell

barcode-to-cell type annotation and a genome annotation file. Alternatively, the cellranger

count function can be used to map reads from FASTQ input data. Reads from the FASTQ

files were mapped with the function count from the cellranger (v5.0.0) package to the

reference human genome GRCh38-3.0.0 sequence obtained directly from 10X genomics

website. This genome is a modified version of the GRCh38 genome, compatible with the

cellranger analysis pipeline. Reads are also aligned to the transcriptome. In this step, cell

barcodes and UMIs correction also takes place. Aligned reads (BAM) with mapping quality

(MAPQ) scores > 30 were selected with samtools (v1.12, (Li et al., 2009)). Reads without a
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cell barcode “CB” tag were removed with samtools view, as were duplicated reads using

umi_tools dedup (v1.1.1, (Smith et al., 2017)). The mapped reads are filtered, deduplicated

and grouped by cell type in the “cell type” mode or by cell type and tissue of origin in the

“condition” mode. In the latter case, quasi-bulk samples are also constructed from the filtered

reads that come from individual conditions.

Cell type annotation

The annotation of cell types in all datasets was carried out with the approach described in

(Lambrechts et al., 2018). Filtered data (so as to remove artifacts such as empty droplets)

consisting of cellular barcodes and count matrices from individual data sets were loaded in R

(v4.0.3) with Read10X (from Seurat v3.2.3 (Butler et al., 2018)), and Seurat objects were

created with CreateSeuratObject. For the lung cancer datasets, cells with < 201 Unique

Molecular Identifiers (UMIs), with < 101 or > 6000 genes or with > 10% UMIs from

mitochondrial genes (which may indicate apoptotic or damaged cells) were removed. For all

datasets, genes with zero variance across all cells (i.e. sum = 0) were discarded. The gene

expression counts for each cell were log-normalised with NormalizeData with a default scale

factor of 10’000. In Seurat, 2’000-2’500 most variable genes are used to cluster the cells.

Here we used the 2’192 variable most variable genes, as in (Lambrechts et al., 2018). These

were selected with FindVariableFeatures, with normalised expression between 0.125 and 3,

and a quantile-normalised variance exceeding 0.5 for lung cancer and mouse T cell

samples, and normalised expression between 0.1 and 8 for mouse testis samples. Gene

expression levels were then centered and scaled across all cells. After Principal Component

Analysis (PCA) on the most variable genes, the number of relevant dimensions n for each

data set was determined by assessing the variance explained by individual Principal

Components (PC) with ElbowPlot from Seurat. UMAP (McInnes et al., 2018) was used to

visualize the data projected on the n dimensions. For T cell activation and LUAD samples,

17

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450496doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450496
http://creativecommons.org/licenses/by/4.0/


Dominik Burri

batch correction and data integration were performed with harmony (v1.0) (Korsunsky et al.,

2019). Harmony was run on the first 30 PCs and set to group by dataset. The transformed

data set was used for downstream analysis (i.e. clustering of cells, visualization in 2D).

Various Seurat functions were used to identify the cell type of individual cells. Cells were

clustered using the Shared Nearest Neighbor (SNN) algorithm, which aims to optimize

modularity. First, FindNeighbors was executed using the first n dimensions from PCA or

harmony and with otherwise default settings (k = 20). Then, FindClusters with resolution

parameter 0.6 for LUAD, 0.2 for T cells and 0.3 for spermatocytes was run, so as to retrieve

a number of clusters similar to those in the original publications. The expression of cell type

markers in each cluster was assessed with FindAllMarkers. This function finds genes that

are differentially expressed between cells from one cluster and all other cells, by applying a

Wilcoxon Rank Sum test on the log-normalized expression. Individual clusters were

downsampled to the number of cells in the smallest cluster or to at least 100 cells. Only

genes expressed in a minimum of 10% of the cells in either population and with a log (base

e) -fold-change of at least 0.25 (default values in Seurat) were tested. Markers with adjusted

p-value < 0.01 were considered significant and those with higher expression in the selected

cluster were considered as potential markers for that cell cluster. For each cluster we

counted the number of significant markers that matched known cell type markers (Table 1)

and assigned the cell type to be the one for which a proportion of > 0.6 of known markers

were specifically expressed in the cell cluster. Generally, this assignment was unambiguous,

and when it was not, the cell type assignment was done manually, taking into account the

adjusted p-value and average log-fold-change of all considered marker genes as well as the

cell type annotation from the Suppl. Table 3 of (Lambrechts et al., 2018), which contains

additional cell type markers. At least 3 marker genes were required to assign a cluster to the
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corresponding cell type, except for cancer cells that were annotated only based on the

expression of EPCAM.

Assessing 3’ UTR length differences with the AUC measure

To assess changes in 3’ UTR length between groups of cells we used the following

approach. For simplicity, the analysis is carried out for terminal exons (TEs) rather than 3’

UTRs, as 3’ UTRs are generally contained in TEs, covering almost the entire length of the

TEs. We started from the BAM files of mapped reads from two groups of cells. We computed

the 3’ end coverage of individual TEs per strand with bedtools genomecov and parameter

“-bga”. The BED file with read 3’ end positions was used to obtain the normalized reverse

cumulative coverage of individual TEs, i.e. starting at the TE 3’ end and ending at the 5’

most nucleotide. Individual TEs were traversed from the end to the beginning, recording the

reverse cumulative coverage in the two groups of cells as a function of position. The area

under the resulting curve (AUC) was then calculated. An AUC of 0.5 corresponds to identical

position-dependent coverage of the TE by 3’ end reads in the two groups of cells, i.e. no

difference in TE length. An AUC value of 1 corresponds to all the 3’ end reads from the

group of cells indicated on the y-axis being clustered at the end of the TE, before any reads

from the other group are observed, thus the TEs are longest in this group of cells. Vice

versa, an AUC value of 0 corresponds to all the 3’ end reads from the group indicated on

x-axis are observed before any reads of the other group, thus the 3’UTRs are longest in this

group of cells.

If the read coverage of a TE is very sparse, the curve representing the coverage in the two

cell groups will not be smooth, but rather change in steps of 1/n where n is the number of

reads mapping to the TE; deviations from the diagonal line of identical coverage in the two

groups will be common, due to the stochastic sampling of the reads. To mitigate this effect
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and identify TEs whose coverage cannot be explained by stochastic sampling of

low-expression genes we generated a background dataset, in which we randomized the cell

group label of the reads. This procedure preserves the number of reads obtained in each TE

in each group, but randomizes their position in the TE.

Finally, we identified TEs with AUCs indicating significant shifts in PAS usage. For this, we

extracted TEs with a normalized read count (CPM) >= 2 in both cell groups, roughly

corresponding to TEs with at least one count in each of the groups. As AUC values depend

on the overall expression of the TE, we used an expression-dependent AUC cutoff to identify

the TEs significantly changing length. This corresponded to the two-tailed 1% quantile of the

background distribution in each of the 20 equal-sized log(mean expression between cell

groups) bins, smoothened using the median over a running window of 5 values. Finally, to

ensure that the change in read coverage was due to APA, we only retained significantly

changed TEs for which the union of the interquartile range of TE positions that were covered

by 3’ end reads in the two samples spanned at least 200 nucleotides.

Analysis of overlaps between data sets

We used a sample-specific background for the calculation of the probability of overlap of

genes and for the pathway enrichment analysis carried out on the STRING web server. All

TEs considered in the AUC analysis, i.e. TEs with CPM >= 2, in each sample were

combined and the unique set of TEs was used as background. In particular, for the cell type

analysis of the Lambrechts dataset, we used the cell type-specific union of TEs from patients

3, 4 and 6 and obtained 10’966 genes for myeloid cells, 10’473 for T cells, 11’269 for

endothelial cells and 11’857 for fibroblasts. For the cell type analysis of lung cancer datasets,

the union of TEs consisted of 10’177 genes in T cells and 9’970 genes in myeloid cells. We
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used the hypergeometric distribution to calculate the odds ratio and associated p-value of

the overlap between gene sets.

Pathway analysis

The gene symbols for TEs with significant APA events were analyzed via the STRING web

server, which provides enriched Gene ontology (GO) terms, KEGG and reactome pathways.

As a background gene set for the enrichment analysis we provided the dataset-specific list of

expressed genes (CPM >= 2).

Workflow execution

SCUREL was packaged in Snakemake and can be obtained from

https://github.com/zavolanlab/SCUREL.
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Tables
Table 1: Marker genes for cell type annotation. Based on (Lambrechts et al., 2018).

Cell type marker genes Cell type marker genes

alveolar CLDN18 fibroblast C1R

alveolar FOLR1 B cell CD79A

alveolar AQP4 B cell IGKC

alveolar PEBP4 B cell IGLC3

endothelial CLDN5 B cell IGHG3

endothelial FLT1 myeloid LYZ

endothelial CDH5 myeloid MARCO

endothelial RAMP2 myeloid CD68

epithelial CAPS myeloid FSGR3A

epithelial TMEM190 T cell CD3D

epithelial PIFO T cell TRBC1

epithelial SNTN T cell TRBC2

fibroblast COL1A1 T cell TRAC

fibroblast DCN cancer EPCAM

fibroblast COL1A2
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Figure legends
Figure 1. Cell type composition of lung adenocarcinoma and matched control

samples.

A. 2-dimensional projection (Uniform Manifold Approximation and Projection, UMAP) of gene

expression vectors. The projections were obtained with the RunUMAP function from Seurat

v3.2.3 (Butler et al., 2018), based on the first 10 principal components. The two datasets

were integrated with harmony. Cell clustering was done on the shared nearest neighbour

(SNN) graph (see Methods).

B. Dot plot of marker gene expression across the clusters shown in panel A. Shown is the

average expression and percent of expressing cells per cluster for the markers used in

(Lambrechts et al., 2018) (see also Table 1). The dot plot was created with Seurat.

C. 2-dimensional projection (created with Seurat) of gene expression vectors as in A, but

highlighting only cells from one study in each panel.

D. Box plot of relative proportion of each cell type in control (green) and tumor (red) samples

from individual patients from the Lambrechts and Laughney datasets.

Figure 2. Overview of SCUREL.

A. Schematic representation of the workflow for detecting significant changes in 3’ UTR

length between two cell populations. Input data (blue) consist of mapped reads from

cellranger count and a table of annotated cell barcodes. The genome annotation is used to

extract TEs, their cumulative 3’ end coverage in the two cell groups yielding the AUC value,

which we used as a measure of APA. Dashed box: Alternative start of the workflow, from

scRNA-seq reads in FASTQ format. The cell type annotation is done semi-automatically,

based on marker gene expression (see Methods).

B. Cumulative 3’ end coverage of the TE of mouse Mettl4 gene in activated (red) and naive

(green) T cells from the (Pace et al., 2018) study. For each cell type, the first track shows the
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read coverage along the TE, the second track the location of read 3’ ends and the third track

the reverse cumulative of the 3’ end coverage. The gene is on the negative strand of the

chromosome.

C. Summary of the cumulative 3’ end read distribution along the TE of Mettl4 in activated

versus naive T cells, from the 3’ (at 0,0) to the 5’ (at 1,1) end. Points correspond to individual

nucleotides of the TE where 3’ end reads are observed. The upwards deviation of the curve

relative to the diagonal line indicates higher coverage of the distal region of the TE in naive T

cells, quantified by the AUC value of 0.582.

D. Distribution of AUC values as a function of log10(mean CPM) per TE in the mouse T cell

activation data set (Pace et al., 2018). 9’099 TEs are represented, 218 showing significant

shortening and 43 TEs significant lengthening (green points) attributed to APA.

Figure 3: Analysis of APA in T cell activation and spermatogenesis.

A. UMAP projection of the T cell activation dataset (Pace et al., 2018) showing activated

(red), naive (green) and unassigned (grey) T cells.

B. Scatter plot of AUC in function of log10(mean CPM) for 9’099 TEs. The 1% quantiles (red

lines) of the distributions obtained from the randomized dataset were used to identify TEs

whose length changed significantly. AUC values > 0.5 indicate shorter 3’ UTRs in activated T

cells. TEs whose length changes were attributed to APA based on the span of the read 3’

ends (see Methods) are shown in green.

C. Cumulative distribution of proximal peak usage index (proximal PUI) for genes deemed by

scAPA to undergo significant 3’ UTR length changes. Activated T cells (red) generally have

higher proximal PUI compared to naive T cells (blue), indicating 3’UTR shortening in

activated T cells.

D. UMAP projection of the spermatogenesis dataset (Lukassen et al., 2018), with highlighted

elongating spermatids (purple) and spermatocytes (orange).
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E. Scatter plot of AUC in function of log10(mean CPM ) for 7’875 TEs (see panel B for

details). AUC values > 0.5 indicate longer 3’ UTRs in spermatocytes.

F. As in C, but comparing elongating spermatids (red) with spermatocytes (blue).

G. Examples of genes deemed to exhibit significant change in 3’ UTR length by both

methods (left), by SCUREL only (middle) or by scAPA only (right). For each example, the

tracks are: read coverage and cumulative distribution in the two conditions (activated - red -

and resting - green - T cells for T cell examples, elongating spermatids - purple - and

spermatocytes - orange - for the spermatogenesis examples, followed by coverage tracks

from scAPA for the same two conditions in grey. The three blue tracks on the bottom denote

in order, the Refseq annotation of the gene, the TE region analyzed in SCUREL and the

peaks identified by scAPA.

Figure 4: APA in lung adenocarcinoma cells.

A. Scatter plot of AUC in function of log10(mean CPM) for cancer and alveolar cells in the

Lambrechts (top) and Laughney (bottom) datasets. TEs with significant APA-induced length

changes are highlighted in green (numbers shown in insets).

B. The interaction network (from the STRING web server) of proteins whose transcripts

undergo 3’UTR shortening in both datasets.

C. Functional enrichment analysis for genes whose TEs undergo shortening in cancer cells.

Shown are the top 10 GO biological process terms (sorted by the false discovery rate, FDR).

Analysis was performed with STRING web server, using as background the set of genes

found to be expressed in the lung samples.

D Read coverage along TEs for a few example genes from panel B (EIF1, CD44 and CD59).

Each panel shows four tracks per data set, blue: cancer cells, red: alveolar cells, coverage of

the TE by reads (top track) and the cumulative coverage of the TE by read 3’ ends (bottom

track). In all cases, the 3’ UTRs are shorter in cancer compared to alveolar cells.

Figure 5. APA events in individual cell types.
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A. Number of genes with APA-associated 3’UTR shortening in the Lambrechts (green) and

Laughney (orange) data sets.

B. Number of genes with APA-associated 3’UTR lengthening, same colors as A.

C. Fraction of 3’UTR shortening events in individual cell types, among all significant events.

D. Number of genes whose TEs undergo significant length change in quasi-bulk samples,

shortening and lengthening events being shown separately.

E. Venn diagram of TE shortening events in T cells from the two studies. Calculation of odds

ratio and p-value of overlap with hypergeometric distribution (see Methods).

F. Similar for myeloid cells.

G. Biological process enrichment for TEs undergoing significant shortening in T cells and

myeloid cells from the Lambrechts (LB) and Laughney (LN) studies. No process was

specifically enriched in myeloid cells from the Laughney dataset. Plot generated with

pheatmap (v 1.0.12).

H Cellular component enrichment for TEs undergoing significant shortening in T cells and

myeloid cells from the two studies. No component was specifically enriched in T cells from

the Laughney dataset. Plot generated as in G.

Figure 6. APA events in individual cell types from individual patients.

A. Number of genes with 3’UTR shortening inferred from patient 3 (green), patient 4

(orange) and patient 6 (purple) samples from the Lambrechts dataset.

B. Number of genes with 3’UTR lengthening, same colors as A.

C. Fraction of 3’UTR shortening events in individual cell types, among all significant events.

D. Number of genes whose TEs undergo significant length change in quasi-bulk samples,

shortening and lengthening events being shown separately.

E. Venn diagrams of significantly shortened TEs in myeloid, T, endothelial and fibroblast cells

from tumor relative to matched control samples from distinct patients. Calculation of odds

ratio and p-value of overlap with hypergeometric distribution (see Methods).
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F. Biological process enrichment for TEs found to be shorter in cancer compared to matched

control cells of individual cell types, from patient 3 and patient 6. Plot generated with

pheatmap (v 1.0.12).
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