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Abstract 

Visual images contain redundant information across spatial scales where low spatial frequency contrast is 

informative towards the location and likely content of high spatial frequency detail. Previous research 

suggests that the visual system makes use of those redundancies to facilitate efficient processing. In this 

framework, a fast, initial analysis of low-spatial frequency (LSF) information guides the slower and later 

processing of high spatial frequency (HSF) detail. Here, we used multivariate classification as well as time-

frequency analysis of MEG responses to the viewing of intact and phase scrambled images of human faces 

to demonstrate that the availability of redundant LSF information, as found in broadband intact images, 

correlates with a reduction in HSF representational dominance in both early and higher-level visual areas 

as well as a reduction of gamma-band power in early visual cortex. Our results indicate that the cross 

spatial frequency information redundancy that can be found in all natural images might be a driving factor 

in the efficient integration of fine image details.  
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Introduction 

In natural images, low and high spatial frequencies are spatially aligned such that the low spatial frequency 

(LSF) phase i.e., the location of low spatial frequency features, is informative towards the content and 

location of high spatial frequency (HSF) contrast. This alignment of spatial frequencies is essential for 

efficient visual perception (Bex and Makous, 2002; MaBouDi et al., 2016).  

Efficient coding theories (Barlow, 1961, 2001; Simoncelli, 2003) conjecture that the visual system aims to 

exploit redundancies in the form of statistical dependencies across image scales to optimize processing. 

The initial assessment of coarse image structure and semantic content in higher-level areas has been 

proposed to subserve a (predictive) feedback signal, which restricts low-level processing to the HSF details 

that are most relevant for recognition (Bullier, 2001; Bar et al., 2006), therefore alleviating the low-level 

computational resources recruited for the processing of HSF. This framework is supported by empirical 

evidence showing that LSF is processed before HSF image content. Human object recognition is often 

found to be characterized by a low spatial frequency (LSF) bias at the earliest latencies of visual processing 

(Parker and Dutch, 1987; e.g., Mazer et al., 2002) and direct comparisons of visual response times to LSF 

and HSF stimuli indicate a temporal advantage for LSF processing (Vlamings, Goffaux and Kemner, 2009; 

Goffaux et al., 2010; Musel et al., 2014). However, because past research usually split natural images into 

separate SF bands to study their respective contribution to perception, it failed to test a core assumption 

of the coarse-to-fine framework, namely that, in natural broadband stimulation, the early encoding of the 

coarse LSF reduces the computational resources recruited for the subsequent processing of HSF details. 

This assumption can indeed only be tested in broadband viewing conditions, containing phase-aligned 

(redundant) coarse and fine input.  

In a recent work, we developed a novel approach to track the separate contribution of LSF and 

HSF processing to the human perception of broadband images of faces. In this approach, multivariate 

pattern classifiers are first trained to differentiate between human EEG scalp amplitude patterns elicited 

by LSF and HSF stimuli devoid of any semantic content (i.e., phase-scrambled images), and tested on how 

they generalize to broadband visual stimulation over time. Broadband images contain both LSF and HSF 

information, so classifier generalization indicates which profile is most prominent in the activity pattern 

they elicit. Using this approach, we found that LSF/HSF classifiers tested on the neural responses to 

broadband images were less likely to classify responses as HSF when images showed intact faces, 

compared to scrambled faces. Our findings are in line with the hypothesis that LSF-driven guidance of HSF 

processing results in an overall reduction of processing load, when coarse (LSF) image contrast is aligned 

and thus informative towards its fine (HSF) content (Petras et al., 2019). However, our previous 
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methodology was limited to reveal relative changes in HSF, compared to LSF markers in intact vs. 

scrambled conditions. Whether such relative reductions in HSF dominance reflect an absolute reduction 

in the resources recruited for the processing of broadband, SF-redundant, stimulation is unclear. 

Furthermore, the poor spatial resolution of the employed EEG technique precludes the localization of the 

observed modulations. 

Here, we exploit the superior spatial and temporal resolution afforded by 

magnetoencephalography (MEG) and explicitly test the hypothesis that coarse LSF image structure guides 

the processing of redundant HSF detail in early visual cortex, therewith reducing local processing load. In 

a further step, we investigate the proposal that such LSF facilitation is driven by feedback from higher 

level visual areas. Using source reconstruction, we separate the responses of high- and low-level visual 

regions and investigate their dynamic interactions during the processing of broadband images of faces. 

Electrophysiological studies in the primate visual system found that feedforward/feedback 

communication employs distinct response temporal dynamics. Feedforward signals leaving the superficial 

(supragranular) layers of cerebral cortex to target layer 4 of upstream regions are carried by fast, gamma-

range (>30 Hz), neural oscillations. In contrast, feedback signals, mostly stemming from deep 

(infragranular) layers manifest as slow neural oscillations in the alpha and/or beta ranges (Bastos et al., 

2015; Fries, 2015; Michalareas et al., 2016) that are primarily inhibitory in nature (Thomson and Bannister, 

2003). Previous studies have consistently found gamma band power increases between rest and task, with 

no clear upper bound for frequency (Miller et al., 2014). An absolute reduction of processing load in a 

given region should therefore manifest as a weakening of its gamma response, as the latter reflects the 

output of its local operations.  

 We presented participants with images of human faces filtered to contain either LSF only, HSF 

only, or both spatial frequencies (broadband). Images were either intact, i.e. containing redundancies 

across spatial frequency ranges, or phase-scrambled to disrupt spatial scale redundancy. Using this design, 

we test several predictions regarding the contribution of LSF driven feedback to visual recognition. First, 

if HSF processing is more efficient, i.e., recruits less computational resources, when HSF content is spatially 

aligned with LSF, the MEG markers of HSF processing should reduce in response to intact compared to 

scrambled broadband images, as found in our previous EEG study. If the early visual cortex is the primary 

site of such integration, reductions in HSF contribution should be found in this region. Importantly, if the 

decrease in HSF processing markers is due to an absolute reduction of processing load in intact, SF-

redundant, viewing conditions rather than a mere shift of SF dominance, we should observe a decrease 

in gamma power as a proxy of reduced local processing load.  
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Further, if LSF feedback guides HSF processing based on an initial assessment of coarse image 

structure and semantic content information, it likely originates in an area that responds to visual stimuli 

with receptive fields that are both sufficiently large to cover the global shape of a stimulus and sufficiently 

abstract to represent complex objects. Ventral temporal cortex and frontal cortex (Bar, 2004; Kietzmann 

et al., 2019) fit this profile. Ventral temporal cortical areas are involved in visual object recognition, feature 

large receptive fields (Sayres et al., 2009; Caspers et al., 2013; Kay et al., 2013) and show spatial frequency 

sensitivity dynamics consistent with a coarse-to-fine integration of spatial scales (e.g., Goffaux et al., 2010; 

Musel et al., 2014). Orbitofrontal cortex (OFC) shows a bimodal spatial frequency tuning function (Fintzi 

and Mahon, 2014) and has also been suggested to be the source of spatial frequency specific feedback to 

early visual cortex (Bar et al., 2006; Kauffmann et al., 2015). Therefore, we expect to observe increased 

activity in the alpha/beta bands linked to feedback signalling, over either the inferior temporal or frontal 

cortex (Klopp et al., 1999). Moreover, alpha/beta band feedback signals should correlate with the 

reduction of local processing markers in the gamma range during the processing of SF-redundant 

information (intact images). If instead non-semantic stimulus properties such as the alignment of edges 

and contours are driving the processing of redundant SF information, we expect to find such correlations 

with regions in the lateral occipital complex (LOC) which has been shown to be involved in resolving 

contours, even in the absence of semantically meaningful stimuli (Park et al., 2011; Shpaner et al., 2013). 

Systematically testing those hypotheses allows us to showcase the potential role of cross-SF-redundancy 

based feedback as a major influence on efficient visual computation. 
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Methods 

Participants: 

21 participants (9 female, 12 male, mean age 28.3 SD 5.13) took part in the study in exchange for monetary 

compensation. If needed, corrective lenses for myopia or hyperopia were attached to the MEG helmet in 

front of the participants’ eyes. All participants provided written informed consent and were fully informed 

about the purpose of the experiment after participation. The study was approved by the Scientific Ethics 

Committee for the Midtjylland Region, Denmark. One participant was excluded due to excessive noise in 

the MEG data and one participant was excluded for failing to reach sufficient task performance.  

 

Stimuli 

Stimuli were 47 images each of human faces, houses and their phase-scrambled versions. Houses were 

selected from the Pasadena houses database (Perona, 2000). We chose the 47 house images that best 

matched the orientation spectrum of our face stimuli. House trials were not analyzed in the current study. 

Faces and houses were cropped to the same oval aperture and pasted onto a uniform gray background. 

All image luminance histograms were matched to the same reference histogram (the average of all 

images) using the Shine toolbox (Willenbockel et al., 2010) in Matlab. To avoid filter artifacts due to the 

uniform gray background, the background was replaced with a Fourier phase-scrambled version of the 

image by first scrambling the whole image and then re-pasting the non-scrambled aperture. Scrambled 

images were produced in the same way, except that the last step of re-pasting the intact aperture was 

skipped. To ensure that the scrambled background portrayed the low-level properties of the aperture 

rather than a mixture of the aperture and the original gray background the process of scrambling and re-

pasting the aperture was repeated 1000 times per image thus gradually reducing the influence of the 

original background on the spatial frequency distribution of the scrambled background. To restrict image 

content to LSF or HSF, we used 7th order Butterworth filters with filter cutoffs determined such that the 

area under the curve of the amplitude spectrum would be as similar as possible below and above the 

cutoff to ensure similar contrast contribution of the respective ranges to the broadband images. To avoid 

very low frequencies accounting for most of the contrast in the LSF images, we excluded the first 5 cycles 

per image (cpi) prior to determining the cutoff. This resulted in LSF passbands of > 5 and < 7cpi and HSF 

cutoffs of >7cpi. Finally, we masked out the phase-scrambled background with a cosine tapered mid-gray 

background (see Figure 1). Broadband images were constructed as the non-normalized addition of LSF 
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and HSF images. Consequently, broadband images had higher contrast than either LSF or HSF images and 

importantly, because LSF and HSF images contained the same overall contrast (RMS contrast ~0.02), they 

contributed equally to the contrast of broadband images (RMS contrast ~0.028). 

Experimental procedure 

Images were projected centrally onto a screen at 84cm viewing distance from the participant by a ProPixx 

projector (VPixx Technologies, Canada) in a dimly lit MEG recording chamber. The oval aperture of each 

image covered 22cm in height and 15cm in width resulting in a visual angle of 15ᵒ vertically and 10ᵒ 

horizontally. Given the degrees of visual angle covered by our stimuli, filter cut-offs translated to .46 x .7 

cycles per degree.  

Each participant completed 18 localizer trials and 9 experimental blocks. Every experimental block was 

preceded by two localizer trials, in which a sequence of images of one category (faces, houses or 

scrambled) was shown to the participant at a temporal frequency of 8.5 Hz (alternating image/blank 

screen with a 50% duty cycle). Images were band pass filtered in 18 logarithmically spaced steps covering 

the full range from the LSF low cutoff to the HSF high cutoff. Each sequence lasted for 18 seconds with 

increasing or decreasing spatial frequency (preceded by a 1sec ramp-up and followed by a 1sec ramp-

down period). Participants were instructed to maintain fixation and passively view the sequences. 

Experimental blocks consisted of 100 trials. Each trial started with a fixation dot on a uniformly gray screen 

that lasted for a jittered interval of 1.5-2.5 seconds. After that, an image of a face, a house or a phase-

scrambled version of these was presented for 250 ms. Each image was filtered to contain either high, low 

or broadband spatial frequencies using the above-described Butterworth filters. Image presentation was 

followed by a blank period of 1.5 seconds. Participants were instructed to detect interspersed images 

showing a dog (could be in any of the three spatial frequency conditions) and report detection via a button 

press with their right hand. To assure participants’ attention each block included 10% target trials and 

participants were given short breaks between every block as well as a longer break after every three 

blocks. 

 

Electroretinogram 

To provide a direct measure of retinal activity during visual stimulation, we recorded the 

electroretinogram (ERG) from both eyes using a corneal silver/nylon electrode (DTL Plus Electrode, 

Diagnosys, USA). The electrode was placed on the participant’s cornea such that it rested on the lower 
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eyelid. Presumably due to the low contrast at high overall luminance in our stimulation paradigm, we 

found no discernable ERG response. Data from this recording is therefore not shown here. 

MEG acquisition and pre-processing 

MEG data were acquired in a magnetically and sound shielded room from 204 planar gradiometers and 

102 magnetometers (Elekta Neuromag TRIUX) at Aarhus University at a sampling rate of 2000 Hz. Eye 

movements were tracked via the bilateral horizontal and the right vertical EOG for later use in MEG artifact 

correction. 

Prior to the MEG recording the position of 4 HID coils and the participant’s fiducial points as well as their 

individual head shape were digitized using the Polhemus Fastrak® digitizer (Colchester, VT, USA). 

Participants were sitting in upright position throughout the recording.  

Data were offline notch-filtered to remove line noise and down-sampled to 500 Hz using MNE python 

(Gramfort et al., 2013, 2014). Stimulus triggers were corrected to the signal of a simultaneously recorded 

light sensitive diode to account for delays between stimulus trigger and the first stimulus frame. Data 

were segmented to trials reaching from -1500 to 1500 ms around stimulus onset and visually inspected 

for squid jumps and obvious ocular or muscle artifacts. We excluded bad channels, artifactual trials as well 

as target trials from subsequent analyses.  

 

MRI acquisition and pre-processing 

T1 weighted MRIs with an isotropic voxel size of 1 mm3 and a reconstructed matrix size of 256 × 256 of 15 

participants were acquired via a 3 T Siemens Skyra scanner at CFIN, Aarhus University, Denmark. The 

remaining 4 participants provided an equivalent recent T1 weighted MRI recorded for a different study. 

MRIs were converted to nifty and aligned to AC/PC space using SPM 12 (Penny et al., 2011).  

 

Sensor space analysis 

Preprocessed trials were low-pass filtered by a 6th order Butterworth zero phase filter with a cutoff 

frequency of 80 Hz, down-sampled to 250 Hz and reduced to 700 ms segments ranging from -100 ms to 

600 ms around stimulus onset. Missing channels were interpolated using spherical spline interpolation of 

neighboring channels and planar gradients over both orientations were combined into a single magnitude 

measure. Data were baseline corrected to the 100 ms before stimulus onset and temporally smoothed to 

the moving average over three timepoints (12 ms). Regularized Linear Discriminant Analysis (LDA) using 
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MVPA light (Blankertz et al., 2011) integrated with fieldtrip (Oostenveld et al., 2011) was performed on a 

time-point–by-time-point basis (King and Dehaene, 2014) to classify between LSF and HSF scrambled 

image trials. We used 5 fold cross-validation and shrinkage regularization as (1 − 𝜆) ∗ 𝑆𝑤 + 𝜆 ∗ 𝜈 ∗ 𝐼 

where 𝜆 is determined by the Ledoit-Wolf estimate (Ledoit and Wolf, 2004), Sw is the scatter matrix, I the 

identity matrix, P is the number of features and 𝜈 is the trace (i.e. the sum of eigenvalues) of Sw divided 

by P. The trained classifiers were then evaluated on their generalization performance to broadband intact 

and scrambled image trials. Since the classifiers have only learned to categorize trial data as belonging to 

either LSF or HSF trials they will necessarily be incorrect on all broadband trials because broadband images 

have been specifically designed to contain equal contrast in both low and high spatial frequencies. We 

therefore interpret the classifier’s decision to assign either an LSF or an HSF label to a broadband 

datapoint as reflecting that MEG topography at the datapoint in question is more similar to one evoked 

by LSF or HSF stimulation, respectively, i.e., as indicating spatial frequency dominance (Petras et al., 

2019).Statistical significance of classification results was determined using cluster based permutation 

testing with alpha set to 0.01 and performing 1,000 randomizations (for details see Maris and Oostenveld, 

2007). 

 

MEG source reconstruction 

Three head position indicator (HPI) coils were used to determine the participants’ head position relative 

to the MEG sensors during recording. MEG data were aligned to MRI space in a three-step procedure: first 

the fiducial points provided by the Polhemus Fastrak® digitizer were used to calculate an initial 

transformation matrix and second the digitized head shape was manually aligned to a surface 

reconstruction of the individual’s MRI. Finally, an iterative closest point matching procedure was 

performed. All transformation matrices were inverted, combined into a single transformation-matrix, and 

applied to the MEG gradiometer descriptions separately for each run. For each participant, a three 

compartment boundary element head model (brain, skull, scalp) based on the individual’s MRI was 

created using the OpenMEEG implementation in fieldtrip (Kybic et al., 2005; Gramfort et al., 2010; 

Oostenveld et al., 2011). For each participant and run, leadfields for ~42,000 positions based on a source 

model template warped to the individual participants’ brain were created using standard pipelines in 

fieldtrip. We constructed common spatial filters using a linear constrained minimum variance (LCMV) 

beamformer where data of all conditions was used to compute the covariance matrix. We then applied 
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those spatial filters to reconstruct virtual channels for each grid point from the experimental trials, 

epoched to -500 ms-1500 ms around stimulus onset. 

ROI analysis  

MEG source reconstruction has repeatedly proven to produce reliable results at spatial resolutions 

comparable to the one used here (Hillebrand and Barnes, 2011; Belardinelli et al., 2012; Dalal et al., 2013). 

However, errors in the alignment of MEG sensors to the participants’ MRI can cause considerable spatial 

inaccuracies (Hillebrand and Barnes, 2003, 2011; Dalal et al., 2014). Thus, while defining regions of interest 

(ROIs) based on anatomical atlases is convenient, it may not provide the most responsive regions in each 

subject, due to (1) potential misalignment of the MEG sensors with the MRI and (2) inter-individual 

differences in functional maps. Here, we produced functionally-defined regions of interest for each 

participant using independent localizer data. Our localizer trials consisted of images flickering at a fixed 

frequency of 8.5 Hz with a 50% duty cycle, providing a periodic stimulation. Since the brains’ response to 

periodically changing stimulation is expected to show the same periodicity as the stimulus (Adrian, 1944;  

see Norcia et al., 2015 for review), we used a single frequency dynamic imaging of coherent sources 

beamformer (Groß et al., 2001) to localize the grid points with the highest selective response to faces. An 

underlying assumption of the beamformer is that sources of interest are temporally independent. Because 

the flicker stimulation results in very a high SNR signal that leads to highly correlated near zero-lag bilateral 

activation in visual cortices, this assumption is violated, potentially causing inaccurate localization. To 

nonetheless yield a reliable result from the beamformer, we scanned the brain volume using pairs of 

left/right hemisphere symmetric dipoles as the source model, a solution suggested by Popov et al. (2018). 

We then restricted analysis to four anatomically defined rough ROIs (calcarine fissure, fusiform gyrus, 

lateral occipital cortex and frontal cortex) and calculated the coherence between sources during face-

image trials and the signal of a light sensitive photodiode during those same trials, normalized by the 

coherence between sources and diode during scrambled image trials. We used k-means clustering with 

𝑘 =
௡ ௩௢௫௘௟௦

ଵହ
 on the Euclidean distance between the 3 position coordinates and the coherence values (z-

scored to ensure similar scaling of all dimensions) to parcellate sources into 4 dimensional clusters (3 

position + 1 coherence dimension). To ensure matching sizes across ROIs and participants, we selected 

the 20 voxels with the highest coherence score from the cluster with the maximum summed coherence 

for further analysis. Single trial ROI virtual sensor responses were obtained by multiplying each trial’s data 

with the precomputed common spatial filters. 
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Source space classification 

We used LDA (see sensor space classification for details) to classify spatial frequency as well as image type 

from each ROI. The virtual channel time series between -200 ms – 700 ms around stimulus onset, derived 

via LCMV beamforming, served as features for the classifier. Statistical analysis of source space 

classification followed the same routine as described in the sensor space analysis. 

 

Time frequency analysis 

To isolate response frequency bands of interest, we first removed the evoked response from the MEG 

signals by subtracting the average ERF from each trial. Then, we calculated the time frequency 

representation of low and high temporal frequencies separately. For low temporal frequencies we 

extracted wavelets linearly spaced between 3-6 cycles for temporal frequencies ranging from 2-30 Hz in 

steps of 1 Hz (time window -0.2-0.8 sec in steps of 0.01 sec). For the high temporal frequencies, we used 

discrete prolate spheroidal sequences (DPSS) multitapers (15 cycles of data at 0.2*frequency of interest 

smoothing) for frequencies ranging between 35 and 200 Hz in steps of 5 Hz. All power values were log 

transformed prior to any other analyses. To determine individual gamma frequency, we compared high 

frequency power between baseline (-200 to 0 ms) and the bulk of the evoked response (100 ms to 400 ms 

after stimulus onset) in the broadband source reconstructed ROIs using cluster-based permutation testing 

with dependent samples t-test on the trial-level over all conditions. Individual gamma was defined as the 

center frequency of the cluster with the maximum sum of t-values +/- 10 Hz. Participants where no 

significant cluster was found (3 out of 19 for calcarine ROI) were assigned the average of all other 

participants (Fusiform ROI: 86.81 Hz   Lateral Occipital ROI: 99.01   Frontal ROI: 83.90   calcarine ROI: 

90.64). Alpha/beta ranges were derived from previous literature (Michalareas et al., 2016) and set to 8-

12 Hz for alpha and 15-25 Hz for beta. We calculated average power values for all frequency bands of 

interest by taking the average of the (log transformed) power values and baseline correcting to the -200 

to -100 ms baseline window for each ROI and condition separately.  

 

Gamma power comparison 

We went on to test our hypothesis of reduced gamma power in response to broadband images in the 

intact condition in early visual cortex. First, we compared if gamma reduction in the broadband condition 

was stronger for the scrambled compared to the face condition. Then, we compared gamma power in the 

broadband versus the HSF condition separately for the intact and scrambled condition in early visual 
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cortex (separately for each time point). All tests were corrected for multiple comparisons using cluster 

based permutation testing. 

 

Cross frequency coupling  

We investigated coupling between the high-level ROIs (Fusiform, lateral occipital and frontal) and the 

calcarine ROI using both power-power and phase-power measures. For each ROI, we found the most 

representative timecourse by retaining the coefficients of the principal component that accounted for the 

most variance of the virtual channels within the ROI (Colclough et al., 2015). We filtered this timecourse 

to the frequency bands of interest (individual gamma, alpha and beta) using separate low-pass and high-

pass Hamming windowed one-pass zero phase-shift FIR filters with a maximum passband deviation of 

0.22%, and 53dB stopband attenuation. To obtain phase estimates for the lower frequency components 

we chose a filter bandwidth of 4 Hz and 10 Hz respectively (αfcenter 10 Hz±2 Hz; βfcenter 20 Hz±5 Hz). 

Amplitude modulated signals feature a Fourier spectrum with a peak at the carrier frequency (i.e. the 

modulated frequency, here individual participants’ gamma band peak) as well as sidepeaks at the 

modulated frequency ± the modulation frequency (Berman et al., 2012). To ensure spectral sidepeaks 

produced by the modulation frequency (fmod, α or β respectively) are included in the estimation of the 

higher frequency γ-power, we chose filter bandwidth to be twice the modulation frequency. As a result, 

the passband was defined as the center frequency of the individual participants’ γ±fmod (Aru et al., 2015). 

I.e., for a participant with a γ-peak at 70 Hz in the early visual cortex ROI, the filter for the estimation of 

alpha-gamma coupling has a passband of 70 Hz±fcenter(alpha) (i.e. 10 Hz) or 60 Hz to 80Hz. For that same 

participant, the filter for the calculation of beta-gamma coupling has a passband of 70 Hz±fcenter(beta) (i.e. 

20 Hz) or 50 Hz to 90 Hz. We then calculated the Hilbert transform of the filtered time series to extract 

power and phase angle over time. To account for potential filter edge artifacts, we restricted further 

analysis to the time interval between -0.2 and 0.7 seconds around stimulus onset. For power-power 

coupling (PPC), we extracted the power time series for each ROI, frequency band of interest, and 

condition. We then correlated the γ power time series from the calcarine ROI with the α and β time series 

from all other ROIs using Spearman correlations. For phase-amplitude coupling (PAC), we extracted γ-

power time series from the calcarine ROI and α and β phase time series for all other ROIs. We calculated 

phase amplitude coupling as the length of the average vector of γ-power and lower frequency band phase 

in polar space. Because our hypothesis was that EVC γ-power is influenced by α or β power or phase in 

high-level ROIs, and transmission velocity in the brain is finite, we expected correlations between ROI 
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timeseries to be maximally different from baseline when the EVC timeseries was lagged with respect to 

the high-level ROI timeseries. We therefore calculated PAC and PPC for 5 different lags ranging from -40 

ms (high level ROI leading) to +40 ms (EVC leading) in steps of 10 ms. To correct for potential confounds 

due to outlier power fluctuations or violations of the von Mises distributions (in the case of PAC) we 

standardized individual subject PAC and PPC values using the mean and standard deviation of the 

permutation distribution under the null hypothesis (no temporal relationship between frequency bands). 

To achieve this, we temporally shifted the lower frequency band power timeseries with respect to the 

gamma band timeseries by random offsets as suggested by Cohen (2014). We performed 1000 iterations 

per timepoint and lag. On the group level, we tested for the interaction between image type and spatial 

frequency condition as well as the main effect of either manipulation using cluster statistics (with 

dependent samples F-test (interaction) or t-test (main effect) as statistics, at an alpha of 0.05 with 1000 

permutations).  

Results 

We investigated the signaling dynamics between early visual cortex and inferior temporal cortex, as well 

as frontal cortex using MEG. Participants passively viewed images of intact and phase-scrambled images 

of faces with similar amplitude and orientation spectra for 250 ms each. Images were filtered to contain 

either low, high, or both (broadband) spatial frequencies. The filter cutoffs were chosen such that LSF and 

HSF components contributed equally to the overall contrast in the broadband images (see Methods). 

Phase-scrambled images were produced by iteratively Fourier-scrambling images and re-pasting the 

original face to ensure that amplitude and orientation spectra were closely matching those of the original 

images and not influenced by the uniform gray background (see Figure 1 and Methods).  
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Figure 1: Note that example images shown here are not the original study stimuli. In order to obscure face identity for publication, 

the images shown here are an average of all used faces and therefore strongly biased toward low spatial frequency. The purely 

scrambled images reflect the true spatial frequency spectrum of the original stimuli. Stimuli were produced from full spectrum, 

grayscale photographs of human faces by iteratively phase scrambling the image and re-pasting the face to avoid influences of 

the uniform gray background on the image’s Fourier spectrum. LSF and HSF images were produced by multiplying the Fourier 

spectra of the iteratively scrambled images with low pass and high pass filters, respectively. The Fourier spectra of broadband 

(BB) images were multiplied with the sum of LSF and HSF filters without contrast normalization. In a final step, the scrambled 

background was replaced with gray, with the edge between face and background fading to gray over 20 pixels. 

 

Sensor space spatial frequency dominance patterns are modulated by image coherence 

Tracking the dynamics of spatial frequency integration in naturalistic broadband images is complicated by 

the need to disentangle the contribution of each frequency band without interfering with the integration 

itself. We have previously demonstrated that multivariate classifiers trained to distinguish between 

patterns evoked by either frequency band in isolation can be used to track spatial frequency processing 

dominance during broadband stimulation (Petras et al., 2019). Here, we replicate these findings in a 

different group of participants, using MEG instead of EEG. 

 

We trained linear discriminant analysis (LDA) classifiers to perform a time-point-by-time-point 

discrimination of LSF and HSF phase-scrambled image trials to concentrate on spatial frequency encoding 

per se without any potential influence of image semantic content on classification. The distribution of 

magnetic field changes measured by a set of 204 planar gradiometers served as features for the 

classification (see Figure 2 for topographies and event-related fields).  

 

 
Figure 2: Sensor space baseline corrected event-related fields (ERFs) and topographies for all conditions. Left: ERFs at combined 

gradiometers 2322 + 2323 (red circle). Right: Topographies at the latency of the first response peak (150 ms ±15 ms after stimulus 

onset). 
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Classification performance was significantly above chance as revealed by a cluster-based permutation test 

[p < 0.001, cluster statistic = 26327 (maximum sum of cluster t-values)] and first exceeded chance levels 

around 90 ms after stimulus onset (see Figure 3a+b). Performance remained above chance until about 

450 ms after stimulus onset (i.e. 200 ms after stimulus offset). As expected, classification performance 

was highest when training data and cross-validation data were sampled from the same latencies in trial-

time as seen along the diagonal in Figure 3a. However, there was considerable cross-time generalization 

(off-diagonal decoding), indicating a sustained spatial frequency specific pattern response. 
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Figure 3: Sensor space spatial frequency classification and generalization. (a) Time point-by-time point spatial frequency 

decoding. (b) Classification performance when training time and testing time are the same (diagonal of (a)). (c) & (d) 

Generalization performance of classifiers trained in (a) when evaluated on broadband trials. SF dominance indicates the 

proportion of LSF or HSF decisions the classifier made. (c) Generalization performance for broadband intact face trials (d) 

Generalization performance for broadband scrambled trials. (e) Difference of classifier generalization between intact face and 

scrambled trials. Purple colors indicate stronger LSF dominance for intact face trials and/or stronger HSF dominance for scrambled 

trials. Dark contours delineate statistically significant clusters. Cluster indices correspond to the statistics reported below. 

 

We evaluated how the classifiers pre-trained to differentiate between LSF and HSF scrambled image trials 

performed on broadband trials (Figure 3). In the latter case the classifiers response reflects which of the 

two spatial frequency ranges is dominantly represented in the scalp pattern evoked by the broadband 

trials. For both broadband intact and scrambled trial data, the classifiers responses significantly deviated 

from chance towards LSF, as well as towards HSF in separate clusters (see Figure 3c-d and Table 1).  

Importantly, intact and scrambled image processing differ significantly in their spatial frequency 

dominance with intact faces showing lower HSF dominance (i.e., greater LSF dominance) than those 

evoked by scrambled images (see Figure 3e). The reduced HSF dominance in response to intact, compared 

to scrambled images suggests that when LSF aligns in space with HSF, LSF information guides HSF 

processing, thus alleviating computational resources. These results replicate our previous findings on 

spatial frequency dominance obtained from EEG recordings. Leveraging the superior spatial specificity 

that MEG data provides, we next reconstructed the cortical sources underlying the observed effects.  
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Table 1: Sensor space LSF vs HSF trial classification results. LDA classifiers were trained on scrambled 

image trials to differentiate between LSF and HSF image trials. CS = cluster statistic (maximum sum of 

cluster t-values). Classifier’s generalization bias reflects SF representational dominance with negative 

values for CS indicating LSF dominance. Cluster numbers are in descending order of maximum cluster 

statistic. 

SF 

dominance 

Generalization to broadband 

intact 

Generalization to broadband 

scrambled 

Difference in generalization 

Intact minus scrambled 

LSF 

(CS < 0) 

 

cluster1: p < .005, CS = -6096.12 

cluster2: p < .05, CS = -4652.02 

cluster3: p < .05, CS = -3704.29 

cluster 1: p < .05, CS  =  -1834.44 

 

cluster1: p < .001, CS = -7205.50 

cluster2: p < .001, CS = -1972.94 

cluster3: p < .005, CS = -401.12  

cluster4: p < .005, CS = -356.75  

cluster5: p < .005, CS = -241.44  

cluster6: p < .005, CS = -175.46  

cluster7: p < .005, CS = -101.59  

cluster8: p < .005, CS = -90.06 

HSF 

(CS > 0) 

 

cluster1: P < .05, CS = 2351.66 cluster1: p < .001, CS =  11781.78 

cluster2: p < .05, CS = 1801.55 

n.s. 

 

Functional localizers for individual ROIs 

We hypothesized that LSF driven feedback modulates early visual cortex processing when SF are aligned 

in the stimulus, i.e., when LSF is informative towards HSF. To constrain our analysis to the relevant cortical 

regions according to our hypothesis, we performed source reconstructions on our data. We used 

functional localizer trials to restrict regions of interest (ROIs) to areas that preferentially responded to 

images of faces. Basing the selection of ROIs on functional localizers obtained in the same session as the 

experimental data is more robust against small errors in head-to-MEG helmet alignment, assuming the 

participants head position was stable within runs (see methods for details).  

Prior to each block of the main experiment, participants watched two sequences of either face or 

scrambled image stimuli lasting for 20 seconds each (see methods for details). In order to maximize 

efficiency and obtain high SNR estimates from limited recording time, we used a periodic visual 

stimulation technique (Norcia et al., 2015) where images were flickered at a steady rate of 8.5 Hz (17 Hz 

with a 50% duty cycle). Such periodic stimulation produces the steady state visual evoked response 
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(Adrian, 1944; Peli, McCormack and Sokol, 1988; Strasburger, Scheidler and Rentschler, 1988), a strong 

oscillatory potential at the stimulation frequency and its harmonics (see Figure 4a for sensor space 

representation).  

  

 
Figure 4: Functional localizers for individual ROIs. Figure 4: a) Flickering stimuli at a fixed frequency (here 8.5 Hz) evokes a strong 

response at the stimulation frequency and its harmonics averaged over all occipital channels. b) Regions of interest for an example 

participant. Marked are the 20 most responsive voxels per ROI. Images are in neurological convention. For all ROIs of all 

participants see supplementary Figure 1.    

 

We used dynamic imaging of coherent sources (DICS, Groß et al., 2001) to reconstruct the source 

response that was phase-locked to a simultaneously recorded photodiode signal by calculating the 

coherence coefficient between each grid point in source space and the photodiode signal. We then 

defined four rough anatomical regions of interest: the calcarine fissure, the lateral occipital cortex, the 

fusiform gyrus, and the frontal cortex. To constrain our analysis to regions with a robust response to face 

stimuli, we used k-means clustering to select the cluster of the 20 source dipoles with the highest summed 

coherence in response to faces for each participant within each of these coarse parcels, (see Figure 4b 

and Methods).  
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Source space classification reveals reduced high spatial frequency dominance for intact 

images 

To test our hypothesis that LSF driven feedback reduces the HSF related activation in early visual cortex, 

we applied the same classification analysis we performed on the sensor space data, on each of the source 

space ROIs. Classification performance significantly exceeded chance levels in all ROIs when 

differentiating between low and high spatial frequencies of scrambled stimuli (Figure 5 left column; also 

see table 2), indicating that all tested areas are sensitive to spatial frequency differences, even in the 

absence of meaningful shapes or semantic information.  

Next, we investigated the contribution of individual spatial frequency bands to the activation 

pattern evoked by broadband images, in which scales were either aligned and therefore providing 

redundant information (i.e., intact images), or not (i.e., scrambled images). Coarse-to-fine guidance is only 

expected in the intact condition. To this aim, we applied the classifiers trained on LSF vs HSF scrambled 

image trials to broadband intact versus scrambled images. For intact images, early visual cortex and lateral 

occipital ROIs both show significant LSF dominance (Figure 5). The same classifiers applied to scrambled 

image trials reveal both LSF and HSF dominant periods in the early visual cortex ROI whereas only HSF 

dominance periods were found in the Fusiform, Lateral Occipital and the Frontal ROIs. In contrast to the 

more common use of classification techniques in cognitive neuroscience, where the classifier output is 

evaluated against known class labels, training on LSF vs. HSF trials and evaluating on broadband trials, 

where LSF and HSF contribute equally, confronts us with a classification problem that is ill-posed: SF 

dominance classification cannot be compared to a known ground truth. To verify that classification of 

source-reconstructed responses is feasible and generalizes across spatial frequency conditions, we 

constructed a generalization problem with a known ground truth by classifying between intact and 

scrambled images within and across SF conditions. We found classification as well as generalization 

performance to be significantly above chance in all investigated ROIs (see supplementary figure 2 for full 

results). 

In all investigated ROIs, HSF dominance was reduced in intact compared to scrambled images 

indicating either an absolute reduction of HSF related processing, or a relative shift of processing 

resources away from HSF, toward LSF components. To disambiguate between those alternatives, we turn 

to an analysis of gamma band power in early visual cortex (see below). 
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 Figure 5: Spatial frequency classification and generalization in source-space. All four ROI contain sufficient information to 

differentiate between scrambled LSF and HSF trials, although accuracies and latencies of successful classification differ 

substantially across them. When applying the classifiers trained on LSF vs HSF scrambled image trials to broadband image trials, 

the early visual cortex ROI shows a similar SF dominance pattern as observed in sensor-space with stronger HSF dominance in 

response to scrambled, compared to intact face images. Cluster indices reflect order in ranked cluster statistic (see table 2).  
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Table 2: LSF vs HSF trial classification results. LDA classifiers were trained on scrambled image trials to differentiate between LSF 

and HSF image trials. CS = cluster statistic (maximum sum). Classifier generalization bias reflects SF representational dominance 

with negative values for CS indicating LSF dominance. 

 

Reduced gamma response in early visual cortex when informative LSF is available 

We hypothesized that under broadband intact image conditions, which allow for the LSF guidance of HSF 

processing, the resources dedicated to HSF processing in early visual cortex are reduced. To test this, we 

compared the power of the neural response in the gamma frequency range (individual participants γ-peak 

±10 Hz) as a proxy of local processing for each participant across conditions (see Methods for details). 

Time frequency analysis revealed an interaction between spatial frequency and image type 

condition [BB intact – HSF intact vs. BB scrambled – HSF scrambled, CS=220.48, p<.05, cluster corrected 

for multiple comparisons]. When directly comparing broadband intact and scrambled images (see Figure 

6a), the early visual cortex ROI showed a decrease in gamma power in response to intact compared to 

scrambled images [CS=-42.9, p <.05]. This effect was not found for either spatial frequency in isolation 

[max CS LSF =4.7, p>0.05; max CS HSF = 2.7, p>0.05]. We interpret this finding as supporting a role of LSF 

information in the more efficient integration of HSF image detail in early visual cortex when LSF 

information contained in the broadband images was informative towards the content of HSF information 

(i.e. in intact, but not in scrambled images).  

 Classification scrambled  

LSF vs HSF 

Generalization to  

Broadband intact 

Generalization to  

Broadband scrambled 

Difference in generalization  

Intact minus scrambled 

EVC 

 

P < .001, CS = 6.79x104 Cluster1:  

p < .05, CS = -2.85x104  

Cluster2:  

p < .05, CS = 1.52x104  

Cluster3:  

p < .05, CS = -1.24x103 

Cluster1:  

p < .05, CS = 1,78x104  

Cluster2:  

p < 0.05, CS = 1.56x104  

Cluster3:  

p < .05, CS = -7.22x103  

Cluster4:  

p < .05, CS = 1.78x104  

p<.001, CS = -2.56x104 

Lateral 

Occipital 

 

P < .001, CS = 7.25x104 p<.05, CS=-7.88x103 P < .05, CS = 1.19x104 p<.001, CS=-8.82x103 

Fusiform P < .001, CS = 4x104 n.s. P < .05, CS = 1.29x104  p<.001, CS = -2.18x104  

Frontal P < .05, CS = 1.66x104  n.s. P < .005, CS = 4.92x103 p<.05, CS = -1.42x103 
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Simple effects analysis of spatial frequency condition (see Figure 6b) showed lower gamma power 

for BB, compared to HSF trials when face images were intact [CS=-57.8, p<.05], but not when images were 

scrambled [CS=2.7, p>0.05]. This result is striking because broadband images had a higher overall contrast 

than both LSF and HSF images alone and brain responses to visual stimulation usually increase as a 

function of contrast (e.g., Gebodh, Vanegas and Kelly, 2017).  

The finding that scale alignment in broadband images decreases the power of gamma band 

response in early visual cortex indicates that the presence of informative LSF content in intact broadband 

images reduces the lower-level computational resources recruited for the processing of HSF content. In 

other words, LSF-driven guidance makes the processing of HSF more efficient in early visual cortex. In the 

next section we investigate whether such LSF-driven guidance is carried by feedback signals from higher-

level visual regions. 

 

 

Figure 6: a) γ-band source power in the calcarine ROI is significantly lower in response to intact, compared to face scrambled 

stimuli only when images contain broadband spatial frequencies [p<0.05, the blue horizontal bar indicates the temporal extend 

of the corresponding cluster]. Note that responses to LSF stimuli are shown here for completeness but were not part of the 

planned interaction analysis. b) Direct comparison between broadband and high spatial frequency conditions for intact left panel) 

and scrambled (right panel) trials. Data is re-plotted from a). Note that during high spatial frequency processing, γ-power in 

response to intact images exceeds the maximum reached during broadband stimulation [p<0.05, the blue horizontal bar indicates 
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the temporal extend of the corresponding cluster]. All data are baseline adjusted to the 200 ms prior to stimulus onset. Error bars 

indicate standard error of the mean.  

 

 

Reduced gamma response in early visual cortex does not show strong correlations with 

alpha/beta power or phase in any of the tested ROIs 

To test our hypothesis that feedback from high-level visually responsive regions is driving the more 

efficient processing of intact compared to scrambled images, we investigated the relationship between 

alpha/beta band responses, as a proxy of feedback processes, and early visual cortex gamma power. 

Supplementary Figure 3 provides an overview of alpha and beta power in all ROIs and conditions. Because 

cross-frequency coupling effects can be found in both power and phase correlations (Canolty et al., 2006; 

Siegel, Warden and Miller, 2009; Canolty and Knight, 2010), we tested for both power-to-power and 

phase-to-(squared) amplitude coupling (PPC and PAC, respectively).  

For the PPC, we correlated the amplitude envelopes of the early visual cortex gamma band to alpha and 

beta band power of all other ROIs using lagged correlations. We expected higher alpha/beta power in 

upstream regions (“more feedback”) to predict lower gamma power in early visual cortex (“reduced 

processing load”), i.e. more negative correlations for intact compared to scrambled image trials. We 

produced individual subjects z-scores for each timepoint-by-lag correlation (see methods for detailed 

description of the analysis and supplementary figure 4a for complete result). For brevity, Figure 9a shows 

a condensed version of the full analysis where lag between higher level alpha and beta band power and 

EVC gamma is zero. We found no significant correlations after correcting for multiple comparisons (see 

methods for detail).  
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Figure 9: a) Standardized power-power coupling (PPC) of early visual cortex ROI γ-band and the α- and β-bands in all other ROIs. 

Differences between conditions do not meet our significance threshold (p<0.05) after correction for multiple comparisons. b) 

Standardized phase-amplitude coupling (PAC) between early visual cortex ROI γ-band and the α- and β-bands in all other ROIs. 
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We found no significant differences between conditions. Statistical analysis was performed taking lagged correlations (±40 ms) 

into account. For brevity, only results for broadband image trials and 0 lag are plotted here. All other conditions can be found in 

the supplementary materials. Error bars indicate standard error of the mean. 

 

For the PAC, we estimated phase amplitude coupling between instantaneous alpha and beta 

phase of all ROIs with gamma power of the early visual cortex ROI. We found no significant difference 

between estimated PAC and the permutation distribution.  

To compare between conditions, we ran cluster-based permutation tests for the interaction 

between stimulus bandwidth (broadband - HSF) and stimulus type (intact – scrambled) as well as simple 

effects of spatial frequency and stimulus type on both power-to-power and phase-to-power coupling. If 

decreases in EVC gamma power in response to intact broadband, compared to scrambled or HSF images 

were driven by feedback signaling from upstream ROIs, we would expect increased PAC and/or a negative 

PPC relationship between upstream areas and early visual cortex. However, we found no significant 

difference in PAC between conditions and only a trend for differences in PPC for Fusiform-EVC between 

intact and scrambled broadband conditions (Figure 9a). Once we corrected for the number of tests, this 

trend did not meet our significance criterion of p<0.05. Altogether our results offer no support for our 

hypothesis that the reduction of EVC gamma power we observe for intact compared to scrambled 

broadband images relies on feedback from any of the ROIs we investigated (but see discussion for 

methodological considerations). 

 

Discussion  

We used MEG to track the neural signatures of LSF and HSF processing in the visual responses to 

broadband images of intact and phase-scrambled faces. The consistent spatial alignment of contrast 

across spatial frequencies in natural (intact) images constitutes information redundancies insofar that LSF 

can be used to index the portions of HSF that are most relevant for the perceptual task at hand. Here, 

consistent with our previous EEG results, we showed that during the viewing of broadband face images, 

markers of HSF processing were reduced when images were intact, i.e., featuring spatially aligned low 

spatial frequency contrast, compared to when image phase (and with it spatial alignment across scales) 

was scrambled. We interpret our results to suggest that the presence of informative LSF information in 

intact broadband images indexed and facilitated the processing of their HSF content. This interpretation 

is supported by our finding that the reduced HSF dominance for scale-redundant images goes along with 

a reduction of gamma range responses in the early visual cortex. Since gamma band oscillations 
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presumably reflect local feedforward signaling, the decrease of gamma power in early visual cortex 

suggests that our past EEG and current MEG classification findings reflect a genuine reduction of HSF 

processing load for intact, SF-redundant, viewing conditions, rather than a mere shift of SF dominance. 

This result corroborates a core tenet of coarse-to-fine theories of vision, namely that prior LSF indexing 

facilitates the subsequent encoding of HSF image content. However, the interpretation of our results 

requires careful consideration of potential pitfalls and alternative accounts. We here address theoretical 

and methodological considerations. 

 

Gamma effects and microsaccades 

Consistent with our past EEG findings, we find the effects of image phase scrambling to be relatively late 

in the visual response (early visual cortex gamma power reduction for intact vs scrambled around 400 

ms), although an exact temporal localization would require different tradeoffs between time and 

frequency resolution than the ones we chose here. The long latencies and sustained differences between 

conditions are in contrast with the typically shorter latencies and transient responses of layer 4 neurons 

typically receiving feedforward input (Nowak et al., 1995). They might thus reflect EVC output after 

consolidation, supporting a sustained, potentially recurrent contribution to perception (Hegdé, 2008).  

An alternative account for the observed changes in broadband induced gamma activity is that 

they do not reflect oscillatory neuronal activity at all, but are instead muscle artifacts caused by 

microsaccades (Yuval-Greenberg et al., 2008; Melloni et al., 2009). We have several reasons to believe 

that our findings are not the result of such saccadic artifacts: First, Yuval-Greenberg et al. and Melloni et 

al. demonstrated the saccadic confound on transient broadband gamma band responses recorded with 

EEG with a nose reference. But even with average referencing, ocular artifacts in EEG data cannot be fully 

discounted because volume conduction complicates reliable source reconstruction (De Munck and Van 

Dijk, 1991). MEG, as used in the current study, does not suffer equally from such confounds since MEG 

does not require a reference channel. Further, while ocular artifacts might still contaminate MEG data, 

their localization and removal is comparatively straightforward (Carl et al., 2012).  

Nevertheless, the possibility that microsaccades contribute to the observed differences in gamma 

band responses remains. In a study by Craddock et al. (2017), the authors show stimulus dependent 

changes in microsaccade frequency and amplitude using visual stimuli similar to the ones used here. 

Contrary to our gamma band results, they report higher rates of microsaccades for intact, compared to 

scrambled objects as well as for broadband and high spatial frequency compared to low spatial frequency 
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intact images. No significant difference in saccade rates was observed between broadband and HSF 

images. We find decreases in gamma responses for intact compared to scrambled images. Consequently, 

even if present in our data, we would expect potential microsaccade contributions to counteract rather 

than facilitate the gamma band differences we found. Lastly, microsaccade rates have repeatedly been 

shown to rebound to above baseline peaks after an initial dip with stimulus onset. The latency of this 

rebound is typically reported as ~200-300 ms post stimulus onset (Schwartzman and Kranczioch, 2011) 

while the gamma band differences we find here are later in trial time (again, with the caveat of time-

frequency-resolution tradeoffs).  

 

Information redundancy or basic image statistics? 

We demonstrated that image scrambling influences the HSF representational dominance as well as EVC 

gamma power. Scrambling the phase of an image disrupts the alignment of its spatial scales while leaving 

other first- and second-order statistical regularities such as mean luminance, contrast, spatial frequency, 

and orientation spectrum unaffected (see for example Honey, Kirchner and VanRullen, 2008). It is 

therefore a reliable means to disrupt the integration of SF while preserving the global SF power spectrum. 

In interpreting differences in the neural responses to intact and scrambled images, it is however 

important to note that the disruption of continuous edges introduced via phase-scrambling also alters 

image sparseness and might lead to processing differences due to e.g. lateral inhibition processes within 

early visual regions (see e.g. Gregor, Szlam and LeCun, 2011). We consider it unlikely that the reduction 

of power in the gamma band we found for BB intact compared to scrambled images can be fully explained 

by differences in image sparseness since a similar effect was not found in LSF or HSF intact compared to 

scrambled images that should suffer from the same sparseness confound.  

A further concern is that the frequency of gamma responses increases with stimulus contrast as 

Hadjipapas et al. (2015) cautioned. To ensure that LSF and HSF images were fully represented in our 

broadband stimuli, we constructed broadband images by adding the LSF and HSF without normalization. 

This procedure leads to broadband images having higher RMS contrast than both LSF and HSF alone. It is 

therefore possible that our approach to determine individual gamma frequency based on each 

participant’s average response over all conditions deviated from the optimal gamma frequency for each 

individual condition since the higher contrast condition (i.e. broadband) may weight stronger than the 

lower contrast conditions. Nonetheless we found early visual cortex gamma power to be lower in 

response to intact broadband images compared to intact HSF images. Further, we find it unlikely a 
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potential increase in gamma frequency in the broadband condition would have been sufficiently severe 

to remove the response of interest out of our chosen individual gamma range (individual gamma peak ± 

10 Hz). In the above-mentioned study, the average frequency-increase the authors found, even after 

correcting for the dominating power increase, was 8 HZ for a contrast difference of 60%. The RMS 

contrasts of our stimuli are ~0.02 for narrowband and ~0.028 for broadband images (40% increase). Lastly, 

we find the effect of reduced gamma power in broadband compared to HSF images in response to intact 

images only. Gamma power responses to scrambled images, that have the same differences in RMS 

contrast, but contain no redundant information across spatial frequency bands, do not differ between SF 

conditions. We therefore maintain our interpretation that observed gamma differences are best 

explained by the presence or absence of cross spatial frequency information redundancies in the visual 

stimulation. 

 

LSF driven guidance of HSF processing in early visual cortex 

Coarse-to-fine models of vision propose that image low spatial frequencies serve to guide HSF processing 

based on their initial assessment by high-level visual regions equipped with receptive fields that are 

sufficiently large and abstract to capture the global image structure and semantic information. In this 

framework, the result of this initial computation is presumably fed back to primary visual regions to better 

target resources for subsequent HSF processing. In the example of face perception, an efficient way to 

integrate different ranges of spatial frequencies would thus be to use the initial representation of image 

LSF to first detect the presence of a face (Quek et al., 2018), and then focus HSF processing on the most 

relevant image locations such as the eye and mouth regions (Sergent, 1986; Sadr and Sinha, 2004; Blais et 

al., 2008; Miellet, Caldara and Schyns, 2011; Rossion, 2014). LSF contrast is a reliable indicator towards 

the location of those regions, so favoring HSF processing within regions of high LSF contrast would allow 

for effective and resource-efficient processing of face identity. Such a process could in principle occur at 

any level of the visual hierarchy where receptive fields from various spatial frequency ranges are 

converging. However, to restrict HSF processing to relevant image regions via the use of feedback, at least 

the coarse retinotopic organization of the stimulus needs to be preserved in the feedback signal. Previous 

studies that explicitly investigated the spatial distribution of feedback effects to primary visual cortex 

however found evidence to the contrary. Williams et al. (2008) found feedback to foveal retinotopic areas 

of V1 to contain information about objects presented in the periphery. De Wit et al. (2012) found that V1 

fMRI BOLD responses to bi-stable stimuli involve the entire V1, not only the retinotopic regions 
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corresponding to the perceptual change. Even more strikingly, Hsieh et al. (2010) found evidence that the 

patterns of early visual cortex response (V1/V2/V3) to two-tone images were more similar to the patterns 

evoked by the same images’ grayscale photograph version if the participant knew the original image than 

it was to the identical but unrecognized two-tone image. Combined, these findings contradict a role for 

purely spatially defined feedback mechanisms.  

Studies on location specific object coding in visual cortex however routinely find markers of 

enhanced object representation when the object appears in a retinotopic location that matches 

environmental statistics, such as e.g. a plane in the upper visual field, or a carpet in the lower visual field 

(Kravitz, Vinson and Baker, 2008; Kaiser and Haselhuhn, 2017; Kaiser, Moeskops and Cichy, 2018). These 

differences are typically found within the first 200 ms of visual processing (Kaiser, Moeskops and Cichy, 

2018). Kok, Jehee, & De Lange (2012) argue that prior expectation of a relevant stimulus feature sharpens 

that features’ neural representation under noisy conditions. In line with this logic, suppressive feedback 

to regions of early visual cortex that do not match the retinotopic location of the presented stimulus could 

reduce stimulus ambiguity and would be measured as an overall decrease in response along with an 

enhancement of the stimulus-specific representation. While MEG recordings offer superior temporal 

resolution in comparison with fMRI recordings and could therefore potentially be suited to dissociate 

possible earlier retinotopic effects from possible later more global effects, they lack comparable spatial 

specificity and MEG responses obtained from traditional set-ups cannot currently be linked to a precise 

retinotopic target within early visual cortex (but see Iivanainen, Zetter and Parkkonen, 2020). To dissociate 

between retinotopic and more global effects, high spatial resolution fMRI should be combined with a 

temporally sensitive stimulus presentation paradigm such as temporal masking (e.g. Goffaux et al., 2010). 

Alternatively, temporally sensitive recordings such as MEG or EEG could be combined with spatially 

distinct stimuli presentation methods such as foveal vs. peripheral stimulation to dissociate between 

potentially retinotopic transient feedback effects and later global effects. 

 

Cross-frequency, cross-region coupling 

Since feedback signalling has been shown to be carried by neural oscillations in the alpha/beta range 

(Michalareas et al., 2016), we expected to observe increased responses in these bands in inferior temporal 

or frontal regions during the processing of broadband intact compared to scrambled images. We further 

expected such alpha/beta band signals to correlate with the reduction of local processing markers in the 

gamma range during the processing of SF-redundant information (intact images) on a trial-by-trial basis. 
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Our results do not support this hypothesis. While we do find descriptive condition differences in cross 

frequency power coupling between the Fusiform and Calcarine ROIs, the statistical evidence is 

comparatively weak (see figure 9 and supplementary figure 4). We found no significant differences 

between conditions for phase-amplitude coupling between any ROIs. While this could reflect a true lack 

of condition specific higher-level feedback to early visual cortex, several alternative explanations for the 

absence of strong evidence need to be considered. Instead of scanning the brain volume for regions that 

portray strong cross frequency coupling, we restricted our analysis to the ROIs we a-priory defined based 

on a combination of anatomical and functional criteria. The functional criterium was the maximum 

selective response to flickering images of intact faces in independent data. The fast-changing and transient 

presentation of each image, masked forward and backward by preceding and succeeding images, 

respectively, likely favoured feedforward responsive neural populations (Keysers et al., 2001; Fahrenfort, 

Scholte and Lamme, 2007). It is well possible that cortical sources that provide feedback to early visual 

cortex when presented with face images are not the same that are most strongly, or most selectively 

activated during the processing of flickering face images. In this case, our ROI selection could not have 

optimally included potential sources of feedback. However, the limited spatial resolution of MEG makes 

it unlikely that the reconstructed source parcels would be spatially distinct for feedforward and feedback 

signals. More importantly, our (intact) stimuli were easily recognizable and thus not specifically designed 

to require strong reliance on top down context to be resolved (Parker and Krug, 2003; Parkkonen et al., 

2008).  

Apart from ROI and stimulus selection, there are also methodological challenges to consider in 

determining cross frequency coupling. Detecting cross frequency coupling and unambiguously attributing 

it to a causal relationship between modulating and modulated frequency, is not a straightforward process. 

The isolation of the frequency bands in question (which are either chosen arbitrarily, based on previous 

literature or characteristics of (independent) data from the same participants, or some combination 

thereof) relies on frequency filters. Here, we chose zero-phase FIR filters with subsequent Hilbert 

transforms to extract instantaneous phase from the lower frequencies as well as power from the gamma 

range. The type of filter (causal vs. non-causal, filter order etc.) can have profound effects on the filtered 

signal (Widmann, Schröger and Maess, 2015). Further, the bandwidth of the filtered signal is crucially 

important for the detection of any cross frequency coupling (Berman et al., 2012; Aru et al., 2015). While 

the bandwidth of the modulating frequency signal can and should be narrow, especially when estimating 

instantaneous phase, the bandwidth of the modulated signal must be sufficiently wide to capture any 

modulations. Due to the Heisenberg-Gabor limit that inversely relates the precision with which a signal 
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can be localized in time to the precision with which it can be localized in frequency, a signal that is 

modulated by a slower frequency (i.e., one with a longer phase interval, such as alpha) can be more 

sharply localized in the frequency domain than a signal modulated by a higher frequency, with a shorter 

phase interval (such as beta) (Dvorak and Fenton, 2014). Accordingly, we chose our gamma filter 

bandwidth to be sufficiently wide (twice the modulation frequency). Another dilemma in the estimation 

of coupling between two signals extracted from stimulus locked responses is non-stationarity. Non-

stationary processes, such as most neurophysiological responses, contain spectral correlations across 

frequencies (Lii and Rosenblatt, 2002). Those correlations are easily misinterpreted as cross frequency 

coupling (Aru et al., 2015). We only considered cross frequency coupling between distal regions making 

our results less likely to suffer from signal autocorrelations. It is however possible, that a common driving 

input caused spurious coupling. Finally, the (frequentist) statistical analysis of cross frequency coupling 

hinges on the appropriateness of the surrogate data used to estimate the null distribution. We here chose 

for a conservative approach where we create surrogate data by time-shifting the gamma power time-

series by random offsets, within the same trial (Cohen, 2014). This disrupts any existing temporal 

relationship between the lower frequency and higher frequency time-series without removing potential 

overall power differences between conditions and trials and therefore provides a suitable null 

distribution. Prior to comparing between conditions on the group level, each individual participant’s cross 

frequency coupling was thus standardized by that same participant’s permutation distribution for each 

condition. Altogether, ROI selection that was not optimized for finding evidence of feedback signalling, 

short trials and conservative statistical choices might have obscured potential cross-frequency coupling 

effects in our design. While our primary aim here was to establish the effects of redundant image 

information on EVC processing load, future studies specifically designed to address feedback to EVC will 

be needed to investigate the causal mechanics of such LSF facilitation. 

 

In conclusion, we find evidence for the LSF guidance of HSF image information that is expressed 

in both spatial frequency dominance patterns in early visual cortex and early visual cortex gamma. While 

our data does not provide evidence that higher level feedback from the selected regions of interest drives 

the exploitation of image information redundancies in early visual cortex, our findings are in line with 

coarse-to-fine theories of visual processing. Considering redundant information across spatial frequencies 

as an asset rather than a nuisance in visual signals could help to understand visual function as a flexible, 

recurrent process.  
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