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Highlights: 34 

 Multimodal neuroimaging and neurophysiology data were collected in healthy adults 35 

 Multilayer frontoparietal centrality was positively associated with executive functioning 36 

 Unilayer (unimodal) centralities were not associated with executive functioning 37 

 There was an inverted-U relationship between multilayer centrality and age  38 
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Abstract 42 

Executive functioning is a higher-order cognitive process that is thought to depend on a brain network 43 

organization facilitating network integration across specialized subnetworks. The frontoparietal network 44 

(FPN), a subnetwork that has diverse connections to other brain modules, seems pivotal to this 45 

integration, and a more central role of regions in the FPN has been related to better executive 46 

functioning. Brain networks can be constructed using different modalities: diffusion MRI (dMRI) can be 47 

used to reconstruct structural networks, while resting-state fMRI (rsfMRI) and magnetoencephalography 48 

(MEG) yield functional networks. These networks are often studied in a unimodal way, which cannot 49 

capture potential complementary or synergistic modal information. The multilayer framework is a 50 

relatively new approach that allows for the integration of different modalities into one ‘network of 51 

networks’. It has already yielded promising results in the field of neuroscience, having been related to 52 

e.g. cognitive dysfunction in Alzheimer’s disease. Multilayer analyses thus have the potential to help us 53 

better understand the relation between brain network organization and executive functioning. Here, we 54 

hypothesized a positive association between centrality of the FPN and executive functioning, and we 55 

expected that multimodal multilayer centrality would supersede unilayer centrality in explaining 56 

executive functioning. We used dMRI, rsfMRI, MEG, and neuropsychological data obtained from 33 57 

healthy adults (age range 22-70 years) to construct eight modality-specific unilayer networks (dMRI, 58 

fMRI, and six MEG frequency bands), as well as a multilayer network comprising all unilayer networks. 59 

Interlayer links in the multilayer network were present only between a node’s counterpart across layers. 60 

We then computed and averaged eigenvector centrality of the nodes within the FPN for every uni- and 61 

multilayer network and used multiple regression models to examine the relation between uni- or 62 

multilayer centrality and executive functioning. We found that higher multilayer FPN centrality, but not 63 

unilayer FPN centrality, was related to better executive functioning. To further validate multilayer FPN 64 

centrality as a relevant measure, we assessed its relation with age. Network organization has been 65 

shown to change across the life span, becoming increasingly efficient up to middle age and regressing 66 

to a more segregated topology at higher age. Indeed, the relation between age and multilayer centrality 67 

followed an inverted-U shape. These results show the importance of FPN integration for executive 68 
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functioning as well as the value of a multilayer framework in network analyses of the brain. Multilayer 69 

network analysis may particularly advance our understanding of the interplay between different brain 70 

network aspects in clinical populations, where network alterations differ across modalities. 71 
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1. Introduction 99 

A thread of network thinking runs through the history of cognition research. In 1983, Fodor introduced 100 

the ‘modularity of mind’ theory of cognition and behavior [1]. He posited that lower-order processes of 101 

the mind are modular, with domain-specific modules operating independently without interacting with 102 

other modules. Contrastingly, he argued that higher-order cognitive processes such as executive 103 

functioning (EF), which is thought to be the most complex and evolutionarily special cognitive domain 104 

[2], are global rather than modular. Likewise, the evolution of neuroscience has led to a data-driven 105 

approach towards understanding how the brain governs such higher-order cognition by studying the 106 

brain as a complex network through the framework of graph theory [3, 4]. Brain regions are thus 107 

represented as nodes, and the interactions between them as links.  108 

Different modalities can be used to obtain these brain networks. Anatomically, diffusion 109 

magnetic resonance imaging (dMRI) maps the physical connections (i.e. white matter bundles) between 110 

the neural elements of the brain, yielding a structural network. Functionally, multiple imaging techniques 111 

can be used to observe brain activity. Resting-state functional magnetic resonance imaging (rsfMRI) 112 

detects variations in blood oxygenation as an indirect measure of neuronal activity at a high spatial 113 

resolution, and magnetoencephalography (MEG) provides a direct measure of the summed 114 

electromagnetic activity generated by groups of neurons. In both rsfMRI and MEG, statistical 115 

interdependencies between levels of activity in different areas of the brain are used as a measure for 116 

functional connectivity [5, 6], yielding functional networks.  117 

The organization of these structural and functional networks appears to be crucial for EF. 118 

Although the exact mechanisms underlying this cognitive function remain unknown [7], EF appears to 119 

be highly reliant on network integration, i.e. the interplay between specialized modules [8]. Key in 120 

facilitating this integration is the frontoparietal network (FPN), a module that plays a crucial central role 121 

as a ‘connector’ within the brain network, having diverse connections to other modules of the brain [9]. 122 

The network integration that is hypothetically happening in the individual brain regions that form the FPN 123 

can be characterized through network measures of centrality. Nodal centrality reflects the relative 124 

importance of a node within the network. Highly central regions are typically connected to many other 125 

regions, implying a pivotal role in the facilitation of network integration [9, 10]. Indeed, a more central 126 

role of the FPN has been related to better EF in unimodal network studies that utilized dMRI [11], rsfMRI 127 

[12, 13], or MEG [14]. 128 
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However, in such unimodal network studies the different aspects of the brain network, e.g. 129 

structural and functional, are only studied in isolation, while we know from other types of complex 130 

networks that network structure and different types of functional dynamics occurring on top of it jointly 131 

and synergistically determine system behavior [15-18]. In the brain, it remains unclear exactly how the 132 

integration between these network aspects relates to EF. Nevertheless, the interplay between structural 133 

and functional connectivity has been shown to be non-trivial, suggesting both should be considered 134 

simultaneously [19-21]. Moreover, in the case of networks based on MEG data, the broadband signal is 135 

often filtered into canonical frequency bands, and network analysis is performed for each frequency 136 

band separately, but the different imaging modalities and frequency bands each yield unique and even 137 

complementary information that should perhaps not be considered in isolation. Unimodal networks are 138 

thus limited representations of the essentially multimodal brain network [18, 22, 23]; but until recently 139 

we lacked the appropriate tools to integrate multiple modalities into a single network representation.  140 

Multilayer network analysis is a newly developed mathematical framework that enables this 141 

integration and allows for analysis of multimodal data [15, 24, 25]. A multilayer network is a ‘network of 142 

networks’, comprised of multiple interconnected layers, each characterizing a different aspect of the 143 

same system. Figure 1 illustrates the concept of multilayer networks using the analogy of a commuter 144 

network. Although the framework of multilayer networks is relatively new in the field of neuroscience, 145 

promising results have already been reported. Multilayer analysis of dMRI and fMRI networks of healthy 146 

participants confirmed the synergistic nature of the structure and function of the brain network [26]. 147 

Further relevance of multilayer analysis has been shown in clinical studies: multilayer connectivity 148 

differences were reported between patients with schizophrenia and healthy controls, and these 149 

differences were related to symptom severity [27]. Moreover, a study in schizophrenia and another study 150 

in Alzheimer’s disease suggested that multilayer centrality could outperform unilayer measures to 151 

distinguish cases from healthy controls [28, 29]. Additionally, an MEG study used nodal centrality metrics 152 

to identify brain regions that were vulnerable in patients with Alzheimer’s disease compared to healthy 153 

controls, and found that such regions could only be detected using a multilayer approach. Even more 154 

relevant to our work, this vulnerability of central regions in the multilayer network was related to cognitive 155 

dysfunction [30]. Multilayer network analysis can thus contribute to a better understanding of the relation 156 

between the FPN and EF. 157 
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 Here, we used multimodal data to assess the association between FPN centrality and EF in 158 

healthy participants and explored the potential added value of a multilayer framework over a unilayer 159 

framework. We hypothesized 1) a positive association between FPN centrality of both the uni- and 160 

multilayer networks and EF, and 2) multilayer centrality superseding its unilayer equivalents in explaining 161 

individual differences in EF. 162 

 163 

2. Methods 164 

2.1. Participants 165 

This study was preregistered in the Netherlands Trial Register under trial ID NL7301. Thirty-nine (39) 166 

healthy participants were prospectively recruited for this specific study through an online platform, 167 

Hersenonderzoek.nl (www.hersenonderzoek.nl), where volunteers can register for participation in 168 

neuroscience studies. Participants were selected based on the following inclusion criteria: (1) age 169 

between 20 and 70 years old; (2) native Dutch speaker; (3) able to provide written informed consent. 170 

The following exclusion criteria were used: (1) history of neurological or psychiatric disease; (2) current 171 

and regular use of centrally acting drugs; (3) presence of contraindications for MRI or MEG. Participants 172 

were asked not to ingest any caffeine or alcohol on the testing days. Approval was obtained from the 173 

VU University Medical Center Medical Ethical Committee, and all subjects provided written informed 174 

consent prior to participation. 175 

2.2. Neuropsychological evaluation 176 

Participants underwent an extensive customized neuropsychological test battery, consisting of the 177 

Dutch version of Rey’s Auditory Verbal Learning Test [31], the Concept Shifting Test (CST; [32]), the 178 

Memory Comparison Test (MCT), the Stroop Color-Word Test (SCWT; [33]), the Location Learning Test 179 

(LLT; [34]), the Categorical Word Fluency Test [35], and the Letter-Digit Modalities Test (LDMT; [36]). 180 

We used (subscores on) three of these tests to assess EF. The first test we used was the CST, where 181 

the participant was shown 16 small circles, grouped in a large circle, containing either digits (CST part 182 

A), letters (CST part B), or both digits and letters (CST part C). These circles needed to be crossed out 183 

in ascending order in part A, in alphabetical order in part B, and in alternating order (digit-letter) in part 184 

C. The participant was asked to perform the test as quickly as possible without making mistakes. 185 

Additionally, to correct for motor speed, a null-condition with empty circles (CST zero) was carried out 186 

thrice. The second test we used was the SCWT, where the participant was asked to read four different 187 
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cards. On the first card, names of colors – red, green, yellow, and blue – were printed in black ink. On 188 

the second card, rectangles were printed in these same colors. On the third card, the names of the 189 

colors were printed in an inconsistent color ink; e.g. the word ‘red’ was printed in yellow ink, and the 190 

participant was asked to read the color of the ink and ignore the word. The fourth card was identical to 191 

the third card, but several words were circled. For these circled words, the participant was asked to read 192 

the word itself instead of the color of the ink. The third test we used was the Word Fluency Test, where 193 

the participant was asked to name as many words in the category ‘animals’ as possible within 60 194 

seconds. 195 

Using validated norms of the CST [32], SCWT [37], and Word Fluency Test [37], raw scores 196 

were adjusted for sex, age, and education (classified according to the Dutch Verhage system [38] which 197 

ranges from level 1 [less than six years of primary education] to level 7 [university degree]) and 198 

transformed into z-scores. EF was defined as the average of z-scores for Word Fluency, Stroop-199 

interference (time to complete card 3 corrected for the time to complete card 2), and CST-shift (time to 200 

complete card C minus the average time to complete cards A and B, adjusted for time to complete CST 201 

zero) [32].  202 

2.3. Magnetic resonance imaging 203 

MRI data were obtained using a 3T MRI system (Philips Ingenia CX) with a 32-channel receive-only 204 

head coil at the Spinoza Centre for Neuroimaging in Amsterdam, The Netherlands. A high-resolution 205 

3D T1-weighted image was collected with a magnetization-prepared rapid acquisition with gradient echo 206 

(MPRAGE; TR = 8.1ms, TE = 3.7ms, flip angle = 8°, voxel dimensions = 1 mm3 isotropic). This 207 

anatomical scan was registered to MNI space through linear registration with nearest-neighbor 208 

interpolation, and was used for coregistration and normalization of all other modalities (dMRI, fMRI, and 209 

MEG) to the same space.  210 

2.3.1.  Diffusion MRI 211 

Diffusion MRI was collected with diffusion weightings of b = 1000 and 2000 s/mm2 applied in 29 and 59 212 

directions, respectively, along with 9 non-diffusion weighted (b = 0 s/mm2) volumes using a multiband 213 

sequence (MultiBand SENSE factor = 2, TR = 4.7 s, TE = 95 ms, flip angle = 90°, voxel dimensions = 2 214 

mm3 isotropic, no interslice gap). In addition, two scans with opposite phase encoding directions were 215 

collected for blip-up blip-down distortion correction using FSL topup [39]. Structural connectomes were 216 

constructed by performing probabilistic Anatomically-Constrained Tractography (ACT) [40] in MRtrix3 217 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 29, 2021. ; https://doi.org/10.1101/2021.06.28.450180doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.28.450180


MUMOBRAIN  8 

[41]. A tissue response function was estimated from the pre-processed and bias field corrected dMRI 218 

data using the multi-shell multi-tissue five-tissue-type algorithm (msmt_5tt). Subsequently, the Fiber 219 

Orientation Distribution (FOD) for each voxel was determined by performing Multi-Shell Multi-Tissue 220 

Constrained Spherical Deconvolution (MSMT-CSD) [42]. ACT was performed by randomly seeding 100 221 

million fibers within the white matter to construct a tractogram, and Spherical-deconvolution Informed 222 

Filtering of Tractograms (SIFT, SIFT2 method in MRtrix3) [43] was then performed to improve the 223 

accuracy of the reconstructed streamlines and reduce false positives. For every participant, their 224 

respective 3D T1-weighted image was used to parcellate the brain into 210 cortical Brainnetome atlas 225 

(BNA) [44] regions. We then used this parcellation to convert the tractogram to a structural network, 226 

where weighted edges represented the sum of all streamlines leading to and from all voxels within two 227 

brain regions. 228 

2.3.2.  Resting-state functional MRI 229 

Resting-state fMRI was collected using a multiband sequence (MultiBand SENSE factor = 2, TR 230 

= 1.52 s, TE = 30 ms, flip angle = 70°, voxel size = 2.5 x 2.5 x 2.75 mm3, interslice gap = 0.25 mm, 310 231 

volumes, 12-min acquisition). Participants were instructed to remain awake with their eyes open. Pre-232 

processing was done using FSL 5 (FMRIB 2012, Oxford, United Kingdom, http://www.fmrib.ox.ac.uk/fsl) 233 

and included brain extraction, removal of the first four volumes, motion correction by regressing out six 234 

motion parameters, and spatial smoothing at 5 mm full-width-half-maximum (FWHM). An independent 235 

component analysis was performed for Automatic Removal of Motion Artefacts (ICA-AROMA) [45], 236 

followed by regressing out white matter and cerebrospinal fluid signals and high-pass filtering (100 s 237 

cutoff). Mean absolute motion did not exceed 0.6 mm for any participant; the median was 0.27 mm 238 

(0.08-0.59 mm). The rsfMRI data were registered to native 3D T1 space using boundary-based 239 

registration. The BNA atlas was then reverse-registered to each participant’s functional data using 240 

nearest-neighbor interpolation. For every participant, a mask containing only grey matter voxels with 241 

reliable rsfMRI signal was constructed by combining a grey matter mask and an rsfMRI mask, excluding 242 

all voxels with a signal intensity in the lowest quartile of the robust range (see [46] for more details). 243 

Time-series were extracted from all atlas regions by averaging time-series across all voxels within each 244 

region. Thirteen regions with signal loss (i.e. regions with zeros in the functional connectivity matrices) 245 

due to magnetic field inhomogeneities in these echo-planar imaging (EPI) sequences were removed 246 

from further analyses across all participants and modalities. Thus, 197 atlas regions remained for all 247 
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further analyses. Finally, for every participant, Pearson correlation coefficients between all pairs of time-248 

series were calculated to obtain a functional connectivity matrix. Correlation coefficients were 249 

absolutized, as most network metrics do not take into account negative values, but inverse correlations 250 

may carry relevant information [47, 48]. 251 

2.4. Magnetoencephalography 252 

MEG data were recorded in a magnetically shielded room (Vacuumschmelze GmbH, Hanau, Germany) 253 

using a 306-channel (102 magnetometers and 204 gradiometers) whole-head MEG system (Elekta 254 

Neuromag Oy, Helsinki, Finland) with a sampling frequency of 1250 Hz during a no-task, eyes-closed 255 

condition for five minutes, an eyes-open condition for two minutes, and a final eyes-closed condition for 256 

another five minutes, with the participant in supine position. Here, we used only the first eyes-closed 257 

recording for all further analyses. An anti-aliasing filter of 410 Hz and a high-pass filter of 0.1 Hz were 258 

applied online. The cross-validation Signal Space Separation (xSSS) [49] was applied to aid visual 259 

inspection of the data. We removed channels containing no signal or noisy signal, with a maximum of 260 

12 channels removed per participant. Further noise removal was performed offline using the temporal 261 

extension of Signal Space Separation (tSSS) [50] in MaxFilter (version 2.2.15). The head position 262 

relative to the MEG sensors was recorded continuously using the signals from five head-localization 263 

coils. Coil positions and the scalp outline were digitized using a 3D digitizer (Fastrak, Polhemus, 264 

Colchester, VT, USA). A surface-matching procedure was used to achieve co-registration of the 265 

participant’s digitized scalp surface and their anatomical MRI, with an estimated resulting accuracy of 4 266 

mm [51]. A single best-fitting sphere was fitted to the outline of the scalp as obtained from the co-267 

registered MRI, which was used as a volume conductor model for the beamformer approach described 268 

below. The co-registered MRI was spatially normalized to a template MRI, and the voxels in the 269 

normalized co-registered MRI were again labeled according to the same atlas. We then used a scalar 270 

beamforming approach [52] to reconstruct the source of neurophysiological activity from the sensor 271 

signal. The beamformer weights were based on the lead fields, the broadband (0.5-48 Hz) data 272 

covariance, and noise covariance. The data covariance was based on, on average, 298 s of data (range 273 

293-314 s). A unity matrix was used noise covariance. Broadband data were then projected through the 274 

normalized beamformer weights to obtain time-series for each atlas region. Out of all the voxels that 275 

constitute an atlas region, the centroid [53] was selected to reconstruct localized MEG activity, resulting 276 

in time-series for each of the 197 included cortical regions. For all participants, we included the first 88 277 
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epochs of 4096 samples (3.28s) of the obtained time-series (total length 4 minutes and ~48 seconds). 278 

Fast Fourier transforms were applied to filter the time-series into six frequency bands: delta (0.5-4 Hz), 279 

theta (4-8 Hz), lower alpha (8-10 Hz), upper alpha (10-13 Hz), beta (13-30 Hz), and gamma (30-48 Hz). 280 

We then computed the phase lag index (PLI) [54] between the frequency-filtered time-series of all pairs 281 

of regions using custom-made scripts in MATLAB (R2018b, Mathworks, Natick, MA, USA) to obtain 282 

weighted functional connectivity matrices.  283 

2.5. Unilayer network construction and analysis 284 

First, we constructed minimum spanning trees (MST) for the six frequency-band specific MEG networks 285 

by applying Kruskal’s algorithm [55] to the functional connectivity matrices. The MST is a binarized sub-286 

graph of the original graph that connects all the nodes in the network without forming loops. This 287 

represents the backbone of the network [56, 57] and, importantly, is not hindered by common 288 

methodological issues such as effects of connection strength or link density on the estimated topological 289 

characteristics of networks [57]. Edge weights were defined as the inverted PLI values (1/PLI) when 290 

constructing the minimum spanning tree, since we were interested in the strongest connections [58].  291 

We then calculated nodal eigenvector centrality (EC) individually for each of the six MEG MSTs, 292 

and for the fully connected weighted dMRI and rsfMRI connectivity matrices, using the brain connectivity 293 

toolbox (https://sites.google.com/site/bctnet/) in MATLAB. EC is a measure of nodal centrality that 294 

assumes that a node is more influential if it is connected to nodes that are highly central themselves, 295 

and thus considers both the connections of a node itself as well as the connections of its neighbors. 296 

This makes it an interesting measure of centrality that takes the entire network into account, and it has 297 

been shown to be highly relevant for cognition in studies using dMRI [59], rsfMRI [46], and MEG [60]. 298 

For a more detailed explanation of the EC and its mathematical definition, see [61]. 299 

Finally, we extracted and subsequently averaged the ECs of all nodes belonging to the FPN to 300 

obtain one value per unilayer network per participant (for a total of eight values per participant). Regions 301 

belonging to the FPN were defined based on an earlier categorization [62] of the regions of the BNA 302 

according to the classical seven-network parcellation by Yeo and colleagues [63]. 303 

2.6. Multilayer network construction and analysis 304 

A multiplex network is a multilayer network used to describe different interactions between the same set 305 

of nodes [64]. In this context, each layer is characterized by a different modality of interaction. Therefore, 306 

this mathematical framework is useful to encode information from brain networks created using different 307 
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edge weights or imaging modalities as long as all layers are built using the same atlas. In such a 308 

multiplex network, links between different layers, also known as interlayer links, exclusively connect the 309 

same node or brain region across layers. 310 

There is, as of yet, no established method for determining biologically meaningful weighted 311 

interlayer links between different modalities. Additionally, network metrics can potentially be biased by 312 

differences in link density and average connectivity across layers and between participants [23]. Here, 313 

we therefore decided to construct binary multiplex networks. Consequently, in addition to the MEG MSTs 314 

described in section 2.5, we used Kruskal’s algorithm to construct MSTs for the dMRI and rsfMRI data. 315 

We then integrated these eight MSTs to obtain an interconnected multiplex network for every participant. 316 

Each participant’s multiplex thus consisted of L = 8 layers (one for dMRI, one for rsfMRI, and one for 317 

each of the six MEG frequency bands), with each layer containing the same set of N = 197 nodes (atlas 318 

regions), and each spanning tree and thus layer having M = N – 1 = 196 intralayer links. The weights of 319 

the interlayer connections were set to 1, identical to the intralayer connections. The resulting multilayer 320 

network was represented as an LxN by LxN supra-adjacency matrix (see Figure 2) with diagonal blocks 321 

encoding intralayer connectivity for each modality and off-diagonal blocks encoding interlayer 322 

connectivity. Supra-adjacency matrices were then exported to Python (version 3.6, Python Software 323 

Foundation, available at http://www.python.org), and multilayer nodal EC (see [64] for a mathematical 324 

definition) was computed using custom-made scripts that integrate the Python libraries multiNetX [65] 325 

and NetworkX (version 2.3) [66] that can be found on GitHub (https://github.com/nkoub/multinetx and 326 

https://github.com/networkx, respectively). Note that EC was first computed for each node in each layer 327 

separately and subsequently aggregated across layers to obtain one value per node, as described 328 

earlier [67]. We then again extracted and averaged ECs of the FPN nodes, yielding one value for 329 

multilayer EC per participant. A schematic overview of the methods can be found in Figure 2; Figure 3 330 

shows an example multiplex network as constructed using these methods. All of the custom-made 331 

scripts, as well as the data that we used in this study, can be found on our lab’s GitHub page 332 

(https://github.com/multinetlab-amsterdam/projects/tree/master/mumo).  333 

2.7. Statistical analyses 334 

To assess the relation between uni- or multilayer EC of the FPN and age, sex and education-corrected 335 

EF scores, we performed a multiple regression analysis in SPSS (version 26, IBM Corp., Armonk, NY, 336 

USA). With EF as the dependent variable, average EC values of the FPN of each of the eight unilayer 337 
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networks described in section 2.5 were added in a first block using a backward stepwise procedure (F 338 

probability for removal 0.10), and the average EC of the FPN of the multilayer network was entered in a 339 

second block. To assess whether these data met the assumption of collinearity, we computed bivariate 340 

correlations between all average unilayer EC values of the FPN, and additionally ran collinearity 341 

diagnostics.  342 

 343 

3. Results 344 

3.1. Participant characteristics 345 

Of the 39 included participants, two participants dropped out before completion of the study, two were 346 

excluded during the study because of contra-indications for MRI, and another two were excluded after 347 

visual inspection of their MRI data revealed artifacts. This resulted in a total of 33 included participants 348 

with complete structural MRI, dMRI, rsfMRI, MEG, and neuropsychological data that were used in the 349 

analyses. Of these participants, 18 were female and 15 were male. They were well spread out in terms 350 

of age, ranging between 22 and 70 years old, with a mean age of 46 ± 17 years. Participants were 351 

mainly higher-educated. 352 

3.2. Network correlates of executive functioning 353 

Figure 4 shows a raincloud plot with the distribution of EF z-scores for all participants. Importantly, as 354 

indicated by the wide range of normed z-scores, our sample was diverse in terms of EF performance. 355 

There was no evidence of multicollinearity between network variables: absolute correlation coefficients 356 

between the unilayer network eigenvector centralities did not exceed 0.7, and tolerance values were all 357 

greater than 0.1. Figure 5 shows, for one participant, exemplar values of EC for the multilayer network, 358 

as well as all the unilayer networks and the mean of the unilayers. 359 

Testing our hypotheses, none of the unilayer network eigenvector centralities survived the 360 

backwards stepwise selection, see Table 1 for the coefficients of the included and excluded variables. 361 

The final regression model, containing only multilayer EC of the FPN as a predictor of EF, was 362 

statistically significant (R2 = .133, adjusted R2 = .105, F[1, 31] = 4.753, p = .037). There was no significant 363 

increase in R2 from the second-to-last model, containing two predictors (unilayer EC in the lower alpha 364 

band and multilayer EC), to this final significant model. These results suggest that only EC of the FPN 365 

of the multilayer network was a significant predictor of EF, and that a higher multilayer EC of the FPN 366 

was related to better EF (see Figure 6).  367 
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Repeating these analyses using a forward stepwise procedure (F probability for entry 0.05) resulted 368 

in an identical final model, containing only multilayer EC as a predictor of EF and was significant (R2 = 369 

.133, adjusted R2 = .105, F[1, 31] = 4.753, p = .037).  370 

3.3. Multilayer network correlates of age 371 

To further validate the relevance of multilayer FPN centrality, we tested its relationship with age. Unilayer 372 

network studies have revealed that the brain network tends to become more efficiently integrated in 373 

early life [68], after which its development plateaus during middle age [69] and subsequently regresses 374 

to a less integrative topology with older age [70]. This relation is also reflected in changes in for example 375 

whole brain- [71] and white matter volume [72, 73] across the lifespan, and the effects of age on the 376 

development of neurological disease, e.g. in multiple sclerosis [74] or Alzheimer’s disease [75], is well-377 

established. We therefore hypothesized an inverted-U relation between age and multilayer EC of the 378 

FPN. We employed a hierarchical multiple regression model with multilayer centrality as the dependent 379 

variable. Age was entered in a first block, and the square of age was added to the model in a second 380 

block. We used an alpha level of .05 for all statistical tests. Both regression models were checked for 381 

normality of residuals using a Q-Q plot. 382 

See figure 4 for a raincloud plot of multilayer centrality, showing the distribution of multilayer network 383 

EC of the FPN for all participants. The final model with both age and age squared indicated a statistically 384 

significant quadratic relation between age and multilayer EC of the FPN (R2 = .289, adjusted R2 = .241, 385 

F[2, 30] = 6.082, p = .006). The square of age added significantly to the model, leading to an increase 386 

in R2 of .140 (F[1, 30] = 5.915, p = .021), suggesting indeed that the quadratic model more accurately 387 

explained age variations than the simple linear model. The coefficients of the included variables are 388 

reported in Table 1; Figure 6 shows the relation between age and multilayer EC of the FPN. 389 

 390 

4. Discussion 391 

We studied how multilayer centrality of the FPN was related to individual differences in EF, and 392 

whether this provided additional information to modality- and frequency-specific unilayer FPN centrality. 393 

We found that higher multilayer FPN centrality related to better EF, whereas FPN centrality of unilayer 394 

networks did not significantly explain differences in EF between healthy adults. Finally, post hoc 395 

analyses established an inverted-U relationship between age and multilayer centrality of the FPN.  396 
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Firstly, at least for the multilayer network, these results are in line with other studies displaying 397 

the importance of FPN network centrality for EF. The relation between FPN centrality and, by extension, 398 

network integration and cognition has been well-established in unilayer networks, using different 399 

neuroimaging and neurophysiological modalities. Increased integration of the FPN within the entire brain 400 

network specifically has been related to better EF in studies utilizing dMRI [11], rsfMRI [12, 13], and 401 

MEG [14]. While network segregation is thought to enable fast processing of lower-order information 402 

(e.g. analysis of visual inputs) [76], highly central nodes like those within the FPN facilitate global 403 

communication between these segregated communities, presumably enabling higher-order cognitive 404 

processes and specifically EF (see e.g. [9, 77]).  405 

Moreover, our results demonstrate the relevance of multimodal network analysis through a 406 

multilayer network approach in explaining cognitive variance. While FPN centrality of the unimodal 407 

networks did not relate significantly to EF, higher FPN centrality of the multilayer networks was indeed 408 

associated with better EF. Visual exploration of our data confirmed that the level of integration per node 409 

depends on the modality on which the network is based, and that this is again different for the multilayer 410 

network. Central nodes (i.e. nodes with high EC) in the multilayer network are thus not the same as 411 

central nodes in the monolayer networks (see Figure 5). Other multilayer studies have similarly reported 412 

that the precise node that can be considered most central in an unilayer network, may not serve as the 413 

most central node in a multilayer network and vice versa [29, 30]. We build upon these studies by 414 

demonstrating that multimodal information captures variance in EF that networks obtained from a single 415 

modality do not.  416 

Finally, the quadratic relation between age and multilayer centrality possibly reflects the rise and 417 

decline of brain network efficiency across the life span, and is in line with findings from studies reporting 418 

on unimodal data. Unilayer brain networks have been shown to become more segregated or modular 419 

during development [78], and connectivity of highly central regions has been reported to increase from 420 

childhood to adulthood [68], suggesting that the brain network becomes increasingly efficient with 421 

maturation. However, after a certain age, modularity of the network seems to decrease [70], indicating 422 

a degradation of the efficiency of the brain network. Moreover, a similar plateauing of brain network 423 

efficiency around middle age has been reported in the organization of the ‘rich club’ [69]. We have shown 424 

here that this characteristic of the brain network is maintained in a multilayer network, showing that FPN 425 

centrality of the multilayer network is an age-relevant metric. Note that we corrected EF scores for age, 426 
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such that the association we find between EF and multilayer centrality cannot be ascribed to age effects 427 

alone. However, larger datasets are needed to disentangle the exact relationship between age, network 428 

centrality, and EF. 429 

The biological interpretation of the multilayer network used in this work deserves further 430 

consideration. Importantly, the spatial definition of nodes is identical across layers: the nodes in each 431 

modality were defined based on the same brain regions. The use of the brainnetome atlas, which is 432 

based on both structural- and functional connectivity pattern similarity within and across brain regions, 433 

further supports the assumption that these nodes can indeed be seen as canonical units across layers. 434 

We then used interlayer links between the same brain regions (nodes) across layers to integrate different 435 

modalities. The biological assumption here is that structure and function conflate maximally within the 436 

same brain region. There is ample evidence that this assumption holds across macroscopic modalities 437 

when correlating, for instance, structural and rsfMRI connectivity patterns across the whole brain [20, 438 

22, 79]. The spatial variation that exists in nodal correlations between structural and functional 439 

connectivity [80], however, may indicate that although this connectivity is highest within the same region 440 

instead of between regions, the linkage between layers varies per region. Such variations were not taken 441 

into account in the current work, where we used MSTs of the individual layers for the construction of 442 

multiplex networks and set the weights of all interlayer connections in the multilayer networks to one. 443 

Future studies may therefore incorporate weighted interlayer links to represent the spatial variation in 444 

within-region correlations across modalities. Another potential shortcoming of the binarization of link 445 

weights is that it eliminates layer dominance [81]: some layers may have a stronger influence on 446 

multilayer network characteristics than others, but when all layers carry the same importance, this 447 

information is lost. However, just as some layers may drive the properties of the multilayer more strongly 448 

than other layers, other layers may play a negligible role. This raises the question whether all possible 449 

layers should be included, or whether an a priori selection should be made – and if so, how this selection 450 

should be made. A first foray into this issue was made in a dataset of social contacts [82], but the layer 451 

selection problem in multimodal brain networks warrants further exploration. Furthermore, although 452 

interlayer connectivity may be maximal within brain regions, there is potential connectivity between 453 

different regions across different modalities-- i.e., cross-talk between node A in modality X and node B 454 

in modality Y may be relevant to overall functioning of the network. A general multilayer network 455 

formulation allows interlayer links between all nodes in all layers (see e.g. [64]). However, multimodal 456 
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datasets present considerable challenges when constructing a full multilayer network. Chief among them 457 

is determining biologically meaningful interlayer links between different modalities at the individual 458 

participant level. Additionally, a recent modelling study revealed that interlayer connectivity is driven 459 

mostly by one-to-one (i.e. multiplex) connections [83], and as evidenced by previous empirical studies 460 

[29, 30], a multiplex approach is therefore a logical and intuitive first step for analyzing multidimensional 461 

data. Lastly, we defined the FPN based on a predefined classification. As such, the FPN was comprised 462 

of the same regions across the different unilayers as well as in the multilayer network. However, 463 

subnetworks like the FPN and the hubs within them have been found to vary depending on the modality 464 

used [22, 84], and have also been shown to be different in a multiplex compared to a unilayer network 465 

[29]. Additionally, there is a large individual variability in the functional topography of the FPN [85]. A 466 

more data-driven approach to the formulation of the FPN may therefore further increase the explanatory 467 

power of the multilayer approach.  468 

Some additional limitations need to be taken into consideration. It is particularly important to 469 

take into account the relatively small sample size of the present study: the absence of any unilayer 470 

effects could be due to a lack of statistical power, rather than the true absence of any correlations 471 

between unilayer network metrics and cognition. Potentially related to this limited sample size, the model 472 

containing only the significant multilayer predictor was not significantly better than the model containing 473 

a nonsignificant unilayer plus the multilayer predictor in terms of its explanatory value. Despite the 474 

significant association between multilayer FPN centrality and EF, we therefore cannot conclude with 475 

certainty that multilayer FPN centrality is more valuable than unilayer FPN centrality in explaining EF 476 

based on this study. Also, for the unilayer analyses, we computed network metrics based on the MSTs 477 

of the MEG networks but utilized the fully connected weighted networks of the dMRI and rsfMRI data. 478 

We made this choice to conform with previous modality-specific literature (e.g. [58, 86, 87]).  479 

 480 

5. Conclusions 481 

Integration of multimodal brain networks through a multilayer framework relates to EF in healthy adults, 482 

and corroborates known brain associations with aging. These findings underline the relevance of a 483 

multimodal view on integration of the brain network as a correlate of EF. Furthermore, the multilayer 484 

approach may be of particular interest in populations where network alterations differ across modalities. 485 

For instance, early neurodegeneration and structural network deterioration of particularly the most 486 
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central regions in the brain are initially associated with increases in functional communication, after 487 

which the functional brain networks seems to collapse [88, 89]. Multilayer network analysis may advance 488 

our understanding of the interplay between structural and different functional network aspects in such 489 

clinical populations. 490 
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Figures & Tables 517 

 518 

Figure 1. Example of a multilayer transport network, encoding information about train, subway, and road 519 

connectivity, and the interlayer links between them. Suppose there is a sudden increase in commuters 520 

in the subway network in the absence of any delayed or cancelled subway cars or suspended subway 521 

stations. Considering the unilayer subway network in isolation, the observed spike in commuters would 522 

seem inexplicable, as the properties of the subway network (i.e. the links and nodes) are unaltered. 523 

However, observing the entire transport system might reveal severe delays in the train network, forcing 524 

people who usually commute by train to now use the subway, thus leading to an increase in commuters 525 

in the subway network. Likewise, consider the red node in the train network. From a unilayer perspective, 526 

this is a peripheral station that is of little importance to the transport system. However, the multilayer 527 

perspective reveals this to be the only location where all three modes of transport connect, and the 528 

seemingly peripheral station thus plays a significant integrative role in the transportation network – a 529 

property that would have remained unnoticed without incorporating all the layers of the system. 530 

 531 
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 532 

Figure 2. Schematic overview of the analysis pipeline. For every participant, raw imaging data obtained 533 

from diffusion MRI, resting-state functional MRI, and magnetoencephalography was pre-processed; the 534 

brain was parcellated according to the brainnetome atlas; connectivity was calculated to construct 535 

weighted connectivity matrices; minimum spanning trees of the weighted matrices were constructed 536 

using Kruskal’s algorithm; and finally a supra-adjacency matrix representing a multilayer network was 537 

constructed. Note that unilayer network measures were computed on the minimum spanning trees of 538 

the magnetoencephalography frequency bands, but weighted data was used for diffusion MRI and 539 

resting-state functional MRI. MEG = magnetoencephalography. rsfMRI = resting-state functional MRI. 540 

dMRI = diffusion MRI. BNA = brainnetome. MST = minimum spanning tree. 541 

 542 

 543 
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 544 

Figure 3. Raincloud plots showing probability density, summary statistics, and individual datapoints of 545 

the z-score per participant of executive functioning (left) and multilayer eigenvector centrality of the 546 

frontoparietal network (right). EF = executive functioning. EC = eigenvector centrality. FPN = 547 

frontoparietal network. 548 
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564 

Figure 4. Rasterplot showing multilayer eigenvector centrality in the eight unilayer networks and the 565 

multilayer network, ordered by subnetwork (all left-hemisphere regions followed by all right-hemisphere 566 

regions). Yellow indicates regions with high EC. This shows the differences in ‘centrality profiles’ across 567 

modalities. BNA region numbers refer to the labels as given in Supplementary Table 1. MEG = 568 

magnetoencephalography. rsfMRI = resting-state functional MRI. dMRI = diffusion MRI. BNA = 569 

brainnetome atlas. VN = visual network. SMN = somatomotor network. DAN = dorsal attention network. 570 

VAN = ventral attention network. LMN = limbic network. FPN = frontoparietal network. DMN = default 571 

mode network. 572 
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 585 

Figure 5. Scatterplot including line of best fit of multilayer eigenvector centrality of the frontoparietal 586 

network and executive functioning (left) and age and multilayer eigenvector centrality of the 587 

frontoparietal network (right). EC = eigenvector centrality. EF = executive functioning. FPN = 588 

frontoparietal network. 589 
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Table 1 605 

Standardized Beta coefficients p-values of included and excluded variables of the regression models. 606 

Top: multilayer eigenvector centrality of the frontoparietal network and executive functioning. Bottom: 607 

age and multilayer eigenvector centrality of the frontoparietal network. EC = eigenvector centrality. FPN 608 

= frontoparietal network. EF = executive functioning. MEG = magnetoencephalography. dMRI = diffusion 609 

MRI. rsfMRI = resting-state functional MRI. * indicates significance at the p<0.05 level. 610 

Multilayer EC of the FPN & EF 

 β P 

Final model (R2
adj = .105)   

Multilayer EC .365 .037* 

Excluded variables   

EC MEG delta .047 .798 

EC MEG upper alpha .056 .752 

EC dMRI .074 .669 

EC MEG theta -.065 .716 

EC rsfMRI .097 .587 

EC MEG beta .144 .407 

EC MEG gamma -.204 .234 

EC MEG lower alpha -.238 .163 

Age & multilayer EC of the FPN 

 β P 

Final model (R2
adj = .241)   

Age .014 .010* 

Age squared .00013 .021* 
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