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Abstract 

Owing to the high mortality rate of small cell lung cancer (SCLC), it is essential to 

determine a novel therapeutic approach for treating patients with SCLC. miRNA is a 

type of non-coding RNA that plays a role in translational control. By applying this 

identity, it is applicable for treating patients using miRNA and nanotechnology. 

Ferroptosis is a newly discovered type of programmed cell death. Accumulated 

evidence suggests the possibility of using ferroptosis in treating patients with SCLC. 

Thus, identifying potential therapeutic miRNA-mRNA pairs that have an impact on 

ferroptosis will be valuable. In the in silico analysis, several Gene Expression 

Omnibus datasets were analyzed. The results were verified using other data. Here, 

we report that the miR-30 family and KIF11 pair have a crucial influence on SCLC 

cells, which may also affect ferroptosis. 
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MAIN TEXT 

1. Introduction 

Small cell lung cancer (SCLC) is a notable global disease with high mortality and a 5-

year survival rate of less than 7% in the past decades (Byers and Rudin 2015). SCLC 

is characterized by breathing difficulties and a unique type of pain due to the rapid 

progression of cancer cells and some paraneoplastic syndromes. Current 

chemotherapy medication, such as etoposide or irinotecan, cannot be satisfactorily 

used to treat patients. (van Meerbeeck, Fennell, and De Ruysscher 2011) The 

development of advanced precision medicine technology has made it possible to 

treat patients based on specific biomarkers. Both the technology situation and the 

disease yield a bioinformatics analysis for SCLC data. Therefore, potential drug 

targets or biomarkers are required.  

Meanwhile, SCLC accounts for only approximately 14% of all lung cancers (Byers and 

Rudin 2015), with the remaining being non-small cell lung cancer (NSCLC). However, 

compared with SCLC therapy, there have been some advances in targeted therapies 

for NSCLC. Several miRNA-mRNA pairs have been identified and validated using 

bioinformatics considering the insufficient data on NSCLC.  

However, the lack of research material (e.g., DNA, RNA, tissues, etc.) has limited 

translational research on SCLC, which is mainly caused by the rapid disease 

progression and other factors (Byers and Rudin 2015). Even in recent years, 

although there are some SCLC databases, bioinformatics analysis on SCLC is still 

limited; hence, such bioinformatics analysis will be valuable. 

MicroRNAs can regulate gene expression (Lee and Dutta 2009). Abnormal gene 

expression has been recognized as the cause of a wide range of cancers. Moreover, 

miRNA-based anti-cancer therapy, which can be used along with chemotherapy, has 

been discussed over the years. Therefore, it is essential to identify suitable hub genes 

and miRNAs. Hence, it would be useful to determine correlations between these 

miRNAs and mRNAs (Hayes, Peruzzi, and Lawler 2014). 

In this study, we aim to identify and verify the potential therapeutic miRNA-mRNA 

pairs for SCLC by bioinformatics analysis using datasets obtained from the Gene 

Expression Omnibus (GEO) database.  

First, hub genes are identified by analyzing the data from the RNA-seq. Pathway 

enrichment is performed as normal. Differentially expressed miRNAs are also 

identified. These miRNAs are enriched in terms of their functions and target genes. 

KIF11 is shown in both the hub gene set and the differentially expressed miRNA set. 

DNA methylation also influences DNA transcription; therefore, the KIF11 

methylation status has also been reported. Overall, we report that the miR-30 family 

plays an essential role in SCLC by interacting with KIF11. 

Moreover, unsupervised cluster analysis shows the potential effect of KIF11 on 

ferroptosis. Ferroptosis is a type of programmed cell death that results from an 

irreparable lipid peroxidation chain reaction within cellular membranes fueled by 

radical formation (Tang et al. 2020). It has drawn much attention in recent years 

because it provides a novel therapeutic approach. This correlation has made the 

discovery of our miRNA-mRNA pairs more valuable. 
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2. Materials and Methods 

2.1 Microarray data 

Datasets from the GEO database (Barrett et al. 2013) were obtained using the 

following criteria: 1) SCLC, 2) patients, 3) miRNA, or 4) mRNA. GSE40275 (Kastner et 

al. 2012) contains gene expression datasets from samples derived from normal lungs 

and patients with SCLC and NSCLC. A total of 43 normal samples were included in the 

wild type group and 24 samples were distributed into the SCLC groups. These two 

groups were used for differentially expressed gene analysis. GSE19945 contains 

miRNA profiling files with 35 samples of SCLC and eight samples of normal lung 

tissue obtained and used for further investigation. GSE50412 (Saito et al. 2016) is a 

methylation profile containing 28 fresh frozen samples and 13 non-cancerous lung 

tissues. The corresponding probe annotations were downloaded for further analysis. 

SCLC cell line datasets were downloaded from http://sclccelllines.cancer.gov. 

Further sorting and searching were completed by the navigation of the SCLC project 

website. 

2.2 Differentially expressed gene detection and enrichment analysis 

The data from the MINIML file were extracted, normalized, and processed by log2 

transformation using the preprocessCore package in R software (version 3.4.1). 

Probes were converted to gene symbols according to the platform annotation 

information of the normalized data. Probes with more than one gene were 

eliminated, and the average value was calculated for genes corresponding to more 

than one probe. The batch effect was removed using the removeBatchEffect function 

of the Limma package in R. 

The Limma package (version: 3.40.2) was used to study the differential expression of 

mRNAs. “Adjusted P < 0.05 and Log (Fold Change) >1 or Log (Fold Change)< −1” 

were defined as the thresholds for the screening of differential expression of mRNAs. 

The ClusterProfiler package (version: 3.18.0) in R was used to analyze the GO 

function of potential targets and enrich the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway (Yu et al. 2012).  

The top 1000 differentially expressed genes (DEGs) were identified and searched in 

the STRING (https://string-db.org/) database for protein-protein interaction (PPI). 

Cytoscape was used to construct a PPI network. Cytoscape and CytoHubba with the 

MCC algorithm were used to analyze the hub genes and visualize the molecular 

interaction networks. 

2.3 Unsupervised cluster based on hub genes and ferroptosis 

The R software package ConsensusClusterPlus (v1.54.0) was applied for consistency 

analysis, the maximum number of clusters is 6, and 80% of the total sample is drawn 

100 times, clusterAlg = "hc,” innerLinkage='ward.D2'. The R software package 

pheatmap (v1.0.12) was used to cluster the heatmaps. The gene expression heatmap 

retains genes with SD > 0.1(Yi et al. 2020). 

2.4 DEM detection and enrichment analysis 

The miRNA data were processed using GEO2R. The groups were distributed as 

described above. The results obtained from GEO2R were visualized using ggplot2. 

The miRNA enrichment analysis and workflow management system miEAA was used 

for DEM enrichment and target gene prediction (Kern et al. 2020). The top 100 DEMs 

were selected, and their names were translated as per platform instructions. Then, 

an over-representation analysis was performed. Gene ontology (miRWalk), pathways 

(miRWalk) (Sticht et al. 2018) and target genes (miRTarbase) (Hsu et al. 2011) were 
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chosen as parameters for analysis. The significance level was set as 0.05, whereas the 

threshold level was set as 2. 

3. Results  

3.1 DEG detection and enrichment analysis  

The analysis successfully identified 3739 DEGs, among which 1708 genes were 

downregulated and 2031 genes were upregulated. The 1000 genes with the lowest p-

values were selected for PPI network construction. With the help of MCC, the top 14 

hub genes were obtained, which all ranked first in the list (Fig. 1). These are CCNB1, 

CDK1, NCAPG, KIF11, BUB1B, NUSAP1, TTK, CCNB2, MELK, TOP2A, CCNA2, PBK, 

BUB1, and KIF20A. KEGG pathway enrichment revealed that the pathways related to 

RNA regulation, DNA replication, cell cycle, and p53 were upregulated. In contrast, 

adhesion ability, TNF signaling pathway, and PI3K-Akt signaling pathway were 

downregulated. The GO term enrichment showed that the terms enriched in cell 

cycle, DNA conformational change, nuclear division, and other mitosis-related terms 

were upregulated. Meanwhile, the terms related to extracellular matrix and structure 

organization, vasculature development, cell adhesion, and immune system processes 

were downregulated. The results provided an overview of the SCLC landscape (Fig. 

2). 

3.2 Unsupervised cluster based on hub genes and ferroptosis 

There are three different groups (Fig. 3) sorted based on the ferroptosis gene list. 

However, one group has fewer than two elements, which may be coincidental. Some 

types of SCLC cells are sensitive to ferroptosis and another type to contrast (Bebber 

et al. 2021). Therefore, it is reasonable to combine the three groups into two groups. 

The two groups were obtained by sorting using the hub gene list and following the 

previous logic (Fig. 4). By comparing the elements from the corresponding groups, 

most were found to be identical. The PPI network of hub genes and ferroptosis genes 

were obtained; KIF11 interacts with GPX4. Furthermore, the difference in ferroptosis 

gene expression between the unsupervised cluster group and the hub gene list 

showed significant differences (Fig. 5) (Liu et al. 2020).  

3.3 DEM detection and enrichment analysis 

Differentially expressed miRNAs were successfully obtained using GEO2R (Fig. 6). 

The table contains p-values, IDs, sequences, etc. These data were visualized using 

ggplot2. The top 100 miRNAs with the lowest p-values were selected and uploaded 

to miEAA (Fig. 7). These miRNAs were mainly enriched in terms of PD-L1 expression, 

PD-1 checkpoint, VEGF signaling pathway, and some hormone-related pathways. 

Target gene prediction successfully obtained 1271 target genes. In fact, two of these 

genes—CCNA2 and KIF11—also appeared in the hub genes. The miR-30 family is 

believed to influence KIF11 expression (Fig. 8). 

3.4 KIF11 methylation analysis 

The dataset containing SCLC methylation profiling was imported into GEO2R and 

run. The corresponding platform annotation list was used to obtain the probe ID for 

KIF11; cg25494789 and cg16340918 are two probes with a KIF11 tag. Their 

methylation status in the SCLC and normal groups was compared using a t-test (Fig. 

9). No statistical significance was found for cg25494789. The p-value was 0.0271 for 

the comparison of cg16340918. Although there was some statistical significance, it 

was not as significant as the difference in the miR-30 family. 
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4. Discussion  

Owing to the high malignancy characteristics of SCLC, it is essential to identify and 

verify the biomarkers for SCLC. Although miRNA cannot code for any protein, it can 

bind to the mRNA to either slow down translation or degrade the mRNA. Abnormal 

expression of miRNA has been found to be related to various cancers. It is also a 

promising tool for cancer therapy (Mishra, Yadav, and Rani 2016). 

In this in silico analysis, the DEGs were first identified, and some crucial pathways 

were presented. P53 signaling plays an important role in the coordination of cellular 

responses to different types of stress, such as DNA damage and hypoxia. Activation of 

p53-regulated genes leads to cellular senescence, cell cycle arrest, or apoptosis.  

The TNF signaling pathway is associated with tumor necrosis. The abnormal 

alteration of this pathway affects immune and non-immune cell types, including 

macrophages, T cells, mast cells, granulocytes, natural killer (NK) cells, fibroblasts, 

neurons, keratinocytes, and smooth muscle cells as an immune response to 

pathogenic stimuli (Blaser et al. 2016). The PI3K-Akt signaling pathway is activated 

when PI3K phosphorylates Akt, thereby activating it. Once activated, Akt controls a 

number of downstream cellular processes, including apoptosis, protein synthesis, 

metabolism, and cell cycle, by phosphorylating a range of substrates (Martini et al. 

2014). The AGE-RAGE signaling pathway influences NAPDH and enhances oxidative 

stress, which activates the NF-κB signaling pathway and further stimulates the 

production of cytokines and growth factors, thereby damaging cells and tissues 

(Waghela et al. 2021). These findings are consistent with the findings of GO 

enrichment.  

Most hub genes that have been identified are related to the cell cycle. KIF11 encodes 

a motor protein belonging to the kinesin-like protein family. Members of this protein 

family are known to be involved in various kinds of spindle dynamics. The function of 

this gene product includes chromosome positioning, centrosome separation, and 

establishment of a bipolar spindle during cell mitosis (Asbaghi et al. 2017). 

The miRNA enrichment results pertain to T cell differentiation and certain immune 

checkpoint pathways. Target gene enrichment revealed that the miR-30 family has a 

crucial impact on KIF11, which is also an obtained hub gene; this is important 

information as the development of nanotechnology can facilitate delivery of miRNA 

into cells to control the hub gene. It has been reported that the miR-30 family plays a 

crucial regulatory role in the development of tissues and organs and the 

pathogenesis of clinical diseases, indicating that it may be a promising regulator in 

development of the disease (Mao et al. 2018). 

Bioinformatic validation was also performed. Using another dataset, the KIF11 

expression value was significantly different in the expression samples derived from 

SCLC cell lines. Another factor that may have an impact on the KIF11 transcription 

process is DNA methylation (Győrffy et al. 2016). After the exploration of the 

methylation array, one probe related to KIF11 showed a statistical difference, 

whereas the other did not. However, the significance level of methylation is far less 

than the difference in miRNA expression, indicating the susceptibility of the miRNA-

mRNA pair in coordinating KIF11 expression (Fig. 10). 

Because the unsupervised clusters based on ferroptosis genes and hub genes are 

nearly identical, it is reasonable to assume that the hub genes may have an impact on 
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ferroptosis. The cell cycle may be a factor in the ferroptosis process. Moreover, the 

PPI between KIF11 and GPX4 is provided in the STRING database. The interaction 

was discovered by text-mining(Chevalier et al. 2012; Reemann et al. 2014; Rolland et 

al. 2009; Yang et al. 2016). As mentioned earlier, KIF11 plays an acceptable role and 

can be used as a therapeutic target. This makes the identification of this miRNA-

mRNA pair more important for biomedical applications. 

We did not provide any biological validation of miRNA-mRNA pairs, which is a 

limitation of this study. We identified miRNA-mRNA pairs using the miRTarbase 

database, which is a special database for identifying miRNA-mRNA targeting 

relationships supported by experimental evidence. The database is based on natural 

language processing technology (Hsu et al. 2011). Therefore, the interaction has 

already been proven by other studies. 

However, future analysis should further experiment with the KIF11 function in SCLC, 

based on the aim of this study to provide a novel therapeutic approach and target for 

SCLC treatment. The cluster method provided in this analysis is also a type of 

unsupervised learning process. Based on the limitations of SCLC data, the results may 

have a type 2 error. However, the novel logical method is more than essential for 

learning and thus applicable to future analyses. The results would also be more 

accurate if more SCLC data are generated in the future. 

 

 

5. Conclusion 

In this in silico analysis, hub genes in SCLC are identified. Differentially expressed 

miRNAs are also shown. The important roles of the miR-30 family and KIF11 pair are 

discussed. KIF11 may also play a role in ferroptosis. To the best of our knowledge, 

the detected miRNA-mRNA pair provides a novel therapeutic approach for SCLC. 
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Category Subcategory Enrichment P-value P-adjusted Q-value Expected Observed miRNAs/precursors

Target genes 
(miRTarBase) KIF11 over-represented 0.0011912 0.0165195 0.0165195 0.507416 4

hsa-miR-30b-5p; hsa-miR-30a-5p; 
hsa-miR-30c-5p; hsa-miR-30d-5p

Target genes 
(miRTarBase) CCNA2 over-represented 7.58e-7 1.07e-4 1.07e-4 1.44418 10

hsa-miR-130b-3p; hsa-miR-301b-3p; 
hsa-miR-29c-3p; hsa-miR-29a-3p; 

hsa-miR-301a-3p; hsa-miR-29b-3p; 
hsa-miR-22-3p; hsa-miR-19a-3p; 
hsa-miR-24-3p; hsa-miR-152-3p
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