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Abstract 27 

Number of beta-lactamase variants have ability to deactivate ceftazidime antibiotic, which is 28 

the most commonly used antibiotic for treating infection by Gram-negative bacteria. In this 29 

study an attempt has been made to develop a method that can predict ceftazidime resistant 30 

strains of bacteria from amino acid sequence of beta-lactamases. We obtained beta-31 

lactamases proteins from the β-lactamase database, corresponding to 87 ceftazidime-sensitive 32 

and 112 ceftazidime-resistant bacterial strains. All models developed in this study were 33 

trained, tested, and evaluated on a dataset of 199 beta-lactamases proteins. We generate 9149 34 

features for beta-lactamases using Pfeature and select relevant features using different 35 

algorithms in scikit-learn package. A wide range of machine learning techniques (like KNN, 36 

DT, RF, GNB, LR, SVC, XGB) has been used to develop prediction models.  Our random 37 

forest-based model achieved maximum performance with AUROC of 0.80 on training dataset 38 

and 0.79 on the validation dataset. The study also revealed that ceftazidime-resistant beta-39 

lactamases have amino acids with non-polar side chains in abundance. In contrast, 40 

ceftazidime-sensitive beta-lactamases have amino acids with polar side chains and charged 41 

entities in abundance. Finally, we developed a webserver “ABCRpred”, for the scientific 42 

community working in the era of antibiotic resistance to predict the antibiotic 43 

resistance/susceptibility of beta-lactamase protein sequences. The server is freely available at 44 

(http://webs.iiitd.edu.in/raghava/abcrpred/ ). 45 

Keywords: Antibiotic-resistance strains, Beta-lactamases, Ceftazidime antibiotic, Prediction 46 

method, Machine learning techniques 47 

 48 

Key Points 49 

• Ceftazidime is commonly used to treat infection caused by Gram-negative bacteria. 50 

• Beta-lactamase is responsible for lysing ceftazidime, make it resistant to bacteria.  51 

• Comparison of resistant and sensitive variants of beta-lactamase.  52 

• Classification of sensitive and resistant strain of bacteria based on beta-lactamase.  53 

• Prediction models have been developed using different machine learning techniques.   54 

 55 
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Introduction 82 

Antimicrobial resistance (AMR) is the ability of bacteria to resist the effect of antibiotics that 83 

are administered during infection (Figure 1). In 2020, WHO declared AMR as one of the 84 

world’s top 10 public health threats. There is a number of reasons for drug resistance that 85 

include overuse of antibiotics and the emerging strain of bacteria. Moreover, the alarming 86 

spread of multi-drug resistant bacteria (MDR) continues to lurk our capability to treat 87 

common infections (e.g., sepsis, sexually transmitted infections, urinary tract infections, 88 

diarrhea). There are a number of mechanisms adopted by the bacteria to evade killing by 89 

antimicrobial molecules that include, production of antibiotic lysing enzymes (e.g., Beta-90 

lactamases), lowering the permeability of cell membrane, and modification of the antibiotics 91 

binding site [1]. Beta-lactam antibiotics are the most prescribed antibiotics to fight broad 92 

spectrum infections, i.e., 65% of the total antibiotics in the market [2]. These antibiotics have 93 

four membered beta-lactam rings in their molecular structure, which are destroyed by beta-94 

lactamases [3]. Thus, beta-lactamases are responsible for multi-drug resistance against beta-95 

lactam antibiotics [4]. The number of beta-lactamases is continuously growing, around 7166 96 

beta-lactamases have been already identified [5]. There are only a few variants of beta-97 

lactamases on which beta-lactam antibiotics are working (sensitive). Resistant beta-lactamase 98 

genes that are spread via diffusion of mobile genetic elements, spread of epidemic plasmids, 99 

dispersion of specific clones and horizontal gene transfer [6]. Therefore, there is an urgent 100 

need to develop prediction models that can discriminate antibiotics sensitive and resistant 101 

variants of beta-lactamases.  102 

 103 

Figure 1: Pictorial representation of how antibiotic resistance occurs. 104 
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 105 

The standard technique to test the resistance and susceptibility of a strain to a particular 106 

antibiotic is the disc diffusion test. This method is reliable and reproducible, but it is time 107 

consuming and labour-intensive. Thus, there is a need to develop computational methods that 108 

can predict antibiotic resistant strains of bacteria. Due to advancements in the next-generation 109 

sequencing (NGS) technologies, it is in routine to sequence a gene or whole genome of 110 

bacteria or metagenome. Several repositories have been already developed to maintain the 111 

information regarding the genes, mutations, genomes and metagenomes of bacterial strains 112 

[7]. This information has been used to develop methods for predicting drug resistant strains 113 

of bacteria. These methods are mainly based on identification of antibiotic resistant gene, 114 

mutation, whole genome and metagenome [8–11]. Almost all the existing tools are generic in 115 

nature, where these methods predict whether a bacterial strain is resistant to all antibiotics. In 116 

other words, these methods predict multi-antibiotics resistant bacteria. In the past, a large 117 

number of antibiotics have been discovered to kill bacteria by a different mechanism. It is 118 

possible that bacterial strain is only resistant to a particular antibiotic or class of antibiotics 119 

but sensitive to other class of antibiotics. Thus, it is important to develop a method that can 120 

predict antibiotic-specific sensitive or resistant bacterial strains; similar to personalized 121 

medicine [12–14]. This is very important to manage treatment of bacterial infection using a 122 

particular antibiotic which is sensitive to bacteria responsible for a given infection. In simple 123 

worlds there is need to treat a bacterial infection using strain-specific antibiotics which is 124 

similar to personalize drugs. Best of our knowledge, there is no computational tool that can 125 

predict whether a bacterial strain is sensitive or resistant to a antibiotics. In this study, we first 126 

time made an attempt to develop method for antibiotic ceftazidime that belongs to beta-127 

lactam group. We selected ceftazidime because it is routinely used for treatment of wide 128 

range of bacterial infections like meningitis, sepsis, joint infection, urinary tract infection. In 129 

addition, ceftazidime has been tested clinically on a number of bacterial strains where MIC 130 

have been determined. In order to identify sensitive and resistant strain from MIC values, 131 

European Committee on Antimicrobial Susceptibility Testing (2020) proposed that the 132 

Enterobacterales are susceptible to ceftazidime when its concentration is less than or equal to 133 

1 mg/ml and resistant when concentration is greater than 4 mg/ml. It is well known fact that 134 

beta-lactamases are responsible for lysing ceftazidime or causing resistance. Thus, we have 135 

designed a model for predicting beta-lactamase variants that make ceftazidime sensitive or 136 

resistant to a bacterial strain.  We used state of the arts techniques mainly based on machine 137 

learning techniques to develop prediction models [15]. This will help in predicting 138 
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ceftazidime resistance/susceptibility towards beta-lactamase carrying bacterial species that 139 

could emerge in the near future. The platform will provide vista to find out the beta-140 

lactamases strains which are sensitive to ceftazidime antibiotic. 141 

Methods and Material 142 

Dataset Collection  143 

The main dataset was collected from the β-lactamases database [16]. It incorporates 2383 144 

Minimum Inhibitory Concentration (MIC) values (in the presence and absence of beta-145 

lactamase genes) of 980 beta-lactamases (with their protein sequences) with different 146 

antibiotics and the fold change in MIC values [16]. The database comprises experimentally 147 

validated 21 different types of antibiotics corresponding to class-A, B, C, D beta-lactamase 148 

proteins. In this study, we have considered the ceftazidime antibiotic dataset with different β-149 

lactamase protein sequences. Our final dataset included 199 β-lactamase protein sequences. 150 

Further, we set a cutoff on MIC values of ceftazidime with β-lactamase proteins. The proteins 151 

having (MIC value <=4) were considered as antibiotic susceptible/sensitive proteins, and 152 

proteins having (MIC value >4) were taken as antibiotic resistant ones [17,18]. Finally, we 153 

got 87 antibiotic-sensitive and 112 antibiotic-resistant unique proteins, referred to as positive 154 

and negative dataset, respectively. Moreover, we have also collected 22 ceftazidime 155 

resistance beta-lactamase protein sequences from Resistance Gene Identifier (RGI) database 156 

for external validation [19].  157 

Generation of Features 158 

To generate a wide range of features from protein sequences, we have used Pfeature [20]. In 159 

this study, we have used the standalone package of the Pfeature tool to compute thousands of 160 

protein/peptide features. This tool also calculates the structural and functional properties of 161 

protein sequences. We have generated 9149 composition-based features/descriptors using the 162 

composition-based feature module of the Pfeature package. It incorporates 15 different type 163 

of descriptors such as Amino acid composition (AAC), Dipeptide composition (DPC), 164 

Tripeptide composition (TPC), Atomic and bond composition (ABC), Residue repeat 165 

Information (RRI), Distance distribution of residue (DDOR), Shannon-entropy of protein 166 

(SE), Shannon entropy of all amino acids (SER), Shannon entropy of physicochemical 167 

property (SEP), Conjoint triad calculation of the descriptors (CTD) , Composition-enhanced 168 

transition distribution (CeTD), Pseudo amino acid composition (PAAC), Amphiphilic pseudo 169 
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amino acid composition (APAAC) , Quasi-sequence order (QSO) and Sequence order 170 

coupling number (SOCN).  171 

 172 

Pre-processing and Feature selection 173 

The biggest challenge is to find out the most important features/descriptors which can 174 

classify the two classes more accurately. The standardization or scaling of the dataset is the 175 

most common requirement for the machine learning techniques. In the current study, to 176 

standardize the dataset, we used MinMaxScaler using the sklearn pre-processing package. 177 

This scaling function converts the given values into a minimum and maximum range. After 178 

the pre-processing step, we identified the best set of features from a huge dimension vector. 179 

For determining the best features several dimension reduction methods are currently 180 

available. We have used standard feature selection methods in which firstly we removed all 181 

low variance features using the variance threshold method of the scikit-learn package [21]. It 182 

removes all zero-variance features, so we were left with 275 features. Then, we applied the 183 

SVC-L1 feature selection method for the selection of important set of features [21]. This 184 

method is based on the support vector classifier (SVC) with linear kernel, penalized with L1 185 

regularization. SVC-L1 method was performed on earlier deduced 275 features which 186 

provided 33 features. Further we ranked the features based on their performance, using 187 

feature selector tool. We developed our final machine learning models on selected 10, 20, and 188 

33 features.  189 

Machine Learning  190 

In the present study, we have implemented several machine learning techniques to classify 191 

ceftazidime antibiotic-resistant and sensitive/non-resistant proteins. We incorporated K-192 

nearest neighbors (KNNs), Decision tree (DT), Random Forest (RF), Gaussian Naive Bayes 193 

(GNB), Logistic Regression (LR) and Support Vector Classifier (SVC) and XGBoost (XGB) 194 

classification methods in the study (ref). These techniques are based on different algorithm 195 

such as, KNN is a simple and supervised machine learning algorithm. It assumes the 196 

similarity between the new data and the available data and put the new data into the category 197 

that is most similar to the available categories [22]. DT is a tree-structured classifier based on 198 

non-parametric machine learning models, which uses a decision tree as a model to go from 199 

observations about a data to conclusions about new data. RF classification method uses 200 

ensemble-based techniques which uses several decision trees for the training and prediction 201 

of the outcome [23], GNB (Gaussian Naïve Bayes) are a group of supervised classification 202 
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algorithms based on Bayes theorem which uses probabilistic approach for the classification. 203 

LR is a statistical model that measures the relationship between the categorial dependent 204 

variable and one or more independent variable by guessing the likelihoods using a logistic 205 

function [24]. SVC get the best fit of the data provided, the features can then be fed to see 206 

what the predicted class is. XGB uses an iterative approach for the classification. It is a 207 

decision tree-based ensemble machine learning technique that uses an approach where new 208 

models are created that predict the errors of prior models and then added together to make the 209 

final prediction. All these techniques were executed using python-library scikit-learn [21]. 210 

Evaluation Techniques  211 

In order to evaluate the classification models, we have used five-fold cross-validation (CV) 212 

and external validation method.  For the training, testing, and evaluation, the dataset was 213 

divided into 80:20 ratio. We have used the standard criterion for the evaluation, in which 214 

80% of the data was used for training and 20% was used for external validation [25]. In 5-215 

fold CV, 80% of the data was divided into five equal portions/folds, one-fold was used for 216 

testing, and four folds was used for the training purpose. A similar process was repeated five 217 

times, in which each portion/fold was utilized for internal training and testing. Further, we 218 

checked the performance of machine learning models on external dataset. In this study we 219 

have used well established evaluation parameters [26]. It incorporates threshold-dependent 220 

and independent parameters. We measured threshold-dependent parameters like sensitivity 221 

(Sens), Specificity (Spec), Accuracy (Acc) and Matthews correlation coefficient (MCC) with 222 

the help of following equations. The standard threshold-independent parameter is Area Under 223 

the Receiver Operating Characteristic (AUROC) curve [27–29] which was computed to 224 

estimate the performance of different modes.  225 

 226 
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The measurements obtained from the above parameters are expressed in terms of 231 

TP=True Positive, FP=False Positive, TN=True Negative, FN=False Negative. 232 
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 233 

Results 234 

We have used 87 beta-lactamases proteins that are ceftazidime sensitive, having MIC values 235 

less than or equal to 4 and 112 ceftazidime resistant beta-lactamase protein sequences with 236 

MIC values greater than 4. All analysis and model development have been done on the above 237 

dataset.  238 

Analysis based on the amino acid composition 239 

We have analyzed the average amino acid composition for each residue for ceftazidime 240 

resistant and sensitive beta-lactamase sequences and found out that residues such as A, G, L, 241 

P, and R, is higher in ceftazidime resistant beta-lactamase sequences as compared to sensitive 242 

sequences. Whereas, in the case of ceftazidime sensitive sequences, D, I, K, N, T, and Y 243 

residues are higher, as shown in Figure 2. 244 

 245 

 246 

Figure 2: Average amino acid composition of each amino acid residues for ceftazidime-resistant and 247 

ceftazidime-sensitive beta-lactamases. 248 

 249 

Predictions based on machine-learning models 250 

We have implemented various machine learning classifiers such as KNN, DT, RF, GNB, LR, 251 

SVC and XGB to develop the prediction model to classify the sequences of ceftazidime 252 

resistant and sensitive beta-lactamases. We have calculated each protein sequence's features 253 

using the composition-based module of Pfeature, which resulted in 9149 features. On 254 

applying the feature selection method using the support vector classifier with L1 255 

regularization, we were left with 33 most relevant features. We have ranked these 33 features 256 

using feature selector python package and generated prediction models for the top 10, 20, and 257 
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33 features.  For top 10 features, RF has obtained balanced results with AUROC of 0.78 with 258 

MCC of 0.44 for training dataset, whereas AUROC and MCC for the validation dataset are 259 

0.76 and 0.49, respectively. Performance for all the implemented classifier is exhibited in 260 

Table 2. To understand the difference between the positive and negative datasets, we 261 

calculated the average values of the top-10 features of ceftazidime-sensitive and ceftazidime-262 

resistant beta-lactamases as represented in Table 1. 263 

Table 1: Brief description of top 10 features and their average values in ceftazidime-sensitive and 264 

ceftazidime-resistant beta-lactamases. 265 

Name of features Description of 
features 

#Average Value-1 #Average Value-2 

total_bonds Bond composition of 
peptide 

4980.345 5353.161 

hydrogen_bonds Bond composition of 
peptide 

2747.425 2958.643 

single_bond Bond composition of 
peptide 

4544.747 4890.884 

R_ddor  Distance distribution 
of Arginine 

47.46805 36.44679 

Y_ddor Distance distribution 
of Tyrosine 

55.61483 69.62223 

Grantham_gap1 Quasi sequence order 
of peptide 

9422.904 9228.332 

Grantham_gap3 Quasi sequence order 
of peptide 

9815.743 9486.559 

CeTD_33_SA Number of transitions 
taking place from 
group 1 residues to 
group 2 residues for 
solvent accessibility 
attribute 

65.29885 53.53571 

CeTD_22_PC Number of transitions 
taking place from 
group 2 residues to 
group 2 residues for 
polarizability attribute 

66.2069 55.08036 

CeTD_33_PO Number of transitions 
taking place from 
group 3 residues to 
group 3 residues for 
polarity attribute 

 

67.4023 53.71429 

#Average Value-1: average values of ceftazidime-resistance beta-lactamases; # Average Value-2: 266 

average values of ceftazidime-sensitive beta-lactamases. 267 

 268 

 269 

Table 2: Performance of various classifiers using top 10 features. 270 

Classifier Training Dataset Validation dataset 
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Sens Spec Acc AUROC MCC Sens Spec Acc AUROC MCC 

KNN 83.33 67.21 76.26 0.83 0.51 76.47 57.69 68.33 0.72 0.35 

DT 60.26 72.13 65.47 0.72 0.32 76.47 65.38 71.67 0.72 0.42 

RF 76.92 67.21 72.66 0.78 0.44 76.47 73.08 75.00 0.76 0.49 

GNB 55.13 77.05 64.75 0.71 0.32 23.53 80.77 48.33 0.64 0.05 

LR 69.23 68.85 69.06 0.73 0.38 61.76 65.38 63.33 0.67 0.27 

SVC 76.92 78.69 77.70 0.78 0.55 70.59 73.08 71.67 0.74 0.43 

XGB 78.21 65.57 72.66 0.75 0.44 76.47 65.38 71.67 0.78 0.42 

# Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; AUROC: Area Under Receiver Operating 271 

Curve; MCC: Matthews Correlation Coefficient 272 

Similarly, RF model developed using top 20 features performed best among all the 273 

classifiers, with AUROC of 0.79 and MCC of 0.48 on training dataset, and AUROC 0.76 and 274 

MCC 0.4 on validation dataset. Performance using other classifiers is given in Table 3. 275 

Table 3: Performance of various classifiers using top 20 features. 276 

Classifier 
Training Dataset Validation dataset 

Sens Spec Acc AUROC MCC Sens Spec Acc AUROC MCC 

KNN 78.21 68.85 74.10 0.82 0.47 73.53 57.69 66.67 0.71 0.32 

DT 61.54 62.30 61.87 0.67 0.24 70.59 61.54 66.67 0.68 0.32 

RF 74.36 73.77 74.10 0.79 0.48 67.65 73.08 70.00 0.76 0.40 

GNB 53.85 77.05 64.03 0.70 0.31 29.41 73.08 48.33 0.63 0.03 

LR 70.51 70.49 70.50 0.77 0.41 76.47 65.38 71.67 0.69 0.42 

SVC 56.41 85.25 69.06 0.75 0.43 64.71 84.62 73.33 0.74 0.49 

XGB 75.64 63.93 70.50 0.72 0.40 70.59 65.38 68.33 0.71 0.36 

# Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; AUROC: Area Under Receiver Operating 277 

Curve; MCC: Matthews Correlation Coefficient 278 

 279 

For all 33 features, RF obtained the maximum AUROC of 0.80 with 0.48 MCC on the 280 

training dataset, and AUROC of 0.79 with MCC of 0.46 on the validation dataset. We have 281 

reported performance for all classifiers using 33 features in the Table 4.  282 

Table 4: Performance of various classifiers using 33 selected features on training and 283 

validation datasets. 284 

Classifier 
Training Dataset Validation dataset 

Sens Spec Acc AUROC MCC Sens Spec Acc AUROC MCC 

KNN 74.36 77.05 75.54 0.81 0.51 73.53 57.69 66.67 0.74 0.32 
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DT 65.38 70.49 67.63 0.72 0.36 79.41 69.23 75.00 0.73 0.49 

RF 74.35 73.77 74.10 0.80 0.48 73.53 73.08 73.33 0.79 0.46 

GNB 56.41 72.13 63.31 0.67 0.29 29.41 73.08 48.33 0.64 0.03 

LR 74.36 65.57 70.50 0.77 0.40 76.47 69.23 73.33 0.78 0.46 

SVC 57.69 88.52 71.22 0.74 0.47 50.00 88.46 66.67 0.74 0.40 

XGB 74.36 73.77 74.10 0.77 0.48 76.47 76.92 76.67 0.79 0.53 

# Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; AUROC: Area Under Receiver Operating 285 

Curve; MCC: Matthews Correlation Coefficient 286 

 287 

In order to check the robustness of our final model, we have downloaded 22 ceftazidime 288 

resistant protein sequences from Resistance Gene Identifier (RGI) database and checked the 289 

performance by implementing random forest based model developed on top 33 features. 19 290 

out of 22 sequences were giving the correct result, with AUROC of 0.81 and MCC of 0.50 on 291 

training dataset, and AUROC 0.79 and MCC 0.71 on validation dataset. 292 

  293 

Webserver implementation 294 

We have developed a webserver named ABCRpred 295 

(https://webs.iiitd.edu.in/raghava/abcrpred/ ) using Random Forest based machine learning 296 

approach to serve the scientific world. Since, we wanted to identify sensitive strains of beta-297 

lactamases therefore we developed this method to discriminate between antibiotic resistant 298 

and sensitive variants of beta-lactamase strains. 87 antibiotic-sensitive and 112 antibiotic-299 

resistant beta-lactamases protein sequences data were used for training and testing, while 300 

building the webserver. The complete architecture of ABCRpred is shown in figure 3.  301 
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 302 

 303 

Figure 3: Overall ABCRpred architecture that shows process of creating datasets, features selection, 304 

model development and process of model evaluation.  305 

 306 

The ‘Predict’ page on the webserver has been developed to predict resistance/susceptibility of 307 

any new beta-lactamase protein sequence towards ceftazidime antibiotic. The page enables 308 

the users to enter the sequence in FASTA format or upload the file with multiple peptide 309 

sequences. User is required to set a random forest threshold and select physicochemical 310 

properties as per their requirement. Prediction of each sequence will be carried out according 311 

to the selected model. After submitting the input, the output file contains various columns of 312 

sequence ID, random forest score, prediction outcome whether the input sequence is resistant 313 

or susceptible and the result of selected physicochemical properties. The standalone package 314 

(https://webs.iiitd.edu.in/raghava/abcrpred/stand.php) has also been incorporated in the 315 

webserver to let the users predict the resistance/susceptibility profile of protein sequences 316 

even in the absence of the internet.  The standalone version incorporated our best models and 317 

can work on Linux or Unix operating systems.  318 

Discussion  319 

The beta-lactam antibiotics are regarded as the drug of choice for the treatment of severe 320 

infections caused by Enterobacteriaceae.  Most of the beta-lactam antibiotics face resistance 321 

against beta-lactamases carrying bacteria. Moreover, exposure of beta-lactamase carrying 322 

bacterial strains to multitude of beta-lactams has induced active continuous production and 323 

mutation of beta-lactamases expanding their activity even against the newly developed beta-324 
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lactam antibiotics. In this study we used MIC data of ceftazidime (a beta-lactam antibiotic) 325 

against beta-lactamase carrying bacteria for building a prediction model to predict resistance 326 

and susceptibility of any newly emerged variant of beta-lactamase carrying bacterial strain. A 327 

total of 199 experimental MIC data was collected from a comprehensive database of beta-328 

lactamase enzymes called as β-lactamase Database [16].  Our data of ceftazidime MIC 329 

against various beta-lactamase carrying bacterial strains was divided into two sets. One set 330 

have MIC values greater than 4 referred to as ceftazidime-resistant strain;  other set have 331 

MIC values less than or equal to 4 called as ceftazidime-sensitive strains. We obtained beta-332 

lactamase corresponding to each strain; a beta-lactamase corresponding to resistant strain is 333 

called resistant beta-lactamase and a beta-lactamase corresponding to sensitive strain is called 334 

sensitive beta-lactamase. Our final dataset have sensitive and resistant variants of beta-335 

lactamase. 336 

Amino acid composition analysis revealed that certain residues like Alanine, Glycine, 337 

Leucine, Proline and Arginine are more frequent in ceftazidime resistant beta-lactamases as 338 

compared to ceftazidime sensitive ones. Similarly, in case of ceftazidime sensitive beta-339 

lactamases the residues like Aspartic acid, Isoleucine, Lysine, Asparagine, Threonine and 340 

Tyrosine are more in abundance in comparison to resistant beta-lactamases. From these 341 

findings it can be inferred that in ceftazidime-resistant beta-lactamases, amino acids with 342 

non-polar side chains predominates. No wonder this gives these resistant beta-lactamases 343 

extra stability making it hard for ceftazidime to inhibit their activity. In case of ceftazidime-344 

sensitive beta-lactamases, amino acids with polar side chains predominates. Moreover, amino 345 

acid with charged entities is more in number in this case. This makes these proteins quite 346 

unstable and prone to attack by the antibiotic. 347 

In this study, Pfeature software has been used to compute different types of descriptors that 348 

includes amino acid composition, dipeptide composition, residue entropy, repeats, 349 

distribution of amino acids.  In order to identify relevant features, we adopt different 350 

techniques to remove useless features or descriptors. All descriptors having low variance has 351 

been removed as they are not suitable for classification.  Highly correlated or redundant has 352 

been removed to decrease the noise.  Finally algorithms in Scikit-learn has been used for 353 

selecting important descriptors for developing prediction models. We employed different 354 

machine learning algorithms using python-library-scikit-learn. We implemented widely used 355 

machine learning classifiers, like KNN, DT, RF, GNB, LR, SVC and XGB [30]. In order to 356 

our models we used internal and external validations [31] [32].  The result of the generated 357 
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model was analysed using various parameters called as threshold-dependent parameters and 358 

threshold-independent parameters [33] [34]. We also validated the sturdiness of our model by 359 

cross checking the resistance of 22 ceftazidime resistance beta-lactamases downloaded from 360 

RGI database. Our model correctly predicted 19 ceftazidime resistance strains out of 22. We 361 

hold an opinion that this method will be very helpful in prior prediction of ceftazidime 362 

resistance/susceptibility towards any newly emerging strain of beta-lactamases. This also 363 

open vista for researchers to look for alternative therapeutic options to fight continuously 364 

emerging beta-lactamases. The method also has a major utility in doing prediction of 365 

sensitive beta-lactamase strains in metagenomics data.   366 

Conclusion  367 

In conclusion, this is the first study of resistance/sensitivity prediction model development 368 

using one particular antibiotic. The study brings about in-silico model to predict 369 

resistance/susceptibility of ceftazidime antibiotic towards beta-370 

lactamases(http://webs.iiitd.edu.in/raghava/abcrpred/). This will help in identification of 371 

ceftazidime sensitive beta-lactamases strains. Prediction can be done even when only protein 372 

sequence of any beta-lactamase is known. We believe in future, researchers will build similar 373 

model for other antibiotics. Prior prediction of sensitive antibiotics against a bacterial 374 

infection will lead to era of strain-specific antibiotics; basically, end of present hit and trial 375 

era.  This will reduce time and cost of treatment as well a significant reduction in side-effects 376 

due to the treatment by inappropriate antibiotics.  377 
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