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Abstract 

Coessentiality networks derived from CRISPR screens in cell lines provide a powerful framework 

for identifying functional modules in the cell and for inferring the role of uncharacterized genes. 

However, these networks integrate signal across all underlying data, and can mask strong 15 

interactions that occur in only a subset of the cell lines analyzed. Here we decipher dynamic 

functional interactions by identifying significant cellular contexts, primarily by oncogenic 

mutation, lineage, and tumor type, and discovering coessentiality relationships that depend on 

these contexts. We recapitulate well-known gene-context interactions such as oncogene-

mutation, paralog buffering, and tissue-specific essential genes, show how mutation rewires 20 

known signal transduction pathways, including RAS/RAF and IGF1R-PIK3CA, and illustrate the 

implications for drug targeting. We further demonstrate how context-dependent functional 

interactions can elucidate lineage-specific gene function, as illustrated by the maturation of 

proreceptors IGF1R and MET by proteases FURIN and CPD. This approach advances our 

understanding of context-dependent interactions and how they can be gleaned from these data. 25 

We provide an online resource to explore these context-dependent interactions at diffnet.hart-

lab.org.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2021. ; https://doi.org/10.1101/2021.06.25.450004doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.450004
http://creativecommons.org/licenses/by/4.0/


 2 

Introduction 

Development of genome-wide CRISPR screening half a decade ago facilitated robust 

determination of proliferation dependent genes for each cancer type (Hart et al., 2015; Shalem 30 

et al., 2014; Wang et al., 2015). Current efforts for identifying cancer vulnerability in public are 

done for hundreds of cancer cell lines (Aguirre et al., 2016; Behan et al., 2019; Meyers et al., 2017) 

across dozens of tissue types. Previously, we and others demonstrated that functionally coherent 

modules of genes can be extracted from CRIPSR screens by measuring the similarity of gene 

knockout fitness profiles across all gene pairs, generating a functional interaction network based 35 

on coessentiality (Boyle et al., 2018; Kim et al., 2019; Pan et al.; Rauscher et al., 2018; Wainberg 

et al., 2021; Wang et al., 2017). Many such modules found in the network encode well annotated 

biological processes, enabling robust functional prediction for uncharacterized genes (Aregger et 

al., 2020; Noordermeer et al., 2018; Zimmermann et al., 2018). Some modules, however, are 

associated with specific tissues or genomic perturbations, such as the ESR1-FOXA1 pathway in 40 

ER+ breast cancer cell lines and the BRAFV600E module in melanoma cells  (Amici et al., 2020; Kim 

et al., 2019; Sharma et al., 2020). In this latter cluster, gene mutation is so conflated with tissue 

specificity that b-RAF is tightly linked with melanocyte-specific transcription factors MITF and 

SOX9 but does not show significant correlation with its known protein interaction partner c-RAF 

(encoded by the RAF1 gene).  45 

 

We hypothesized that mutations in specific genes, and more broadly the genetic and epigenetic 

state of cells, could rewire these coessentiality networks, and that disentangling this rewiring 

could elucidate the biological and therapeutic implications of genetic lesions and tissue-specific 
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diseases. Context-specific interaction rewiring or differential network analysis is a useful tool for 50 

understanding how fixed genomes can emerge into heterogeneous cellular and tissue 

morphologies and phenotypes  (Ding et al., 2018; Ideker and Krogan, 2012; Kim et al., 2012). 

Previously, studies of comparison of coexpression between two contexts selected from a pool 

were introduced to discover differentially regulated interactions by specific context (Cho et al., 

2009; Hsu et al., 2015; Lui et al., 2015). In the pre-CRISPR era, integrative functional interaction 55 

networks were exploited to prioritize disease genes (Kim et al., 2008; Lee et al., 2004; Singh-Blom 

et al., 2013), and included efforts to identify tissue-specific networks (Greene et al., 2015; Guan 

et al., 2012), but these approaches lack the power of inferred genetic interaction profiles that 

coessentiality networks derived from screens in human cells provide. Recent examinations of 

coessentiality networks such as CEN-tools (Sharma et al., 2020) and fireworks (Amici et al., 2020) 60 

offer the ability to browse how correlates of a query gene vary by background, but offer little 

ability to interpret the results. Moreover, the ability to go from lesion of interest to lesion-

associated network rewiring is both limited and difficult to use. 

 

In this study, we developed a framework of identifying dynamic relationships in cancer 65 

dependency data caused by functional contexts such as variations in tissue of origin and/or 

genomic lesions. We first categorized genomic perturbations using molecular profiles from the 

Cancer Cell Line Encyclopedia. Then, we investigated which genomic features were associated 

with synthetic gene essentiality by applying a logistic regression model, and used these features 

to search for associated network rewiring. Rewired networks carry information on drug efficacy, 70 

the biological impact of specific lesions, and the tissue-specific activity of genes. 
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Results 

Associating cellular context with emergent gene essentiality 

Understanding the causal, or at least associative, basis of variation in gene essentiality is 75 

important in matching the right anti-cancer drugs with responsive tumors (Rancati et al., 2018). 

For example, KRAS is essential when it undergoes oncogenic mutation (Janes et al., 2018; O’Leary, 

2021; Waters and Der, 2018), and SWI/SNF complex member ARID1B is essential if its paralog 

ARID1A is deleted (Helming et al., 2014). To globally decipher these essential gene/context 

relationships, we first systematically categorized genomic lesions into gain of function/hotspot 80 

(GOF) or loss of function (LOF) using mutation data from 808 cell lines in the Cancer Cell Line 

Encyclopedia (Barretina et al., 2012) that have matching CRISPR screen data from the Cancer 

Dependency Map (Behan et al., 2019; Meyers et al., 2017; Tsherniak et al., 2017). We added cell 

line metadata including lineage/tumor type, as well as a feature describing EMT state based on 

the ratio of CDH1 to VIM expression (see Methods). After de-duplication and filtering, we 85 

retained 2,918 binary features as predictor variables. 

 

We used a machine learning approach to estimate the effect of genomic perturbations on 

variably essential genes (Figure 1A). We chose logistic regression with an elastic net penalty 

because it handles binary predictors, because gene essentiality is readily binarized for use as a 90 

response variable, and because the L1 component of the elastic net forces most coefficients to 

zero, resulting in a model that is easily interpreted. For each gene, we generated a binary 

essentiality vector across 808 good quality cell lines in DepMap 20Q4 data processed with our 
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BAGEL2 pipeline (Kim and Hart, 2020) for use as a response variable. We used logistic regression 

on the same feature table to predict the essentiality profile of each gene independently. This 95 

approach is similar to that used by Lord et al (Lord et al., 2020), but our logistic regression is a 

binary classifier of gene essentiality rather than their linear regression on continuous fitness 

effects. 

 

After calculating all regression models, we investigated which genomic features significantly 100 

contributed to predicting essentiality (Figure 1B,C). We collected coefficients of genomic features 

across all prediction models of genes, which loosely represent the magnitude of predictive power. 

A positive coefficient of a genomic feature indicates that the genomic perturbation is associated 

with the gene dependency (e.g. KRAS_GOF/KRAS essentiality), and a negative coefficient 

indicates that gene essentiality is associated with the absence of the lesion (e.g. 105 

TP53_LOF/MDM2 essentiality). Coefficients showed a similar trend with P-values derived by the 

Fisher exact test between a vector of genomic lesions and a vector of gene dependency across 

cell lines (Figure 1C). By considering strong coefficients (see Methods and Supplementary Figure 

1), we identify 393 genomic features strongly predictive of variation in gene essentiality, 

including 327 loss of function mutations, 20 gain of function mutations, and 46 features derived 110 

from cell metadata (Figure 1D). We recapitulated positive associations in paralog buffering (e.g. 

SMARCA4_LOF/SMARCA2ess, Figure 1E), oncogenic mutation-induced essentiality (e.g. 

BRAF_GOF/BRAFess, Figure 1F), , and tumor-specific dependencies (e.g. CML/BCRess, Figure 1G), 

as well as negative associations such as epithelial transcription factor GRHL2 essentiality in cells 

with low CDH1/VIM expression ratio (Figure 1H) and increased essentiality of cyclin D1 (CCND1) 115 
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in the absence of downstream RB1 loss of function (Figure 1I). These results are highly 

concordant with previous predictive models (Supplementary Figure 1) (Behan et al., 2019; Lord 

et al., 2020) and known biology, and provide a meaningful set of features for exploring context-

dependent functional interaction rewiring. 

 120 

Measuring context-dependent network rewiring 

With the identification of contexts associated with variation in gene essentiality, we expanded 

our view of dynamics to functional interaction rewiring caused by these genomic and epigenomic 

features. In general, genes with correlated fitness profiles across a diverse panel of cell lines tend 

to operate in the same biological processes, such as enzymatic or signal transduction pathways, 125 

often as subunits in the same protein complex. While this correlation provides a powerful 

framework for inferring gene function and the modular structure of the cell (Boyle et al., 2018; 

Kim et al., 2019; Pan et al.; Rauscher et al., 2018; Wainberg et al., 2021; Wang et al., 2017), it 

relies on covariation in the underlying gene essentiality vectors but offers no insight into the 

source of this variation. We hypothesized that, by systematically removing rationally-selected 130 

subsets of cell lines and measuring the effect on pairwise correlation, we could identify the 

drivers of this covariation and, in turn, infer the causal basis for the emergent essentiality of 

biological processes. 

 

Although differential co-essentiality offers a seemingly straightforward way to approach context 135 

rewiring of functional interaction networks, the method is beset by complications. One is that, 

for many genes, physiologically relevant knockout fitness defects are typically only seen in a few 
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cell lines. A related issue is that there are frequently too few cell lines associated with a given 

context for correlation to be an accurate predictor of functional interaction within the context; 

e.g. a CML-only coessentiality network has limited meaning if there are only seven CML cell lines. 140 

To overcome these difficulties, we designed a strategy comprising a leave-one-out test and 

bootstrapped network comparison analysis to investigate snapshots of interaction rewiring in 

essentiality data associated with our features of interest.  In the leave-one-out test, interaction 

rewiring was measured as a differential Pearson correlation coefficient (dPCC) of a context by 

taking the PCC from all cell lines (PCCall) and subtracting the PCC using all cell lines except those 145 

carrying the feature of interest (PCC~context) (Figure 2A). We classified a positive dPCC as a gain of 

interaction (GOI) because the PCC depends on the presence of cells with the feature of interest 

(Figure 2A, top). Conversely, we describe a negative dPCC as a loss of interaction (LOI) because 

the background PCC is improved by removing cells with the feature of interest (Figure 2A, 

bottom).  150 

 

We measured dPCC for the 393 features identified in logistic regression models as significant 

predictors of gene essentiality, and measured significance by bootstrap resampling to estimate a 

null distribution of dPCC (See Methods and Supplementary Figure 2). We identified 30 features 

associated with gain of interaction (Figure 2B) and 133 features, including 91 LOF mutants, 155 

associated with loss of functional interaction (Figure 2C) in the cell lines studied. These features 

are associated with 9,227 gain of interaction and 3,261 loss of interaction events (Figure 2D-E). 

Notably, of the gain of interaction events, 97% (n=8,958) are associated with TP53 gain of 
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function/hotspot mutations, leaving only 269 interactions associated with the remaining 29 

features. 160 

 

Two case studies illustrate the effect of context-dependent rewiring of functional interaction 

networks. RAS and RAF kinases are the core members of RTK signaling pathways for proliferation 

and differentiation (Asati et al., 2016; Lavoie and Therrien, 2015; Santarpia et al., 2012; Terrell 

and Morrison, 2019; Terrell et al., 2019). Within the canonical MAP kinase signal transduction 165 

pathway, b-RAF (BRAF) and c-RAF (RAF1) form a heterodimer to transmit phosphorylation signals 

from upstream RAS genes to downstream MEK/ERK targets. In BRAF-driven cancers, oncogenic 

mutation constitutively activates BRAF and obviates the need for c-RAF binding. In the global 

coessentiality network, BRAFV600E and BRAFwt cell lines are mixed, diluting the ability to discover 

the wildtype BRAF-RAF1 relationship (background PCC=0.124). Removing BRAFV600E cell lines 170 

boosts this correlation to 0.478 (dPCC = -0.363; P<0.001, permutation test); thus, BRAF_GOF 

mutation is causal for a loss of interaction between BRAF and RAF1 (Figure 2F). Similarly, 

transcription factor FOXA1 is essential in a subset of lung and breast cancers but shows a breast-

specific interaction with ETS family transcription factor SPDEF (Figure 2G). 

 175 

Reconstruction of Directionality in Signaling Pathways 

The dynamic rewiring of functional interactions resulting from cancer-associated mutation has 

predictable consequences. As previously observed, mutation of the TP53 tumor suppressor 

removes the cell’s reliance on MDM2 and related genes to suppress the proapoptotic activity of 

wildtype p53 protein. Similarly, constitutive activation of signaling proteins by oncogenic 180 
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mutation activates downstream signaling partners while removing the need for upstream 

activation signals. Here we describe two such pathways. 

 

RAS/RAF signaling pathway. Mutations in the RAS pathway are major drivers of numerous 

cancers. RAS family members KRAS and NRAS are frequently mutated in colorectal and pancreas 185 

adenocarcinoma, and multiple myeloma and melanoma, respectively. BRAF is a major driver 

gene of melanoma and thyroid adenocarcinoma (Gonzalez-Perez et al., 2013; Martínez-Jiménez 

et al., 2020). Oncogenic GOF lesions in these genes caused significant intra- and inter-pathway 

interaction rewiring (Figure 3A). KRAS and NRAS are usually non-essential in CRISPR data; 

however, mutation or amplification of these genes induces hyperactivation and strong mutually 190 

exclusive essentiality. We found that Interaction rewiring of GOF mutations of KRAS, NRAS, and 

BRAF induced gain of interaction with downstream genes and disconnected the network from 

upstream genes through loss of interaction (Figure 3A). For example, KRAS mutation amplifies 

the link with downstream signaling partner RAF1 (PCCall = 0.390, PCC~KRAS_GOF = 0.239, dPCC = 

0.151, P<0.001), severs the link between RAF1 and KRAS paralog NRAS (PCCall = 0.305, 195 

PCC~KRAS_GOF = 0.472, dPCC = -0.167, P<0.001), and disconnects MAP kinase signaling from the 

upstream EGFR receptor tyrosine kinase signal transduction module (KRAS-SOS1 PCCall = -0.012, 

PCC~KRAS_GOF = 0.184, dPCC = -0.197, P<0.001). Similar behavior is seen in NRAS and BRAF GOF cell 

lines (Figure 3B-E). Additional rewiring by BRAF mutation abrogates interaction with dimerization 

partner RAF1, consistent with the known biology of BRAF mutation. We found that BRAF 200 

mutation induced loss of interaction between BRAF and RAF1 while BRAF and RAF1 are well 

correlated in wildtype BRAF cell lines (Figure 3A,C). 
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IGF1R/PIK3CA signaling pathway. The PIK3CA gene encodes a protein kinase that mediates 

signaling from insulin like growth factor receptor IGF1R to the AKT pathway (Zha and Lackner, 205 

2010) (Figure 4A), is frequently mutated in a number of cancers, and is itself the target of several 

chemotherapeutic agents. When mutated, PIK3CA is hyperactivated and induces downstream 

pathways without reliance on IGF1R signals (Gkeka et al., 2014). In our differential network 

analysis, PIK3CA gain of function mutation causes not only loss of interaction with IGF1R receptor 

(Figure 4B) but also the insulin receptor substrate gene IRS2, which encodes a protein involved 210 

in IGF1R signal transduction (Figure 4C). In addition, PIK3CA_GOF causes loss of interaction with 

FURIN (Figure 4D), a protease required for maturation of the IGF1R receptor (FURIN-IGF1R PCCall 

= 0.540, n=808 cell lines) and uncharacterized gene KBTBD2 (Figure 4E). The high KBTBD2-IRS2 

background correlation (PCCall = 0.483), and the loss of interaction with PIK3CA upon oncogenic 

mutation (PCCall = 0.293, PCC~PIK3CA_GOF = 0.400, dPCC = -0.107, P<0.001), support a functional 215 

interaction between KBTBD2 and IRS2, possibly involving protein maturation or signaling.  

 

We further investigated the impact of interaction rewiring on drug efficacy. We compared the 

effect of drugs targeting PIK3CA, AKT1, and IGF1R, between wild-type and mutant PIK3CA cell 

lines in PRISM (Yu et al., 2016) 19Q3 data (Figure 4F-H), where strong drug efficacy is shown as 220 

negative log fold change. Cell lines harboring a PIK3CA oncogenic mutation were significantly 

more sensitive to AKT inhibitor GSK2110183, (Figure 4I). Conversely, IGF1R inhibitor linisitib is 

effective only in a subset of cell lines with wildtype PIK3CA alleles (Figure 4J). Together, these 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2021. ; https://doi.org/10.1101/2021.06.25.450004doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.450004
http://creativecommons.org/licenses/by/4.0/


 11 

findings are consistent with the mutational rewiring of the functional interaction network and 

demonstrate that context-dependent networks can inform drug sensitivity. 225 

 

Tissue-specific functional interaction 

While IGF1R is associated with its canonical downstream signaling partner PIK3CA, its strongest 

association in the global coessentiality network is with FURIN (PCCall = 0.540), reflecting the role 

of FURIN in IGF1R receptor maturation. FURIN is also strongly associated with Carboxypeptidase 230 

D (CPD), recently reported to be required for pro-IGF1R maturation in lung adenocarcinoma 

(Alarcón et al., 1994; Komada et al., 1993) (Figure 5A). Interestingly, the link between CPD and 

IGF1R is largely abrogated in glioma cells (Figure 5B), while the CPD-FURIN relationship is 

maintained (Figure 5C). Together these observations suggest that the CPD-FURIN activity is 

required for maturation of a different protein in glioma cells. Notably, receptor tyrosine kinase 235 

MET shows a strong gain of interaction with CPD in glioma (Figure 5D). MET polypeptide, like 

IGF1R, is proteolytically processed into a mature receptor through cleavage into alpha and beta 

subunits and linkage via disulfide bonds. Our context-dependent coessentiality network 

therefore provides corroborating evidence in support of FURIN/CPD processing of MET as 

suggested by Han et al. (Han et al., 2020). 240 

 

Discussion 

In this study, we present a framework for understanding the differential wiring of cells across 

genotypes and lineages. Using genetic mutation information and cell line metadata, we 

investigated contexts that cause emergent essentiality by analyzing coefficients obtained from a 245 
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logistic regression model trained using CRISPR screen data.  Using this approach, we identified 

numerous context-gene interactions, including known interactions such as paralog buffering, 

oncogenes, and tissue specific essential genes.  

 

We then examined the rewiring of functional interaction networks in the presence of these 250 

contexts. We developed a strategy which compares the strength of interaction between two 

genes, as measured by the Pearson correlation coefficient of their normalized fitness vectors 

across all samples, to the correlation derived from samples that exclude a specified context, or a 

“leave-one-out” test. We measured the significance of these changes by bootstrapping a null 

distribution for every gene pair in every context. Rewiring detected by our approach showed 255 

concordance with biological knowledge and discovered new putative context-dependent 

functional interactions, demonstrating its potential for functional genomics and cancer targeting. 

We provide a web-based interface for exploring the network edges rewired by mutation and/or 

lineage at diffnet.hart-lab.org. 

 260 

The approach derived herein attempts to address one of the key questions arising from the use 

of coessentiality, or indeed any gene similarity approach, to predict gene co-functionality. These 

methods offer a powerful approach for predicting gene function, identifying disease genes, and 

reducing the search space of potential combinatorial gene effects to tractable levels. 

Coessentiality depends on some underlying variation in gene essentiality across the dataset; 265 

genes which are always essential or never essential rarely appear in these networks (Kim et al., 

2019). In most approaches, the source of this variation is neither known nor questioned; however, 
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the question is of high interest because identifying the causal basis for emergent essentiality 

would provide direct association of biomarkers with potential cancer targets as well as insight 

into the critical biological processes in different cells.  270 

 

Another feature of raw coessentiality networks is that, as with prior efforts to build integrative 

functional interaction networks (Lee et al., 2004), they represent an integration of all contexts 

present in the cell lines or data sets from which they are derived. Functional interactions may 

often differ across contexts (Bandyopadhyay et al., 2010; Greene et al., 2015); for example, the 275 

roles of FURIN and CPD in promoting the maturation of different cell surface receptors in 

different tissues. Combining these contexts dilutes the overall correlation between genes with 

strong but context-dependent functional interaction. The approach we describe here offers a 

path towards understanding how context-dependent interactions can be gleaned from these 

data. 280 

 

Methods 

Preprocessing publicly available CRISPR screens 

Raw read counts of CRISPR screens used in this study were downloaded from DepMap 20Q4 

(n=808 cell lines). For DepMap screens, we removed guide RNAs targeting multiple protein 285 

coding genes based on the guide map obtained from the DepMap database and the CCDS protein 

coding gene annotation to avoid genetic interaction effects. After that, we applied the BAGEL2 

pipeline (Kim and Hart, 2021) to measure gene essentiality information for each cell line. Gene 
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knockout fitness phenotype is reported as a log Bayes Factor (BF), with positive scores indicating 

likelihood of essentiality.  290 

 

 

Predictive features and response variables for the logistic regression model 

Genetic lesions were classified as gain or loss of function based on mutation calls described in 

the Cancer Cell Line Encyclopedia. For each of the 808 cell lines, each gene (n=18,111) was 295 

classified as loss of function (LOF) if it carried a lesion whose “Variant_annotation” annotation 

was ‘damaging’. Genes were characterized as gain of function (GOF) if they carried a lesion where 

either isTCGAhotspot or isCOSMIChotspot = True and if “Variant_annotation” was “other non-

conserving.” Other lesions were not classified. See notebook “pre-step01-clean_data” for details. 

 300 

CCLE Gene expression data in logTPM was downloaded from the CCLE portal at the Broad (n=718 

cell lines with matching CRISPR data from Avana 20q4). EMT state was determined by CDH1/VIM 

expression log ratio (logTPMCDH1 – logTPMVIM), which resulted in a bimodal distribution across all 

cell lines. Each cell line was assigned CDH_VIM_hi if the log ratio > 1, or CDH_VIM_lo for log ratio 

< -4. See notebook “step01-merge_features” for details. 305 

 

Other cell line metadata, downloaded from the CCLE portal at the Broad (n=808 cell lines with 

matching CRISPR data from Avana 20q4), were transformed into binary features. Each unique 

entry for “lineage”, “lineage_subtype”, “lineage_sub_subtype”, “culture_type”, and “sex” was 

considered a unique feature vector. See notebook “step01-merge_features” for details. 310 
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All features were merged into on matrix (808 cell lines x 36,406 features). Features describing six 

or fewer cell lines (n=33,475) were excluded. Remaining features were then de-duplicated by 

calculating and all-by-all correlation matrix and, for every pair of features with corr >= 0.9, the 

smaller feature (the one describing fewer cell lines) was discarded. For features with equal size 315 

and perfect overlap (e.g. “plasma_cell” and “multiple_myeloma”), one was selected at random 

and discarded. The final de-duplicated binary feature set comprised 2,918 predictor variables for 

the regression model. See notebook “step02-remove_duplicates” for details. 

 

Gene essentiality was binarized for use as a response variable. Genes with missing values in the 320 

Bayes Factor table (n=17) were removed from the dataset. Then, for each cell line, genes with 

BF>=10 were classified as essential and all others nonessential, for a set of 18,094 genes in 808 

cell lines. See notebook “step02-remove_duplicates” for details. 

 

Logistic regression model 325 

Each gene’s binary essentiality vector was used as the response variable in a logistic regression 

model, using the binary features described above. Genes whose essentiality is invariant across 

the cell lines are uninteresting; therefore we excluded genes essential in less than 1% or more 

than 80% of the samples. The remaining set included 2,987 genes. 

 330 

A logistic regression model was implemented in Python using 

sklearn.linear_model.LogisticRegression, with an elastic net penalty (L1 ratio = 0.25). Processing 
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time took 78 minutes on a latest-generation AMD PC processor with 32 threads. The coefficients 

for each feature/gene prediction were combined into a single matrix. The intercept of the models 

closely matched the background probability of gene essentiality (Supplementary Figure 1). For 335 

each of the 2,987 response genes, the maximum and minimum feature coefficients were 

determined and, based on histograms of the maximum and minimum values (Supplementary 

Figure 1), |coeff| > 1.2 was chosen as a threshold for strong feature-gene association. The 

feature-gene coefficients matrix was flattened to a list and sorted by coefficient, and this list was 

used for subsequent analyses. A total of 393 unique features were predictive of gene essentiality 340 

with |coeff| > 1.2. See notebook “step03-do_regression” and “step03a-audit_regression” for 

details. 

 

Measurement of emergent network rewiring in CRISPR dataset 

Leave-one-out test 345 

To test for dynamic functional network rewiring, we measured the differential Pearson 

correlation coefficient (dPCC) between the global network, calculating for all gene pairs using all 

808 cell lines (PCCall), and the network derived from a subset of cell lines that exclude a given 

context (PCC~context). The formula of dPCC for each gene pair is therefore: 

   350 

𝑑𝑃𝐶𝐶 = 𝑃𝐶𝐶!"" − 	𝑃𝐶𝐶~$%&'()'	 
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Positive dPCC represents a gain of interaction (GOI) because the higher PCCall depends on the 

presence of cells with the feature of interest, and negative dPCC represents ‘loss of interaction’ 

because excluding cells associated with the feature of interest increases the PCC. 355 

 

We evaluated the statistical significance of the dPCC distribution for each feature empirically. 

Briefly, we calculated the number of cell lines associated with the feature, ‘n’.  Then we randomly 

selected ‘n’ cell lines from the set of all 808 cell lines, removed them, and calculated the all-by-

all PCC matrix for all pairs of genes, PCCrand. For each gene pair, we measured PCCall – PCCrand for 360 

every gene. We repeated this process 1000x and compared dPCC to this distribution to generate 

an empirical P-value down to 0.001. We calculated this null distribution for every gene pair for 

each of the 393 contexts. See “calc_diff_coess_pval.py” for code and details. 

 

 365 
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Figures and Legends 

 385 

Figure 1. Underlying drivers of gene essentiality. A) a schematic process of finding important 

contexts for a gene. We input binary feature vectors across all cell lines and a vector of 

essentiality of a gene and trained a logistic regression model. Then, we investigated coefficients 

of features to determine the features important for predicting gene essentiality. B) Distribution 

of regression coefficients collected from prediction models of all genes. Positive coefficients 390 

reflect gene essentiality in the presence of the feature, and a negative coefficients reflect 

increased gene essentiality in the absence of the feature. C) Volcano plot demonstrated a general 

correlation between P-values of Fisher exact test (Y axis) and regression coefficients (X axis). D) 

Category of 393 features with |regression coefficient| > 1.2. E-I) Examples of predictions from E) 

paralog interaction, F) oncogene addiction, G) tissue specific genes, H)  EMT expression signature, 395 

and I) negative association. BF, Bayes Factor from BAGEL2 analysis of DepMap data 

(positive=essential).  
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 400 

Figure 2. A framework to identify dynamics in coessentiality network. A) Classes of context-

dependent interaction. In all cases, a differential Pearson correlation coefficient (dPCC) for each 

gene pair is calculated as the difference between the global network (PCCall) and the PCC from all 

cells except those harboring the feature of interest (PCC~context). B,C) The number of features 

associated with gain or loss of interaction. D,E) the number of gained or lost interaction, by 405 

feature type. F-G) Examples of context-dependent loss and gain of interaction. Axes are Bayes 

Factors of the genes. 
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Figure 3. Interaction rewiring in RAS/RAF pathway. A) a comprehensive network diagram of 

differential interactions caused by mutations on KRAS, NRAS, and BRAF. B) KRAS mutant caused 410 

loss of NRAS-RAF1 interaction and NRAS mutant caused loss of KRAS-RAF interaction. C) RAF1 is 

required for regulating MEK/ERK pathway when BRAF is wildtype, while BRAF mutant doesn’t 

require RAF1 and led to loss of interaction of RAF1 to BRAF and the downstream pathway. D,E) 

Scatter plots of interactions between RAF1 and two RAS proteins. 

  415 
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Figure 4. Dynamics of network rewiring on IGF1R-PIK3CA pathway. A) A visualization of IGF1R-

PIK3CA pathways (upper panel) and a differential network of pathway genes caused by PIK3CA 

GOF mutation. Upstream pathway genes were disrupted by mutation while correlation with 

downstream pathway gene AKT1 was boosted. B-E) Scatter plots of interactions of PIK3CA 420 

upstream genes B) IGF1R and C) IRS2, plus D) IGF1R maturation factor FURIN, and E) KBTBD2. F-

H) Comparisons of effectiveness of F) PIK3CA inhibitors, G) AKT inhibitors, and H) IGF1R inhibitors 

in all cells (blue) and cells excluding PIK3CA GOF mutations (orange), from PRISM. I-J) AKT 

inhibitor is more effective in PIK3CA GOF, while IGF1R inhibitor is more effective in PIK3CA wt.  

 425 
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Figure 5. Tissue-specific network rewiring. A) A network diagram of interaction rewiring of CPD 

in glioma cell lines. B) IGF1R-CPD interaction was generally correlated in non-glioma cell, but loss 

of interaction was detected in glioma cell lines. C) CPD-FURIN interaction was correlated 

regardless of tissue type. D) Instead of IGF1R, MET is correlated with CPD in glioma cell lines. 430 
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Figure S1 

 

Figure S1. Regression model. (A) Histogram of all ~8.7 million genomic feature-response gene 
coefficients. Elastic net penalty forces most coefficients to zero. (B) Regression intercept (y-axis, 580 
exp(Intercept) / exp(Intercept) + 1 ) approximates frequency of gene essentiality across cell lines. 
(C, D) Distribution of minimum (C) and maximum (D) value of regression coefficient  for each of 
2,918 predictor variables across 2,987 predictions, from which we chose |coeff| > 1.2 for further 
analysis. (E) Comparison of significant feature-gene interactions between Lord et al and this study. 
This study includes tissue/lineage as a predictor, resulting in more interactions. (F) Interactions 585 
(in mutated gene_response gene format) in the Lord/Kim intersection from (E). 
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