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Abstract 
Engineered variants of recombinant adeno-associated viruses (rAAVs) are being developed 
rapidly to meet the need for gene-therapy delivery vehicles with particular cell-type and tissue 
tropisms. While high-throughput AAV engineering and selection methods have generated 
numerous variants, subsequent tropism and response characterization have remained low 10 
throughput and lack resolution across the many relevant cell and tissue types. To fully leverage 
the output of these large screening paradigms across multiple targets, we have developed an 
experimental and computational single-cell RNA sequencing (scRNA-seq) pipeline for in vivo 
characterization of barcoded rAAV pools at unprecedented resolution. Using our platform, we 
have corroborated previously reported viral tropisms and discovered unidentified AAV capsid 15 
targeting biases. As expected, we observed that the tropism profile of AAV.CAP-B10 in mice was 
shifted toward neurons and away from astrocytes when compared with AAV-PHP.eB. Our 
transcriptomic analysis revealed that this neuronal bias is mainly due to increased targeting 
efficiency for glutamatergic neurons, which we confirmed by RNA fluorescence in situ 
hybridization. We further uncovered cell subtype tropisms of AAV variants in vascular and glial 20 
cells, such as low transduction of pericytes and Myoc+ astrocytes. Additionally, we have observed 
cell-type-specific responses to systemic AAV-PHP.eB administration, such as upregulation of 
genes involved in p53 signaling in endothelial cells three days post-injection, which return to 
control levels by day twenty-five. Such ability to parallelize the characterization of AAV tropism 
and simultaneously measure the transcriptional response of transduction will facilitate the 25 
advancement of safe and precise gene delivery vehicles. 

Introduction 
Recombinant AAVs (rAAVs) have become the preferred gene delivery vehicles for many clinical 
and research applications (Bedbrook et al., 2018; Samulski and Muzyczka, 2014) owing to their 
broad viral tropism, ability to transduce dividing and non-dividing cells, low immunogenicity, and 30 
stable persistence as episomal DNA ensuring long-term transgene expression (Daya and Berns, 
2008; Deverman et al., 2018; Gaj et al., 2016; Hirsch and Samulski, 2014; Naso et al., 2017; Wu 
et al., 2006). However, current systemic gene therapies using AAVs have a relatively low 
therapeutic index (Mével et al., 2020). High doses are necessary to achieve sufficient transgene 
expression in target cell populations, which can lead to severe adverse effects from off-target 35 
expression (Hinderer et al., 2018; Srivastava, 2020; Wilson and Flotte, 2020). Increased target 
specificity of rAAVs would reduce both the necessary viral dose and off-target effects: thus, there 
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is an urgent need for AAV gene delivery vectors that are optimized for cell-type-specific delivery 
(Paulk, 2020). Lower viral doses would also alleviate demands on vector manufacturing and 
minimize the chances of undesirable immunological responses (Calcedo et al., 2018; Gao et al., 40 
2009; Mingozzi and High, 2013). Capsid-specific T-cell activation was reported to be dose-
dependent in vitro (Finn et al., 2010; Pien et al., 2009) and in humans (Mingozzi et al., 2009; 
Nathwani et al., 2011). Shaping the tropism of existing AAVs to the needs of a specific disease 
has the potential to reduce activation of the immune system by detargeting cell types, such as 
dendritic cells, that have an increased ability to activate T-cells (Herzog et al., 2019; Rogers et 45 
al., 2017; Rossi et al., 2019; Somanathan et al., 2010; Vandenberghe et al., 2006; Zhu et al., 
2009). 

Several studies have demonstrated that the transduction efficiency and specificity of natural AAVs 
can be improved by engineering their capsids using rational design (Bartlett et al., 1999; 
Davidsson et al., 2019; Davis et al., 2015; Lee et al., 2018; Sen, 2014) or directed evolution (Chan 50 
et al., 2017; Dalkara et al., 2013; Deverman et al., 2016; Excoffon et al., 2009; Grimm et al., 2008; 
Körbelin et al., 2016a; Kotterman and Schaffer, 2014; Maheshri et al., 2006; Müller et al., 2003; 
Ogden et al., 2019; Ojala et al., 2018; Pekrun et al., 2019; Pulicherla et al., 2011; Ravindra Kumar 
et al., 2020; Tervo et al., 2016; Ying et al., 2010). These engineering methods yield diverse 
candidates that require thorough, preferably high-throughput, in vivo vector characterization to 55 
identify optimal candidates for a particular clinical or research application. Toward this end, 
conventional immunohistochemistry (IHC) and various in situ hybridization (ISH) techniques are 
commonly employed to profile viral tropism by labeling proteins expressed by the viral transgene 
or viral nucleic acids, respectively (Arruda et al., 2001; Chan et al., 2017; Deleage et al., 2016, 
2018; Deverman et al., 2016; Grabinski et al., 2015; Hinderer et al., 2018; Hunter et al., 2019; 60 
Miao et al., 2000; Polinski et al., 2015, 2016; Puray-Chavez et al., 2017; Ravindra Kumar et al., 
2020; Wang et al., 2020; Zhang et al., 2016; Zhao et al., 2020). 
 
Although these histological approaches preserve spatial information, current technical challenges 
limit their application to profiling the viral tropism of just one or two AAV variants across a few 65 
gene markers, thus falling short of efficiently characterizing multiple AAVs across many complex 
cell types characteristic of tissues in the central nervous system (CNS). The reliance on known 
marker genes also prevents the unbiased discovery of tropisms since such marker genes need 
to be chosen a priori. Choosing marker genes is particularly challenging for supporting cell types, 
such as pericytes in the CNS microvasculature and oligodendrocytes, which often have less 70 
established cell type identification strategies (Liu et al., 2020; Marques et al., 2016). The advent 
of single-cell RNA sequencing (scRNA-seq) has enabled comprehensive transcriptomic analysis 
of entire cell-type hierarchies, and brought new appreciation to the role of cell subtypes in disease 
(Berto et al., 2020; Gokce et al., 2016; Tasic et al., 2016, 2018; Zeisel et al., 2018). However, 
experimental and computational challenges, such as the sparsity of RNA capture and detection, 75 
strong batch effects between samples, and the presence of ambient RNA in droplets, reduce the 
statistical confidence of claims about individual gene expression (Lähnemann et al., 2020; Yang 
et al., 2020; Zheng et al., 2017). Computational methods have been developed to address some 
of these challenges, such as identifying contaminating RNA (Yang et al., 2020), accounting for or 
removing batch effects (Korsunsky et al., 2019; Lin et al., 2019; Lopez et al., 2018), and 80 
distinguishing intact cells from empty droplets (Lun et al., 2019; Macosko et al., 2015; Zheng et 
al., 2017). However, strategies for simultaneously processing transcripts from multiple delivery 
vehicles and overcoming the computational challenges of confidently detecting individual 
transcripts have not yet been developed for probing the tropism of AAVs in complex, 
heterogeneous cell populations. 85 
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Collecting the entire transcriptome of injected and non-injected animals offers an opportunity to 
study the effects of AAV transduction on the host cell transcriptome. A similar investigation has 
been conducted with G-deleted rabies virus (Huang and Sabatini, 2020). This study demonstrated 
that virus infection led to the downregulation of genes involved in metabolic processes and 90 
neurotransmission in host cells, whereas genes related to cytokine signaling and the adaptive 
immune system were upregulated. At present, no such detailed examination of transcriptome 
changes upon systemic AAV injection has been conducted. High-throughput single-cell 
transcriptomic analysis could provide further insight into the ramifications of AAV capsid and 
transgene modifications with regard to innate (Duan, 2018; Hösel et al., 2012; Martino et al., 2011; 95 
Shao et al., 2018; Zaiss et al., 2008) and adaptive immune recognition (George et al., 2017; 
Manno et al., 2006; Mingozzi et al., 2007; Nathwani et al., 2011, 2014). Innate and adaptive 
immune responses to AAV gene delivery vectors and transgene products constitute substantial 
hurdles to their clinical development (Colella et al., 2018; Shirley et al., 2020). The study of brain 
immune response to viral gene therapy has been limited to antibody staining and observation of 100 
brain tissue slices post direct injection. In particular, prior studies have shown that intracerebral 
injection of rAAV vectors in rat brains does not induce leukocytic infiltration or gliosis (Chamberlin 
et al., 1998; McCown et al., 1996); however, innate inflammatory responses were observed 
(Lowenstein et al., 2007). Results reported by these methods are rooted in single-marker staining 
and thus prevent the discovery of unexpected cell-type-specific responses. A comprehensive 105 
understanding of the processes underlying viral vector or transgene-mediated responses is critical 
for further optimizing AAV gene delivery vectors and treatment modalities that mitigate such 
immune responses. 
 
Here, we introduce an experimental and bioinformatics workflow capable of profiling the viral 110 
tropism and response of multiple barcoded AAV variants in a single animal across numerous 
complex cell types by taking advantage of the transcriptomic resolution of scRNA-seq techniques 
(Figure 1 A). For this proof-of-concept study, we profile the tropism of previously-characterized 
AAV variants that emerged from directed evolution with the CREATE (AAV-PHP.B, AAV-PHP.eB) 
(Chan et al., 2017; Deverman et al., 2016) or M-CREATE (AAV-PHP.C1, AAV-PHP.C2, AAV-115 
PHP.V1, AAV.CAP-B10) (Flytzanis et al., 2020; Ravindra Kumar et al., 2020) platforms. We 
selected the AAV variants based on their unique CNS tropism following intravenous injection. 
AAV-PHP.B and AAV-PHP.eB are known to exhibit overall increased targeting of the CNS 
compared with AAV9 and preferential targeting of neurons and astrocytes. Despite its sequence 
similarity to AAV-PHP.B, the tropism of AAV-PHP.V1 is known to be biased toward transducing 120 
brain vascular cells. AAV-PHP.C1 and AAV-PHP.C2 have both demonstrated enhanced blood–
brain barrier (BBB) crossing relative to AAV9 across two mouse strains (C57BL/6J and BALB/cJ). 
Finally, AAV.CAP-B10 is a recently-developed variant with a bias toward neurons compared to 
AAV-PHP.eB (Flytzanis et al., 2020). 
 125 
In our initial validation experiment, we quantify the transduction biases of AAV-PHP.eB and AAV-
CAP-B10 across major cell types using scRNA-seq, and our results correlate well with both 
published results and our own conventional IHC-based quantification. We then demonstrate the 
power of our transcriptomic approach by going beyond the major cell types to reveal significant 
differences in sub-cell-type transduction specificity. Compared with AAV-CAP-B10, AAV-PHP.eB 130 
displays biased targeting of inhibitory neurons, and both variants transduce Sst+ or Pvalb+ 
inhibitory neurons more efficiently than Vip+ inhibitory neurons. We validate these results with 
fluorescent in situ hybridization – hybridization chain reaction (FISH-HCR). We then develop and 
validate a barcoding strategy to investigate the tropism of AAV-PHP.V1 relative to AAV-PHP.eB 
in non-neuronal cells and reveal that pericytes, a subclass of vascular cells, evade transduction 135 
by this and other variants. We further use scRNA-seq to profile cell-type-specific responses to 
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AAV.PHP-eB at 3 and 25 days post-injection (DPI), finding, for example, numerous genes 
implicated in the p53 pathway in endothelial cells to be upregulated at 3 DPI. While most 
upregulated genes across cell types return to control levels by day twenty-five, excitatory neurons 
show a persistent upregulation of genes involved in MAPK signaling extending to 25 days. Finally, 140 
we showcase the capabilities of parallel characterization by verifying the preceding findings in a 
single animal with seven co-injected AAV variants and reveal the unique non-neuronal tropism 
bias of AAV-PHP.C2. 

Results 
Multiplexed single-cell RNA sequencing-based AAV profiling pipeline 145 

To address the current bottleneck in AAV tropism profiling, we devised an experimental and 
computational workflow (Figure 1 A) that exploits the transcriptomic resolution of scRNA-seq to 
profile the tropism of multiple AAV variants across complex cell-type hierarchies. In this workflow, 
single or multiple barcoded rAAVs are injected into the retro-orbital sinus of mice followed by 
tissue dissociation, single-cell library construction using the 10X Genomics Chromium system, 150 
and sequencing with multiplexed Illumina next-generation sequencing (NGS) (Zheng et al., 2017). 
The standard mRNA library construction procedure includes an enzymatic fragmentation step that 
truncates the cDNA amplicon such that its final size falls within the bounds of NGS platforms 
(Figure 1 B). These cDNA fragments are only approximately 450 bp in length and, due to the 
stochastic nature of the fragmentation, sequencing from their 5’ end does not consistently capture 155 
any particular region. The fragment length limit and heterogeneity pose a problem for parallelizing 
AAV tropism profiling, which requires reliable recovery of regions of the transgene that identify 
the originating AAV capsid. For example, posttranscriptional regulatory elements, such as the 600 
bp Woodchuck hepatitis virus posttranscriptional regulatory element (WPRE), are commonly 
placed at the 3’ end of viral transgenes to modulate transgene expression. The insertion of such 160 
elements pushes any uniquely identifying cargo outside the 450 bp capture range, making them 
indistinguishable based on the cDNA library alone (Supplemental Figure 1 A). An alternative 
strategy of adding barcodes in the 3’ polyadenylation site also places the barcode too distant for 
a 5’ sequencing read, and reading from the 3’ end would require sequencing through the 
homopolymeric polyA tail, which is believed to be unreliable in NGS platforms (Chang et al., 2014; 165 
Shin and Park, 2016). 

We circumvented these limitations in viral cargo identification by taking an aliquot of the intact 
cDNA library and adding standard Illumina sequencing primer recognition sites to the viral 
transcripts using PCR amplification such that the identifying region is within the two Illumina 
primer target sequences (e.g. Figure 2 B). The cell transcriptome aliquots undergoing the 170 
standard library construction protocol and the amplified viral transcripts are then sequenced as 
separate NGS libraries. We sequence shorter viral transcripts in the same flow cell as the cell 
transcriptomes and longer viral transcripts on the Illumina MiSeq, which we found to be successful 
at sequencing cDNAs up to 890 bp long. The sequencing data undergoes a comprehensive data 
processing pipeline (see Methods). Using a custom genome reference, reads from the cell 175 
transcriptome that align to the viral cargo plasmid sequences are counted as part of the standard 
10X Cell Ranger count pipeline (see Methods and Supplemental Figure 1 C). In parallel, reads 
from the amplified viral transcripts are used to count the abundance of each viral barcode 
associated with each cell barcode and unique molecular identifier (UMI). The most abundant viral 
barcode for each cell barcode and UMI is assumed to be the correct viral barcode, and is used to 180 
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construct a variant lookup table. This lookup table approach identifies an originating capsid in 
69.1 ± 1.9% of viral reads detected in the cell transcriptome aliquots (Supplemental Table 4). 

For determining viral cell-type tropism, we developed a method to estimate the fraction of cells 
within a cell type that express viral transcripts. Viral RNA expression levels depend on both the 
multiplicity of infection and the transcription rate of the delivered cargo. Thus, directly using viral 185 
RNA counts to determine tropism is confounded by differences in transcription rate between cell 
types, limiting comparison with imaging-based tropism quantification methods. As evidence of 
this, we detected that viral RNA expression levels can vary by cell type but are not perfectly rank 
correlated with the percent of cells detected as expressing that transcript (Supplemental Figure 2 
B). An additional confound arises from the ambient RNA from cellular debris co-encapsulated with 190 
cell-containing droplets, which can lead to false positives, i.e., detecting viral RNA in droplets 
containing a cell that was not expressing viral RNA. For example, we detected low levels of viral 
transcripts in large percentages of cells, even in cell types suspected to evade transduction, such 
as immune cells (Supplemental Figure 2 A). To reduce the effect of both variability in expression 
and ambient RNA, we developed an empirical method to estimate the percentage of cells 195 
expressing transcripts above the noise, wherein the distribution of viral transcript counts in a set 
of cells of interest is compared to a background distribution of cell-free (empty) droplets (see 
Methods, Supplemental Figure 2 C). In simulation, this method accurately recovers the estimated 
number of cells expressing transcripts above background across a wide range of 
parameterizations of negative binomial distributions (see Methods, Supplemental Figure 2 D). 200 

To address several additional technical problems in default single-cell pipelines, we developed a 
simultaneous quality control (QC) and droplet identification pipeline. Our viral transduction rate 
estimation method described above relies on having an empirical background distribution of viral 
transcript counts in empty droplets to compare against the cell type of interest. However, the 
default cell vs. empty droplet identification method provided by the 10X Cell Ranger software, 205 
which is based on the EmptyDrops method (Lun et al., 2019), yielded unexpectedly high numbers 
of cells and clusters with no recognizable marker genes, suggesting they may consist of empty 
droplets of ambient RNA or cellular debris (Supplemental Figure 3 A, B). Additionally, we sought 
to remove droplets containing multiple cells (multiplets) from our data due to the risk of falsely 
attributing viral tropism of one cell type to another. However, using Scrublet (Wolock et al., 2019), 210 
an established method for identifying droplets containing multiplets, failed to identify multiplets in 
some of our samples and only identified small proportions of clusters positive for known non-
overlapping marker genes, such as Cldn5 and Cx3cr1 (Supplemental Figure 3 C). To address 
both the empty droplet and multiplet detection issues, we built a droplet classification pipeline 
based on scANVI, a framework for classifying single-cell data via neural-network-based 215 
generative models (Xu et al., 2021). Using clusters with a high percentage of predicted multiplets 
from Scrublet as training examples of multiplets, and clusters positive for known neuronal and 
non-neuronal marker genes as training examples of neurons and non-neuronal cells, we trained 
a predictive model to classify each droplet as a neuron, non-neuron, multiplet, or empty droplet 
(see Methods, Supplemental Figure 4 A). This model performed with 97.6% accuracy on 10% of 220 
cells held out for testing, and yielded a database of 270,982 cortical cells (Supplemental Figure 4 
B). Inspection of the cells classified as empty droplets reveals that these droplets have lower 
transcript counts and higher mitochondrial gene ratios, consistent with other single-cell quality 
control pipelines (Supplemental Figure 4 D). Critically, we discovered that non-neuronal clusters 
contained significantly more cells that had been previously removed by the Cell Ranger filtering 225 
method as compared to neuronal clusters (P = 0.02, 2-sided student t-test). In some clusters, 
such as Gpr17+ C1ql1+ oligodendrocytes and Gper+ Myl9+ vascular cells, we identified up to 85% 
more cells than what were recovered via Cell Ranger in some samples. 
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Using our combined experimental and computational pipeline for viral transcript recovery and 
droplet identification, we can recover a lower bound on the expected number of cells expressing 230 
each unique viral cargo within groups of cells in heterogeneous samples. 

 

Figure 1. Workflow of AAV tropism characterization by scRNA-seq. (A) (I) Injection of a single 
AAV variant or multiple barcoded AAV variants into the retro-orbital sinus. (II) After 3–4 weeks 
post-injection, the brain region of interest is extracted and the tissue is dissociated into a single-235 
cell suspension. (III) The droplet-based 10x Genomics Chromium system is used to isolate cells 
and build transcriptomic libraries (see B). (IV) Cells are assigned a cell-type annotation and a viral 
transcript count. (V) AAV tropism profiling across numerous cell types. (B) The full length cDNA 
library is fragmented for sequencing as part of the single-cell sequencing protocol (top). To enable 
viral tropism characterization of multiple rAAVs in parallel, an aliquot of the intact cDNA library 240 
undergoes further PCR amplification of viral transcripts (bottom). During cDNA amplification, 
Illumina sequencing primer targets are added to the viral transcripts such that the sequence in 
between the Illumina primer targets contains the AAV capsid barcode sequence. Viral cargo in 
the cell transcriptome is converted to variant barcodes by matching the corresponding cell 
barcode + UMI in the amplified viral transcript library (right). 245 

Single-cell RNA sequencing recapitulates AAV capsid cell-type-
specific tropisms 
As a first step, we validated our method by comparing the quantification of AAV transduction of 
major cell types via scRNA-seq to conventional IHC. For this purpose, we characterized the 
tropism of two previously reported AAV variants, AAV-PHP.eB (Chan et al., 2017) and AAV-CAP-250 
B10 (Flytzanis et al., 2020) (Figure 2 A). In total, four animals received single or dual retro-orbital 
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injections of AAV-PHP.eB and/or AAV-CAP-B10 with 1.5 × 1011 viral genomes (vg) per variant. 
Co-injection of both variants served to test the ability of our approach to parallelize tropism 
profiling. By having each variant package a distinct fluorophore, tropism could be simultaneously 
assessed via multi-channel fluorescence and mRNA expression of the distinct transgene. After 255 
3–4 weeks of expression, we harvested the brains and used one hemisphere for IHC and one 
hemisphere for scRNA-seq. To recover viral transcripts, we chose primers such that enough of 
the XFP sequence was contained within the Illumina primer target sequences to differentiate the 
two variants (Supplemental Table 1). For this comparison, we focused on the transduction rate 
for neurons (Rbfox3), astrocytes (S100b), and oligodendrocytes (Olig2). For IHC, a cell was 260 
classified as positive for the marker gene on the basis of antibody staining, and was classified as 
transduced on the basis of expression of the delivered fluorophore. For scRNA-seq, all cells that 
passed our QC pipeline were projected into a joint scVI latent space and clustered. To most 
closely match our imaging quantification, we considered all clusters that were determined to be 
positive for the respective marker gene as belonging to the corresponding cell type (see Methods). 265 
All clusters of the same marker gene were grouped together, and the transduction rate of the 
combined group of cells was determined using our viral transduction rate estimation method.  

Our analysis of the scRNA-seq data demonstrates that the viral tropism biases across the three 
canonical marker genes are consistent with previous reports (Figure 2 C) (Chan et al., 2017; 
Flytzanis et al., 2020). In contrast to AAV-PHP.eB, AAV-CAP-B10 preferentially targets neurons 270 
over astrocytes and oligodendrocytes. No marked discrepancies in viral tropism characterization 
were observed with single versus dual injections. 

To quantify the similarity of the AAV tropism characterizations obtained with IHC and scRNA-seq, 
we directly compared the transduction rate of each AAV variant for every cell type and its 
corresponding marker gene (i.e., Rbfox3, S100b, or Olig2) as determined by each technique and 275 
noticed a good correlation (Figure 2 D). Despite the different underlying biological readouts–
protein expression in IHC and RNA molecules in labeled cell types for scRNA-seq–the two 
techniques reveal similar viral tropisms. 
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Figure 2. Comparison of viral tropism profiling with traditional IHC and scRNA-seq. (A) 280 
Overview of the experiment. Four animals were injected with 1.5 × 1011 viral genomes (vg) 
packaged in AAV-PHP.eB and/or AAV-CAP-B10. The bottom panels show a representative 
dataset collected from an animal that was co-injected with AAV-PHP.eB and AAV-CAP-B10. The 
left side displays the scRNA-seq data set in the lower dimensional t-SNE space, with cells colored 
according to transduction status. The shaded areas indicate clusters with high expression of the 285 
corresponding gene marker. The right side shows representative confocal images of cortical 
tissue labeled with IHC. Scale bar, 50 µm. (B) Viral transcript recovery strategy. The shaded areas 
highlight sequences added during library construction. (C) The fraction of the total number of 
transduced cells labeled as expressing the corresponding marker gene. For each AAV variant, 
the results of a two-way ANOVA with correction for multiple comparisons using Sidak’s test are 290 
reported with adjusted P-values (****P ≤ 0.0001, ***P ≤ 0.001, and **P ≤ 0.01 are shown; P > 0.05 
is not shown). (D) Comparison of transduction rates based on quantification via scRNA-seq or 
IHC. Transduction rate was calculated as (number of transduced cells in the group)/(total number 
of cells in the group). Each dot represents the transduction rate of neurons/Rbfox3+, 
astrocytes/S100b+, or oligodendrocytes/Olig2+ by AAV-PHP.eB or AAV-CAP-B10 in one animal. 295 
Histology data are averages across three brain slices per gene marker and animal. r indicates the 
Pearson correlation coefficient. 

Tropism profiling at transcriptomic resolution reveals AAV variant 
biases for neuronal subtypes 
After validating our approach against the current standard of AAV tropism characterization (IHC 300 
imaging), we scrutinized the tropism of AAV-PHP.eB and AAV-CAP-B10 beyond the major cell 
types (Figure 3). Since AAV-CAP-B10 has increased neuronal bias relative to AAV-PHP.eB, we 
first sought to understand if there were neuronal subtypes that were differentially responsible for 
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this bias. However, in-depth cell typing of transcriptomes collected from tissues with numerous 
and complex cell types, such as neurons in the brain, requires expert knowledge of the tissue 305 
composition, time to manually curate the data, and the availability of large datasets (Zeisel et al., 
2018). To minimize the burden of manual annotation, computational tools have been developed 
that use previously-annotated single-cell databases to predict the cell type of cells in new, 
unannotated single-cell experiments, even across single-cell platforms (Cao et al., 2020; Tan and 
Cahan, 2019; Xu et al., 2021). We decided to leverage these tools and expanded our marker 310 
gene-based cell typing approach by having more complicated or well-established cell types be 
assigned based on annotations in a reference dataset (Supplemental Figure 4 A). To this end, we 
again employed scANVI to construct a joint model of cells from our samples and cells from an 
annotated reference database. For this model, we used the Mouse Whole Cortex and 
Hippocampus 10x v2 dataset available from the Allen Brain Institute (Yao et al., 2021). Since this 315 
is a neuron-enriched dataset, we constructed the model using only the 109,992 cells in our dataset 
classified as neurons from our marker-based QC pipeline combined with the 561,543 neuronal 
cells from cortical regions from the reference database. We trained this model to predict to which 
of 14 neuron subtype groupings each cell belonged. We held out 10% of the data for testing: the 
model performed with 97.9% classification accuracy on the held-out data. We then applied the 320 
model to predict the neuron subtypes of our cells. 

During our in-depth characterization, we discovered several previously unnoticed sub-cell-type 
biases for AAV-PHP.eB and AAV-CAP-B10 (Figure 3 A). Starting at the top of our neuronal 
hierarchy, the fraction of transduced cells that were glutamatergic neurons was markedly reduced 
for AAV-PHP.eB compared with AAV-CAP-B10 (P = 0.03, 2-sided student t-test, corrected for 2 325 
neuron subtype comparisons).  Furthermore, Pvalb+ and Sst+ inhibitory neurons both 
represented a larger fraction of transduced cells than Vip+ inhibitory neurons with both variants 
(adjusted P < 0.0001, P = 0.10, respectively, two-way ANOVA with multiple comparison correction 
for inhibitory neuron subtypes using Tukey’s method). 

To confirm these tropism biases in neuronal subtypes with a traditional technique, we performed 330 
FISH-HCR for glutamatergic and GABAergic gene markers (Figure 3 B) (Choi et al., 2014; 
Patriarchi et al., 2018). As indicated by our scRNA-seq data, AAV-CAP-B10, when compared with 
AAV-PHP.eB, has increased transduction efficiency of glutamatergic neurons (SLC17A7). 
Furthermore, FISH-HCR verified the downward trend in transduction efficiency from Pvalb+, to 
Sst+, to Vip+ neurons in both AAV variants (Figure 3 C). 335 
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Figure 3. In-depth AAV tropism characterization of neuronal subtypes at transcriptomic 
resolution. (A) Viral tropism profiling across neuronal sub types. Neuronal subtype annotations 
are predicted by a model learned from the Allen Institute reference dataset using scANVI (Xu et 
al., 2021; Yao et al., 2021). Each dot represents data from one animal injected with AAV-PHP.eB 340 
and/or AAV-CAP-B10. Bar width indicates the total number of cells of a particular cell type present 
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in our dataset. (B) Representative confocal images of cortical tissue from an animal injected with 
1.5 × 1011 vg of AAV-PHP.eB. Tissue was labeled with FISH-HCR for gene markers of 
glutamatergic neurons (Slc17a7) and GABAergic neurons (Gad1, Pvalb, Sst, Vip). AAV-PHP.eB 
shows the endogenous fluorescence of mNeonGreen. Scale bar, 50 µm. (C) Confirmation of viral 345 
tropism biases across neuronal subtypes using FISH-HCR (3 mice per AAV variant, 1.5 × 1011 vg 
dose). Dots represent the average values across three brain slices from one animal. Results from 
a two-way ANOVA with correction for multiple comparisons using Tukey’s test is reported with 
adjusted P-values (****P ≤ 0.0001; and P > 0.05 is not shown on the plot). 

Pooled AAVs packaging barcoded cargo recapitulate the non-neuronal 350 
tropism bias of PHP.V1 
To enable profiling viral variants in parallel without needing distinct transgenes per variant, we 
established a barcoding strategy whereby we package AAV variants with the same transgene 
and regulatory elements but with short, distinguishing nucleotide sequences within the 3’ UTR 
(Figure 4 A). To verify that this barcoding strategy can recover tropisms consistent with our 355 
previous transgene-based capsid-identification strategy, we performed a set of experiments to re-
characterize the tropism of AAV-PHP.eB in parallel with that of the recently developed AAV-
PHP.V1, which has increased specificity for vascular cells over AAV-PHP.eB (Ravindra Kumar et 
al., 2020). 

We produced AAV-PHP.eB carrying CAG-mNeonGreen and AAV-PHP.V1 carrying either CAG-360 
mRuby2 or CAG-tdTomato. Additionally, we produced AAV-PHP.eB and AAV-PHP.V1 both 
carrying CAG-mNeonGreen with 7-nucleotide barcodes 89 bp upstream of the polyadenylation 
start site such that they did not interfere with the WPRE. We ensured each barcode had equal 
G/C content, and that all barcodes were Hamming distance 3 from each other (Supplemental 
Table 5). Each of the barcoded variants was packaged with multiple barcodes that were pooled 365 
together during virus production. Four animals received a retro-orbital co-injection of 1.5 x 1011 
vg/each of AAV-PHP.V1 and AAV-PHP.eB. Two animals received viruses carrying separate 
fluorophores (cargo-based), and two animals received viruses carrying the barcoded cargo 
(barcode-based). For amplification of the viral cDNA in the animals receiving the barcoded cargo, 
we used primers closer to the polyA region such that the sequencing read covered the barcoded 370 
region (Supplemental Table 1). During the single-cell sequencing dissociation and recovery, one 
of our dissociations resulted in low recovery of neurons (Supplemental Figure 4 C); thus, we 
investigated only non-neuronal cells for this experiment. 

Despite variability in the total transgene RNA content between barcodes of the same variant 
(Supplemental Figure 5 A), the estimated percent of cells expressing the transgene within each 375 
cell type was consistent between barcodes within a single animal, with standard deviations 
ranging from 0.003 to 0.058 (Supplemental Figure 6 A). Our analysis of both the barcode-based 
animals and cargo-based animals shows the same bias in non-neuronal tropism, with AAV-
PHP.eB significantly preferring astrocytes over oligodendrocytes, vascular cells, and immune 
cells (Figure 4 D). Interestingly, our analysis also revealed that the variance between barcodes 380 
within an animal was less than the variance between animals, even when controlling for cargo 
and dosage (P = 0.021, Bartlett’s test, P-values combined across all variants and cell types using 
Stouffer’s method, weighted by transduced cell type distribution). 

Next, we investigated the distribution of cells transduced by AAV-PHP.eB vs AAV-PHP.V1 in the 
major non-neuronal cell types across both barcode-based and cargo-based paradigms (Figure 4 385 
E). The single-cell tropism data confirms the previously-established finding that AAV-PHP.V1 has 
a bias toward vascular cells relative to AAV-PHP.eB. Additionally, we uncovered that this is 
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coupled with a bias away from astrocytes relative to AAV-PHP.eB, but that transduction of 
oligodendrocytes and immune cells did not differ between the variants. To investigate for a 
specific effect of the barcoding strategy, we performed a three-way ANOVA across the variant, 390 
cell type, and experimental paradigm factors. We found that the cell type factor accounted for 
89.25% of the total variation, the combined cell type + variant factor accounted for 7.7% of the 
total variation, and the combined cell type + experimental paradigm factor accounted for only 
2.0% of the total variation, confirming our hypothesis that barcoded pools can recover tropism 
with minimal effect. 395 

Relative tropism biases reveal non-neuronal subtypes with reduced 
AAV transduction 
To further characterize the tropism biases of AAV-PHP.V1 and expand our method to less well-
established cell hierarchies, we explored the non-neuronal cell types in our dataset. Since the 
Allen Brain Institute reference database that we used to investigate neuronal tropism was 400 
enriched for neurons, it does not contain enough non-neuronal cells to form a robust non-neuronal 
cell atlas. Our combined dataset consists of 169,265 non-neuronal cells, making it large enough 
to establish our own non-neuronal cell clustering. Thus, we performed an additional round of 
automatic clustering on the cells classified as non-neuronal in our combined dataset, and 
identified 12 non-neuronal cell subtypes based on previously established marker genes (Figure 4 405 
B, C, Supplemental Table 2). 

 

Figure 4. Barcoded co-injected rAAVs reveal the non-neuronal tropism bias of AAV-
PHP.V1. (A) Experimental design for comparing barcode vs cargo-based tropism profiling. 
Animals received dual injections of AAV-PHP.eB and AAV-PHP.V1, carrying either distinct 410 
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fluorophores (cargo) or the same fluorophore with distinct barcodes. (B) t-SNE projection of the 
single-cell Variational Inference (scVI) latent space of cells and their cell type classification of the 
169,265 non-neuronal cells across all our samples. Each number corresponds to the cell type 
labeled in (C). (C) Marker genes used to identify non-neuronal cell types. Darker colors indicate 
higher mean expression, and dot size correlates with the abundance of the gene in that cell type. 415 
(D) The distribution of non-neuronal cells expressing transcripts from AAV-PHP.eB across 4 
barcodes within one animal (blue) and across 5 animals (red). All animals received dual injections, 
with one of the vectors being 1.5 x 1011 vg of PHP.eB carrying CAG-mNeonGreen. The y-axis 
represents the fraction of transduced non-neuronal cells that are of the specified cell type. Only 
the non-significant comparisons between cell types in a two-way ANOVA with correction for 420 
multiple comparisons using Tukey’s test are reported. All other cell-type comparisons within a 
paradigm were significant at P ≤ 0.0001. (E) The distribution of non-neuronal cells expressing 
transcripts from AAV-PHP.eB (black) and AAV-PHP.V1 (gray). Results from the different 
experimental paradigms are combined. Results shown are from a two-way ANOVA with correction 
for multiple comparisons using Sidak’s test comparing transduction by AAV-PHP.eB to AAV-425 
PHP.V1 for each cell type, with adjusted P-values (****P ≤ 0.0001 is shown; P > 0.05 is not 
shown). (F) Within-animal difference in the fraction of cells transduced with AAV-PHP.V1 relative 
to AAV-PHP.eB across four animals, two from each experimental paradigm. For each cell type in 
each sample, the combined 2-proportion z score for the proportion of that cell type transduced by 
AAV-PHP.V1 vs AAV-PHP.eB is reported. Cell types with fewer than 2 cells transduced by both 430 
variants were discarded. Z scores were combined across multiple animals using Stouffer’s 
method and corrected for multiple comparisons. Cell-type differences with an adjusted P-value 
below 0.05 are indicated with *. 

Most cell subtypes had multiple clusters assigned to them, which suggested there may be 
additional subtypes of cells for which we did not find established marker genes. To determine 435 
whether any of these clusters delineated cell types with distinct transcriptional profiles, we 
investigated the probability of gene expression in each cluster compared to the other clusters of 
the same cell subtype (see Methods). Our approach determined two subclusters of pericytes, 
astrocytes, and oligodendrocyte precursor cells (OPCs). Both clusters of pericytes had strong 
expression of canonical pericytes marker genes Rgs5, Abcc9, and Higd1b. However, one of the 440 
clusters had no marker genes that made it distinct from the other pericyte cluster, nor from 
endothelial cells. Consistent with previous reports, this suggests that this cluster could be 
pericytes contaminated with endothelial cell fragments, and thus was not considered for further 
analysis (He et al., 2016; Vanlandewijck et al., 2018; Yang et al., 2021). Two distinct groups of 
astrocytes were detected, one of which had unique expression of Myoc and Fxyd6. Finally, one 445 
of the clusters of OPCs were uniquely expressing Top2a, Pbk, Spc24, Smc2, and Lmnb1. Using 
these new marker genes, we expanded our non-neuronal cell taxonomy to 14 cell types, now 
including Myoc+ and Myoc- astrocytes, and Top2a+ and Top2a- OPCs. 

Given our finding that inter-sample variability exceeds intra-sample variability, we established a 
normalization method for comparing transduction biases between variants co-injected into the 450 
same animal. This normalization–calculating the difference in the fraction of transduced cells 
between variants–captures the relative bias between variants, instead of the absolute tropism of 
a single variant (see Methods). By considering the relative bias between variants, we are able to 
interrogate tropism in a way that is more robust to inter-sample variability that arises from different 
distributions of recovered cells, expression rate of delivered cargo, and success of the injection. 455 
Using this normalization method, we evaluated the non-neuronal cell type bias of AAV-PHP.V1 
relative to AAV-PHP.eB in both the cargo-based animals and the barcode-based animals across 
our non-neuronal cell-type taxonomy (Figure 4 F). We discovered that the bias of AAV-PHP.V1 
for vascular cells is driven by an increase in transduction of endothelial cells, but not pericytes. 
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Similarly, AAV-PHP.V1’s bias away from astrocytes is driven by a decrease in transduction of 460 
Myoc- astrocytes, but not Myoc+ astrocytes. Further inspection of the transduction of pericytes 
and Myoc+ astrocytes revealed that pericytes are not highly transduced by any of the AAVs tested 
in this work, and that Myoc+ astrocytes have both lower viral transcript expression and lower 
abundance than Myoc- astrocytes, and thus do not contribute significantly to tropism 
(Supplemental Figure 4, 7 A, B). 465 

Single-cell RNA sequencing reveals early cell-type-specific responses 
to IV administration of AAV-PHP.eB that return to baseline by 3.5 weeks 
To investigate the temporal cell-type-specific transcriptional effects of systemic AAV delivery and 
cargo expression, we performed a single-cell profiling experiment comparing animals injected 
with AAV to saline controls. We injected four male mice with AAV-PHP.eB (1.5 x 1011 vg) carrying 470 
mNeonGreen, and performed single-cell sequencing on two mice three days post-injection (3 
DPI) and two mice twenty-five days post-injection (25 DPI). These time points were chosen based 
on previous work showing MHC presentation response peaking around day seven and transgene 
response peaking around day 30 (Lowenstein et al., 2007). The two saline control mice were 
processed 3 DPI. We then analyzed differential gene expression for each cell type between 475 
injected animals and controls using DESeq2 (Supplemental Table 7). Of note, we excluded cell 
types with less than 50 cells in each sample, and excluded leukocytes and red blood cells given 
the risk of their presence due to dissociation rather than chemokine mediated infiltration. 
Additionally, we collapsed subtypes of excitatory neurons, inhibitory neurons, and OPCs to have 
greater than 50 cells for differential analysis. We estimated viral transduction rate of AAV-PHP.eB 480 
using its delivered cargo, mNeonGreen, across cell types and time points. We identified that 
Myoc- Astrocytes have significantly higher estimated transduction rate at 25 DPI compared to 
3DPI (adjusted P-value = 0.0003, two-way ANOVA with multiple comparison correction using 
Sidak’s method). It is also worth noting that endothelial cells have a similar transduction rate 
between the time points in both animals, while one of the animals at 25 DPI exhibited higher 485 
transduction in neurons (Figure 5A). The number of statistically relevant genes between the 
injected and control group (adjusted P-value < 0.05, DESeq2) were highest in pericytes (26 
genes), endothelial cells (76 genes), and excitatory neurons (45 genes) at 3 DPI (Figure 5 B). At 
day twenty-five, only excitatory neurons had greater than 10 genes (14 genes total) differentially 
expressed (adjusted P-value < 0.05, DESeq2). 490 
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Figure 5. Single-cell gene expression profiling finds cell-type-specific responses to AAV 
transduction in vascular cells and excitatory neurons. (A) Estimated transduction rate (%) of 
mNeonGreen cargo at three and twenty-five days post-injection (DPI). Results from a two-way 
ANOVA with correction for multiple comparisons using Sidak’s method is reported with adjusted 495 
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P-values (***P ≤ 0.001; and P > 0.05 is not shown on the plot). (B) Number of differentially 
expressed genes (adjusted P-value < 0.05, DESeq2) at 3 DPI and 25 DPI across 2 animals. (C) 
Differentially expressed genes across the two time points in endothelial cells, pericytes, microglia, 
perivascular macrophages, and excitatory neurons. Color indicates DESeq2 test statistic with red 
representing downregulation and blue representing upregulation. Genes outlined by a black 500 
rectangle are determined to have statistically significant differential expression compared to 
controls (adjusted P-value < 0.05, DESeq2). Colored circles adjacent to each gene indicate the 
corresponding pathway presented in (D). (D) A summary of corresponding pathways in which the 
differentially regulated genes in (C) are involved across the time points. (E) Distribution of p53 
signaling transcripts in endothelial cells (animals are combined) and an example of a gene 505 
upregulated in both 3 and 25 DPI in excitatory neurons. 

We found that endothelial cells had the most acute response at 3 DPI with pathways such as p53, 
MAPK, and TNF signaling notably impacted. A significant upregulation of Phlda3 and its effectors 
Bax, Aen, Mdm2, and Cdkn1a, all involved in the p53/Akt signaling pathway, was present (Figure 
5 C, E) (Ferreira and Nagai, 2019; Ghouzzi et al., 2016). Of relevance, we also detected 510 
Trp53cor1/LincRNA-p21, responsible for negative regulation of gene expression (Amirinejad et 
al., 2020), upregulated in endothelial cells at 3 DPI. Other examples of upregulated genes relevant 
to inflammation and stress response in vascular cells include the suppressor of cytokine signaling 
protein Socs3 (Baker et al., 2009), and Mmrn2, responsible for regulating angiogenesis in 
endothelial cells (Lorenzon et al., 2012). Expression of Socs3 and Icam1, which are upregulated 515 
in endothelial cells at 3 DPI, and Cepbp, which is upregulated in pericytes at 3 DPI, have all been 
linked to TNF signaling (Burger et al., 1997; Cao et al., 2018; Li et al., 2020). We have also 
observed genes linked to MAPK signaling upregulated in endothelial cells, such as Gas6, Epha2, 
and Mapkapk3, and Klf4 in both endothelial cells and pericytes (Chen et al., 1997; Macrae et al., 
2005; Riverso et al., 2017). 520 

In brain immune cells, we observe a few substantial changes in genes pertaining to immune 
regulation at 3DPI which vanish at 25 DPI. For example, we observe an upregulation of MHC-I 
gene H2-D1 at 3 DPI in microglia, which then stabilizes back to control levels at 25 DPI (Figure 5 
C). Marcksl1, previously reported as a gene marker for neuroinflammation induced by alpha-
synuclein (Sarkar et al., 2020), also shows upregulation at 3 DPI. We did not observe significant 525 
differences in pro-inflammatory chemokines, Ccl2 and Ccl5, which are related to breakdown of 
the blood-brain barrier via regulation of tight-junction proteins and recruitment of peripheral 
leukocytes (Gralinski et al., 2009). Ccl3, responsible for infiltration of leukocytes and CNS 
inflammation (Chui and Dorovini-Zis, 2010), was upregulated in perivascular macrophages in 3 
DPI and diminished back to control levels at 25 DPI (Figure 5 C). In contrast, Cd209a, a gene 530 
previously identified as critical for attracting and activating naïve T Cells (Franchini et al., 2019), 
was downregulated at 3 DPI. 

Interestingly, we found that excitatory neurons had changes in genes across both 3 DPI and 25 
DPI. MHC-Ib H2-T23, which is involved in the suppression of CD4+ T cell responses (Ohtsuka et 
al., 2008), is downregulated at 3 DPI. Meanwhile, the growth arrest genes, Gadd45g and 535 
Gadd45b (Vairapandi et al., 2002), are upregulated. Genes involved in synaptic vesicle cycling, 
such as Unc13c (Palfreyman and Jorgensen, 2017) and Slc32a1 (Taoufiq et al., 2020), are also 
downregulated at 3 DPI. Some genes remain upregulated throughout the study, such as Npas4, 
responsible for regulating excitatory-inhibitory balance (Spiegel et al., 2014). Genes implicated in 
MAPK signaling were upregulated – such as Gadd45b/g, Dusp6, and Trib1 at 3 DPI, and Dusp1 540 
and Nr4a1 at 25 DPI (Muhammad et al., 2018; Ollila et al., 2012; Pérez-Sen et al., 2019; Salvador 
et al., 2013; Zhang and Yu, 2018). Gadd45b, Dusp1, Nr4a1 were also upregulated in pericytes 
and Gadd45b/g in endothelial cells (Figure 5 C). 
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Immediate early genes such as Ier2 (Kodali et al., 2020) were upregulated across pericytes, 
endothelial cells, inhibitory neurons, and OPCs at 3 DPI, while Fos, Ier2, Junb, and Arc were 545 
prominent in excitatory neurons at 25 DPI. 

By investigating the gene expression differences in subpopulations of cells post-injection, we 
found that vascular cells such as endothelial cells and pericytes upregulate genes linked to p53, 
MAPK, and TNF signaling pathways at 3 DPI (Figure 5 D). Immune cells such as microglia and 
perivascular macrophages upregulate genes involved in chemokine signaling, MHCI/II antigen 550 
processing, and Fc Gamma R-Mediated Phagocytosis (Zhang et al., 2021) at 3 DPI (Figure 5 D). 
Excitatory neurons are the only cell type with genes implicated in the same pathway (MAPK 
signaling) upregulated across both of the time points (3 DPI, 25 DPI).  

Larger pools of barcoded AAVs recapitulate complex tropism within a 
single animal 555 

To showcase the capabilities of parallel characterization, we next designed a 7-variant barcoded 
pool that included the three previously characterized variants (AAV-PHP.eB, AAV-CAP-B10, and 
AAV-PHP.V1), AAV9 and AAV-PHP.B controls, and two additional variants, AAV-PHP.C1 and 
AAV-PHP.C2. For simplification of cloning and virus production, we designed a plasmid, UBC-
mCherry-AAV-cap-in-cis, that contained both the barcoded cargo, UBC-mCherry, and the AAV9 560 
capsid DNA (Supplemental Figure 1 B). We assigned three distinct 24 bp barcodes to each variant 
(Supplemental Table 5). Each virus was produced separately to control the dosage, and 1.5 x 
1011 vg of each variant was pooled and injected into a single animal. 

After 3 weeks of expression, we performed single-cell sequencing on extracted cortical tissue. To 
increase the number of cells available for profiling, we processed two aliquots of cells, for a total 565 
of 36,413 recovered cells. To amplify the viral transcripts, we used primers that bind near the 3’ 
end of mCherry such that the barcode was captured in sequencing (Supplemental Table 1). 
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Figure 6. Single animal injections of multiple barcoded rAAVs enables deep, parallel 
characterization. (A, B) Relative cell type tropism of 7 co-injected rAAVs for neuronal (A) and 570 
non-neuronal (B) cell types. The color scale indicates the difference in transduction bias of a 
variant relative to all other variants in the pool. The area of each circle scales linearly with the 
fraction of cells of that type with viral transcripts above background. For each variant and cell 
type, a 2-proportion z score was calculated to compare the number of cells of that type transduced 
by that variant relative to all other variants combined. Z scores were combined across two single-575 
cell sequencing aliquots using Stouffer’s method, and corrected for multiple comparisons. Cell 
types with fewer than 10 transduced cells in either the variant or variants compared against were 
discarded. Only cell-type biases at an adjusted P-value < 0.05 are colored; otherwise they are 
grayed out. 

Using our cell typing and viral transcript counting methods, we investigated the transcript counts 580 
and transduction bias of the variants in the pool. Compared with our previous profiling 
experiments, the number of UBC-mCherry viral transcripts detected per cell was significantly 
lower than CAG-mNeonGreen-WPRE and CAG-tdTomato (adjusted P < 0.0001, P=0.0445, 
respectively, two-way ANOVA with multiple comparison correction using Tukey’s method) and 
shifted towards vascular cells (adjusted P < 0.0001, P=0.0008, respectively, two-way ANOVA 585 
with multiple comparison correction using Tukey’s method) (Supplemental Figure 5 B, C). Next, 
we looked at the transduction rate difference for each variant compared with the rest of the 
variants in the pool for each cell type in our taxonomy (Figure 6 A, B). Despite the lower 
expression rate and bias shift, the transduction rate difference metric captured the same tropism 
biases for AAV-CAP-B10 and AAV-PHP.V1 as determined from our previous experiments. AAV-590 
CAP-B10 showed enhanced neuronal targeting relative to other variants in the pool, with this bias 
coming specifically from an increase in the transduction of glutamatergic neurons. All five variants 
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with transcripts detected in neurons showed a decreased transduction rate in Vip+ neurons 
relative to other GABAergic neuronal subtypes (Supplemental Figure 7 C). AAV-PHP.eB showed 
enhanced targeting of astrocytes (+6.2%, P = 1.4 x 10-8, 2-proportion z-test, multiple comparison 595 
corrected with Benjamini/Hochberg correction), and AAV-PHP.V1 showed strong bias for 
vascular cells (+51.6%, p = 1.7 x 10-43). In addition to confirming all our existing hypotheses, we 
were able to identify biases for the previously reported AAV-PHP.C2, which has not been 
characterized in depth. This variant, which was reported as having a non-neuronal bias similar to 
AAV-PHP.V1, showed significant transduction bias not only toward vascular cells (+13.6%, P = 600 
8.3 x 10-6), but also toward astrocytes (+24.0%, P = 1.6-30), and a bias away from neurons (−38%, 
p = 4.1 x 10-32). 

Discussion 
The advent of NGS has enabled screening of large libraries of AAV capsids in vivo by extracting 
viral DNA from relevant tissue followed by sequencing of capsid gene inserts or DNA barcodes 605 
corresponding to defined capsids. To date, NGS-based screening has been successfully applied 
to libraries created by peptide insertions (Davidsson et al., 2019; Körbelin et al., 2016b), DNA 
shuffling of capsids (De Alencastro et al., 2020; Herrmann et al., 2019; Paulk et al., 2018), and 
site-directed mutagenesis (Adachi et al., 2014). Although these NGS-based strategies allow the 
evolution of new AAV variants with diverse tissue tropisms, it has been difficult to obtain a 610 
comprehensive profiling for multiple variants across cell types, which is of utmost importance in 
organs with complex cell-type compositions, such as the brain (Deverman et al., 2016; Ravindra 
Kumar et al., 2020; Tasic et al., 2016, 2018; Zeisel et al., 2018). Towards this end, techniques 
such as IHC, fluorescent in situ RNA hybridization (Chen et al., 2015; Choi et al., 2014; Femino 
et al., 1998; Lubeck et al., 2014; Shah et al., 2016a, 2016b) or in situ RNA sequencing (Ke et al., 615 
2013; Lee et al., 2014; Wang et al., 2018) can be employed. Several limitations make it 
challenging to apply these techniques as high-throughput, post-selection AAV tropism profiling 
methods. First, the limits of optical resolution and the density of transcripts in single cells pose 
challenges for full in situ transcriptome analysis and, until recently, have restricted the total 
number of simultaneously measured genes in single cells within tissue to several hundred (Ke et 620 
al., 2013; Lee et al., 2014; Liao et al., 2020; Shah et al., 2016a; Wang et al., 2018). By contrast, 
scRNA-seq with the 10x Genomics Chromium system enables detection of over 4000 genes per 
cell (Yao et al., 2021), fast transcriptomic analysis, and multiplexing across different tissue types 
(McGinnis et al., 2019; Stoeckius et al., 2018). Furthermore, the method is already widely used 
by the research community which can help with adoption of our proposed pipelines. Although 625 
droplet-based scRNA-seq methods lose spatial information during the dissociation procedure, 
analysis packages have been developed that can infer single-cell localization by combining 
scRNA-seq data with pre-existing information from ISH-based labeling for specific marker genes 
(Achim et al., 2015; Durruthy-Durruthy et al., 2015; Halpern et al., 2017; Nitzan et al., 2019; Satija 
et al., 2015; Stuart et al., 2019). Therefore, scRNA-seq techniques have great potential to rapidly 630 
profile the tropism of multiple AAV variants in parallel across several thousand cells defined by 
their entire transcriptome. 

 
Here, we established an experimental and data-analysis pipeline that leverages the capabilities 
of scRNA-seq to achieve simultaneous characterization of several AAV variants across 635 
multiplexed tissue cell types within a single animal. To differentiate multiple AAV capsid variants 
in the sequencing data, we packaged variants with unique transgenes or the same transgene 
with unique barcodes incorporated at the 3’ end. We added standard Illumina sequencing 
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primer recognition sites (Read 2) to the viral transcripts using PCR amplification such that the 
barcoded region could be consistently read out from the Illumina sequencing data. Our 640 
computational pipeline demultiplexes viral reads found in the transcriptome according to which 
matching sequence is most abundant in a separate amplified viral transgene library. Comparing 
the distribution of viral transcripts by cell type to a null model of empty droplets, we could then 
determine the cell-type biases. 
 645 
Our platform has corroborated the tropism of several previously characterized AAV variants and 
has provided more detailed tropism information beyond the major cell types. The fraction of 
transduced cells that are glutamatergic neurons was found to be markedly reduced for AAV-
PHP.eB when compared with AAV-CAP-B10. Furthermore, within all the variants we tested, 
both Pvalb+ and Sst+ inhibitory neurons have greater transduction rates than Vip+ neurons. 650 
This bodes well for delivery to Pvalb+ neurons, which have been implicated in a wide range of 
neuro-psychiatric disorders (Ruden et al., 2021), and suggests Vip+ interneurons, which have 
recently been identified as being a sufficient delivery target for induction of Rett syndrome-like 
symptoms, as a target for optimization (Mossner et al., 2020). Awareness of neuronal subtype 
biases in delivery vectors is critical both for neuroscience researchers and for clinical 655 
applications. Dissection of neural circuit function requires understanding the roles of neuronal 
subtypes in behavior and disease and relies on successful and sometimes specific delivery of 
transgenes to the neuronal types under study (Bedbrook et al., 2018). 
 
We further discovered that the vascular bias of AAV-PHP.V1 originates from its transduction 660 
bias towards endothelial cells. Interestingly, this is the only cell type we detected expressing 
Ly6a (Supplemental Figure 8), a known surface receptor for AAV variants in the PHP.B family 
(Batista et al., 2020; Hordeaux et al., 2019; Huang et al., 2019). Given AAV-PHP.V1’s sequence 
similarity to AAV-PHP.B and its tropism across mouse strains, this pattern suggests that AAV-
PHP.V1 transduction may also be Ly6a-mediated. Finding such associations between viral 665 
tropism and cell-surface membrane proteins also suggests that full transcriptome sequencing 
data may hold a treasure trove of information on possible mechanisms of transduction of viral 
vectors. 
 
We also revealed that AAV-PHP.C2 has a strong, broad non-neuronal bias toward both 670 
vascular cells and astrocytes. AAV-PHP.C2 also transduces BALB/cJ mice, which do not 
contain the Ly6a variant that mediates transduction by PHP.B family variants (Hordeaux et al., 
2019). This suggests that PHP.C2 may be the most promising candidate from this pool for 
researchers interested in delivery to non-neuronal cells with minimal neuronal transduction both 
in C57BL/6J mice and in strains and organisms that do not have the Ly6a variant. 675 
 
All our tested variants with non-neuronal transduction have lower expression in Myoc+ 
astrocytes and pericytes. Astrocytes expressing Myoc and Gfap, which intersect in our data 
(Supplemental Figure 8), have been previously identified as having reactive behavior in disease 
contexts, making them a target of interest for research on neurological diseases (Perez-Nievas 680 
and Serrano-Pozo, 2018; Wu et al., 2017). Similarly, pericytes, whose dysfunction has been 
shown to contribute to multiple neurological diseases, may be an important therapeutic target 
(Blanchard et al., 2020; Liu et al., 2020; Montagne et al., 2020). Both of these cell types may be 
good candidates for further AAV optimization, but may have been missed with marker gene-
based approaches. In both AAV characterization and neuroscience research efforts, different 685 
marker genes are often used for astrocyte classification – sometimes more restrictive genes 
such as Gfap, and other times more broadly expressing genes such as S100b or Aldh1l1 (Yang 
et al., 2011; Zhang et al., 2019). Similarly, defining marker genes for pericytes is still an active 
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field (He et al., 2016; Yang et al., 2021). Given the constraints of having to choose specific 
marker genes, it is difficult for staining-based characterizations to provide tropism profiles that 690 
are relevant for diverse and changing research needs. This highlights the importance of using 
unbiased, full transcriptome profiling for vector characterization. 
  
We have shown that our combined experimental and computational platform is able to recover 
transduction biases and profile multiple variants in a single animal, even amidst the noise of 695 
ambient RNA. We have further shown that our method is robust to the variability inherent in 
delivery and extraction from different animals, with different transgenes, and with different 
regulatory elements. For example, we discovered lower overall expression from vectors carrying 
UBC-mCherry compared with CAG-mNeonGreen-WPRE. Such differences are not surprising 
since the WPRE is known to increase RNA stability and therefore transcript abundance 700 
(Johansen et al., 2003). Furthermore, the shift in cell-type bias may come from the UBC 
promoter, as even ubiquitous promoters such as CAG and UBC have been shown to have 
variable levels of expression in different cell types (Qin et al., 2010). Despite these biases, 
looking at the differences in transduction between variants delivering the same construct within 
an individual animal reveals the strongest candidate vectors for on-target and off-target cell 705 
types of interest. While we show that our method can profile AAVs carrying standard fluorescent 
cargo, caution is needed when linking differences in absolute viral tropism to changes in capsid 
composition alone without considering the contribution of the transgene and regulatory 
elements. Therefore, for more robust and relative tropism between variants, we found it 
beneficial to use small barcodes and co-injections of pools of vectors. Our scRNA-seq-based 710 
approach is not restricted to profiling capsid variants, but can be expanded in the future to 
screen promoters (Chuah et al., 2014; Jüttner et al., 2019; Rincon et al., 2015), enhancers 
(Hrvatin et al., 2019; Mich et al., 2020), or transgenes (Gustafsson et al., 2004; Shirley et al., 
2020), all of which are essential elements requiring optimization to improve gene therapy. 
 715 

Finally, we have used scRNA-seq to understand how intra-orbital administration of AAV-PHP.eB 
affects the host cell transcriptome across distinct time points. Results from our study show genes 
pertaining to the p53 pathway in endothelial cells are differentially expressed 3 days after 
injection. The highest number of differentially expressed genes being in endothelial cells suggests 
that vascular cells could be the initial responders to viral transduction and expression of the 720 
transgene. This is supported by Kodali et al., who have shown that endothelial cells are the first 
to elicit a response to peripheral inflammatory stimulation by transcribing genes for 
proinflammatory mediators and cytokines (Kodali et al., 2020). With regards to p53 differentially 
expressed genes, Ghouzzi, et al. have also shown that the genes Phdla3, Aen, and Cdkn1a were 
upregulated in cells infected with ZIKA virus, signifying genotoxic stress and apoptosis induction 725 
(Ghouzzi et al., 2016). Upregulation of genes such as Bax and Cdkn1a in our data hint at an 
initiation of apoptosis and cell cycle arrest, respectively, in response to cellular stress induced by 
viral transduction (Ferreira and Nagai, 2019; Zamagni et al., 2020). The reduction in the number 
of differential expressed genes across all cells (Figure 5 B) at day twenty-five imparts that the 
initial inflammatory responses did not escalate. Downregulation of Cd209a gene in perivascular 730 
macrophages in our data further implies that the AAV-PHP.eB infection did not necessitate a 
primary adaptive immune response. Additionally, antigen presenting genes, such as H2-D1, 
returning back to control expression levels and a lack of proinflammatory cytokines being 
upregulated supports that the event of infiltration of peripheral leukocytes is unlikely, in agreement 
with prior studies (Chamberlin et al., 1998; McCown et al., 1996). Upregulation of genes such as 735 
Gadd45g, Gadd45b, and Ppp1r15a suggest that neurons are turning on stress-related programs 
as an early response to encountering the virus. Genes such as Nr4a1 and Dusp1, which play a 
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role in the MAPK pathway, indicate sustained stress response even at day 25. Based on prior 
studies, we speculate that the genes that are differentially expressed at day 25 in the excitatory 
neurons are due to transgene expression and not due to the virion (Lowenstein et al., 2007). It is 740 
important to note that the findings discussed here are specific to the rAAV, transgene, and 
dosage. Our results highlight the power of single-cell profiling in being able to ascertain cell-type-
specific responses at an early time point post-injection.  

 
In summary, our platform could aid the gene therapy field by allowing more thorough 745 
characterization of existing and emerging recombinant AAVs by helping uncover cellular 
responses to rAAV-mediated gene therapy, and by guiding the engineering of novel AAV 
variants. 
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Methods 
Animals 
Animal husbandry and all experimental procedures involving animals were performed in 
accordance with the California Institute of Technology Institutional Animal Care and Use 
Committee (IACUC) guidelines and approved by the Office of Laboratory Animal Resources at 775 
the California Institute of Technology (animal protocol no. 1650). Male C57BL/6J mice (Stock No: 
000664) used in this study were purchased from the Jackson Laboratory (JAX). AAV variants 
were injected i.v. into the retro-orbital sinus of 6–7 week old mice. 
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Plasmids 
In vivo vector characterization of AAV variant capsids was conducted using single-stranded (ss) 780 
rAAV genomes. pAAV:CAG-NLS-mNeonGreen, pAAV:CAG-NLS-mRuby2, pAAV:CAG-
tdTomato, and pAAV:CAG-NLS-tdTomato constructs were adapted from previous publications 
(Chan et al., 2017; Ravindra Kumar et al., 2020). To introduce barcodes into the polyA region of 
CAG-NLS-mNeonGreen, we digested the plasmid with BglII and EcoRI, and performed Gibson 
assembly (E2611, NEB) to insert synthesized fragments with 7bp degenerate nucleotide 785 
sequences 89 bp upstream of the polyadenylation site. We then seeded bacterial colonies and 
selected and performed Sanger sequencing on the resulting plasmids to determine the 
corresponding barcode. 

The UBC-mCherry-AAV-cap-in-cis plasmid was adapted from the rAAV-Cap-in-cis-lox plasmid 
from a previous publication (Deverman et al., 2016). We performed a restriction digest on the 790 
plasmid with BsmbI and SpeI to remove UBC-mCherry and retain the AAV9 cap gene and 
remaining backbone. We then circularized the digested plasmid using a gblock joint fragment to 
get a plasmid containing AAV2-Rep, AAV9-Cap, and the remaining backbone via T4 ligation. In 
order to insert UBC-mCherry with the desired orientation and location, we amplified its linear 
segment from the original rAAV-Cap-in-cis-lox plasmid. The linear UBC-mCherry-polyA segment 795 
and circularized AAV2-Rep,AAV9-cap plasmid were then both digested with HindIII and ligated 
using T4 ligation. In order to get the SV40 PolyA element in the proper orientation with respect to 
the inserted UBC-mCherry, we removed the original segment from the plasmid using AvrII and 
AccI enzymes and inserted AvrII, AccI treated SV40 gblock using T4 ligation to get the final 
plasmid. 800 

To insert barcodes into UBC-mCherry-AAV-cap-in-cis, we obtained 300 bp DNA fragments 
containing the two desired capsid mutation regions for each variant and the variant barcode, 
flanked by BsrGI and XbaI cut sites. The three segments of the fragment were separated by BsaI 
Type I restriction sites. We digested the UBC-mCherry-AAV-cap-in-cis plasmid with BsrGI and 
XbaI, and ligated each variant insert to this backbone. Then, to reinsert the missing regions, we 805 
performed Golden Gate assembly with two inserts and BsaI-HF. 

Viral production 
To produce viruses carrying in trans constructs, we followed established protocols for the 
production of rAAVs (Challis et al., 2019). In short, HEK293T cells were triple transfected using 
polyethylenimine (PEI) with three plasmids: pAAV (see Plasmids), pUCmini-iCAP-PHP.eB (Chan 810 
et al., 2017), pUCmini-iCAP-CAP-B10 (Flytzanis et al., 2020), or pUCmini-iCAP-PHP.V1 
(Ravindra Kumar et al., 2020), and pHelper. After 120 h, virus was harvested and purified using 
an iodixanol gradient (Optiprep, Sigma). For our 7-variant pool, we modified the protocol to be a 
double transfection using PEI with two plasmids: UBC-mCherry-AAV-cap-in-cis and pHelper. 

Tissue processing for single-cell suspension 815 

Three to four weeks after the injection, mice (9-10 weeks old) were briefly anesthetized with 
isoflurane (5%) in an isolated plexiglass chamber followed by i.p. injection of euthasol (100 
mg/kg). The following dissociation procedure of cortical tissue into a single-cell suspension was 
adapted with modifications from a previous report (Pool et al., 2020). Animals were transcardially 
perfused with ice-cold carbogenated (95% O2 and 5% CO2) NMDG-HEPES-ACSF (93 mM 820 
NMDG, 2.5 mM KCl, 1.2 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25 mM glucose, 5 mM 
Na L-ascorbate, 2 mM thiourea, 3 mM Na-pyruvate, 10 mM MgSO4, 1 mM CaCl2, 1 mM kynurenic 
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acid Na salt, pH adjusted to 7.35 with 10N HCl, osmolarity range 300–310 mOsm). Brains were 
rapidly extracted and cut in half along the anterior-posterior axis with a razor blade. Half of the 
brain was used for IHC histology while the second half of the brain was used for scRNA-seq. 825 
Tissue used for scRNA-seq was immersed in ice-cold NMDG-HEPES-ACSF saturated with 
carbogen. The brain was sectioned into 300-μm slices using a vibratome (VT-1200, Leica 
Biosystems, IL, USA). Coronal sections from Bregma −0.94 mm to −2.80 mm were collected in a 
dissection dish on ice containing NMDG-HEPES-ACSF. Cortical tissue from the dorsal surface of 
the brain to ~3.5 mm ventral was cut out and further sliced into small tissue pieces. NMDG-830 
HEPES-ACSF was replaced by trehalose-HEPES-ACSF (92 mM NaCl, 2.5 mM KCl, 1.2 mM 
NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25 mM glucose, 2 mM MgSO4, 2 mM CaCl2, 1 mM 
kynurenic acid Na salt, 0.025 mM D-(+)-trehalose dihydrate*2H2O, pH adjusted to 7.35, osmolarity 
ranging 320–330 mOsm) containing papain (60 U/ml; P3125, Sigma Aldrich, pre-activated with 
2.5 mM cysteine and a 0.5–1 h incubation at 34°C, supplemented with 0.5 mM EDTA) for the 835 
enzymatic digestion. Under gentle carbogenation, cortical tissue was incubated at 34°C for 50 
min with soft agitation by pipetting every 10 min. 5 μl 2500 U/ml DNase I (04716728001 Roche, 
Sigma Aldrich) was added to the single-cell suspension 10 min before the end of the digestion. 
The solution was replaced with 200 μl trehalose-HEPES-ACSF containing 3 mg/ml ovomucoid 
inhibitor (OI-BSA, Worthington) and 1 μl DNase I. At room temperature, the digested cortical 840 
tissue was gently triturated with fire-polished glass Pasteur pipettes for three consecutive rounds 
with decreasing pipette diameters of 600, 300, and 150 μm. 800 μl of trehalose-HEPES-ACSF 
with 3 mg/ml ovomucoid inhibitor was added. The uniform single-cell suspension was pipetted 
through a 40 μm cell strainer (352340, Falcon) into a new microcentrifuge tube followed by 
centrifugation at 300 g for 5 min at 4°C. The supernatant was discarded and cell pellet was 845 
resuspended in 1 ml of trehalose-HEPES-ACSF. After mixing using a Pasteur pipette with a 150 
μm tip diameter, the single-cell suspension was centrifuged again. Supernatant was replaced with 
fresh trehalose-HEPES-ACSF and the resuspended cell pellet was strained with a 20 μm nylon 
net filter (NY2004700, Millipore). After resuspension in trehalose-HEPES-ACSF, cells were 
pelleted again and resuspended in 100 μl of ice-cold resuspension-ACSF (117 mM NaCl, 2.5 mM 850 
KCl, 1.2 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25 mM glucose, 1 mM MgSO4, 2 mM 
CaCl2, 1 mM kynurenic acid Na salt and 0.05% BSA, pH adjusted to 7.35 with Tris base, 
osmolarity range 320–330 mOsm). Cells were counted with a hemocytometer and the final cell 
densities were verified to be in the range of 400–2,500 cells/μl. The density of single-cell 
suspension was adjusted with resuspension-ACSF if necessary. 855 

Transcriptomic library construction 
Cell suspension volumes containing 16,000 cells–expected to retrieve an estimated 10,000 
single-cell transcriptomes–were added to the 10x Genomics RT reaction mix and loaded to the 
10x Single Cell Chip A (230027, 10x Genomics) for 10x v2 chemistry or B (2000168, 10x 
Genomics) for 10x v3 chemistry per the manufacturer’s protocol (Document CG00052, Revision 860 
F, Document CG000183, Revision C, respectively). We used the Chromium Single Cell 3’ GEM 
and Library Kit v2 (120237, 10x genomics) or v3 (1000075, 10x Genomics) to recover and amplify 
cDNA, applying 11 rounds of amplification. We took 70 ng to prepare Illumina sequencing libraries 
downstream of reverse transcription following the manufacturer’s protocol, applying 13 rounds of 
sequencing library amplification. 865 

Viral library construction 
We selectively amplified viral transcripts from 15 ng of cDNA using a cargo-specific primer binding 
to the target of interest and a primer binding the partial Illumina Read 1 sequence present on the 
10x capture oligos (Supplemental Table 1). For animals injected with a single cargo, amplification 
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was performed only once using the primer for the delivered cargo; for animals with distinct cargo 870 
sequences per variant, amplification was performed in parallel reactions from the same cDNA 
library using different cargo-specific primers for each reaction. We performed the amplification 
using 2x KAPA HiFi HotStart ReadyMix (KK2600) for 28 cycles at an annealing temperature of 
53°C. Afterwards, we performed a left-sided SPRI cleanup with a concentration dependent on the 
target amplicon length, in accordance with the manufacturer’s protocol (SPRISelect, Beckman 875 
Coulter B23318). We then performed an overhang PCR on 100 ng of product with 15 cycles using 
primers that bind the cargo and the partial Illumina Read 1 sequence and appending the P5/P7 
sequences and Illumina sample indices. We performed another SPRI cleanup, and analyzed the 
results via an Agilent High Sensitivity DNA Chip (Agilent 5067-4626). 

Sequencing 880 

Transcriptome libraries were pooled together in equal molar ratios according to their DNA mass 
concentration and their mean transcript size as determined via bioanalyzer. Sequencing libraries 
were processed on Novaseq 6000 S4 300-cycle lanes. The run was configured to read 150 bp 
from each end. Sequencing was outsourced to Fulgent Genetics and the UCSF Center for 
Advanced Technology. 885 

All viral transcript libraries except barcoded UBC-mCherry were pooled together in equal molar 
ratios into a 4 nM sequencing library, then diluted and denatured into a 12 pM library as per the 
manufacturer’s protocol (Illumina Document #15039740v10). The resulting library was sequenced 
using a MiSeq v3 150-cycle reagent kit (MS-102-3001), configured to read 91 base pairs for Read 
2 and 28 base pairs for Read 1. To characterize the effect of sequencing depth, one viral transcript 890 
library was additionally processed independently on a separate MiSeq run. 

The UBC-mCherry viral transcript library, which was recovered with primers near the 
polyadenylation site, consisted of fragments ~307 bp long. Since this length is within the common 
range for an Illumina NovaSeq run, this viral transcript library was pooled and included with the 
corresponding transcriptome library. 895 

Transcriptome read alignment 
For transcriptome read alignment and gene expression quantification, we used 10x Cell Ranger 
v5.0.1 with default options to process the FASTQ files from the transcriptome sequencing library. 
The reads were aligned against the mus musculus reference provided by Cell Ranger (mm10 
v2020-A, based on Ensembl release 98). 900 

To detect viral transcripts in the transcriptome, we ran an additional alignment using 10x Cell 
Ranger v5.0. 1 with a custom reference genome based on mm10 v2020-A. We followed the 
protocol for constructing a custom Cell Ranger reference as provided by 10x Genomics. This 
custom reference adds a single gene containing all the unique sequences from our delivered 
plasmids in the study, delineated as separate exons. Sequences that are common between 905 
different cargo are provided only once, and annotated as alternative splicings. 

Viral transcript read alignment 
For viral read alignment, we aligned each Read 2 to a template derived from the plasmid, 
excluding barcodes. The template sequence was determined by starting at the ATG start site of 
the XFP cargo and ending at the AATAAA polyadenylation stop site. We used a Python 910 
implementation of the Striped Smith-Waterman algorithm from scikit-bio to calculate an alignment 
score for each read, and normalized the score by dividing by the maximum possible alignment 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.25.449955doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.449955
http://creativecommons.org/licenses/by/4.0/


 

26 

 

score for a sequence of that length, minus the length of the barcode region. For each Read 2 that 
had a normalized alignment score of greater than 0.7, we extracted the corresponding cell 
barcode and UMI from Read 1, and any insertions into the template from Read 2. 915 

Constructing the variant lookup table 
For co-injections with multiple templates and injections of barcoded templates, we constructed a 
lookup table to identify which variant belongs to each cell barcode/UMI. For each template, we 
counted the number of reads for each cell barcode/UMI. For reads of barcoded cargo, we only 
counted reads where the detected insertion in the barcode region unambiguously aligned to one 920 
of the pre-defined variant barcodes. Due to sequencing and PCR amplification errors, most cell 
barcode/UMI combinations had reads associated with multiple variants. Thus, we identified the 
variant with the largest count for each cell barcode/UMI. We discarded any cell barcode/UMIs that 
had more than one variant tied for the largest count. Finally, each cell barcode/UMI that was 
classified as a viral transcript in the transcriptome (see Transcriptome read alignment) was 925 
converted into the virus detected in the variant lookup table, or was discarded if it did not exist in 
the variant lookup table. 

Estimating transduction rate 
To determine an estimate of the percent of cells within a group expressing viral cargo above 
background, we compared the viral transcript counts in that group of cells to a background 930 
distribution of viral transcript counts in debris (see Droplet type classification). First, we obtained 
the empirical distribution of viral transcript counts by extracting the viral counts for that variant in 
cell barcodes classified as the target cell type as well as cell barcodes classified as debris. Next, 
we assumed a percentage of cells containing debris. For each viral transcript count, starting at 0, 
we calculated the number of cells that would contain this transcript count, if the assumed debris 935 
percentage was correct. We then calculated an error between this estimate and the number of 
cells with this transcript count in the cell type of interest. We tallied this error over all the integer 
bins in the histogram, allowing the error in a previous bin to roll over to the next bin. We repeated 
this for all possible values of percentage of debris from 0 to 100 in increments of 0.25, and the 
value that minimized the error was the estimated percentage of cells whose viral transcript count 940 
could be accounted for by debris. The inverse of this was our estimate of the number of cells 
expressing viral transcripts above background. 

To validate that this method reliably recovers an estimate of transduction rate, we performed a 
series of simulations using models of debris viral transcript counts added to proposed cell type 
transcript count distributions across a range of parameterizations. To get estimates of the 945 
background distribution of debris, we used diffxpy (https://github.com/theislab/diffxpy) to fit the 
parameters of a negative binomial distribution to the viral transcript counts in debris droplets within 
a sample. We then postulated 1,000 different parameterizations of the negative binomial 
representing transcript counts in groups of cells, with 40 values of r ranging from 0.1 to 10, spaced 
evenly apart, and 25 values of p ranging from 0.001 to 0.99, spaced evenly apart. For each 950 
proposed negative binomial model, we drew 1,000 random samples of viral counts from the 
learned background distribution, and 1,000 random samples from the proposed cell distribution, 
and summed the two vectors. This summed vector was then used in our transduction rate 
estimation function, along with a separate 1,000 random samples of background viral transcripts 
for the function to use as an estimate of the background signal. We calculated the true probability 955 
of non-zero expression in our proposed cell negative binomial model (1 – P(X = 0)), and compared 
this value with the estimated value from the transduction rate estimation method. 
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Calculating viral tropism 
For each variant vn and cell type of interest ci, we estimated the percentage of cells expressing 
viral cargo. To calculate tropism bias, we used this estimated expression rate, 𝑡𝑡𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛, to estimate 960 
the number of cells expressing viral transcripts in that cell type, 𝑇𝑇𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛 out of the total number of 
cells of that type, 𝑁𝑁𝑐𝑐𝑖𝑖.  𝑇𝑇𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛 =  𝑡𝑡𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛𝑁𝑁𝑐𝑐𝑖𝑖. Cell type bias, 𝑏𝑏𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛, within a sample was then calculated 
as the ratio of the number of cells of interest divided by the total number of transduced cells, 
𝑏𝑏𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛 =  

𝑇𝑇𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛
∑ 𝑇𝑇𝑐𝑐𝑗𝑗𝑣𝑣𝑛𝑛𝑗𝑗

. Finally, to calculate the difference in transduction bias for a particular variant 

relative to other variants in the sample, 𝛿𝛿𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛, we subtracted the bias of the variant from the mean 965 

bias across all other variants, 𝛿𝛿𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛 =  
𝑇𝑇𝑐𝑐𝑖𝑖,𝑣𝑣𝑛𝑛
∑ 𝑇𝑇𝑐𝑐𝑗𝑗𝑣𝑣𝑛𝑛𝑗𝑗

−  
∑ 𝑇𝑇𝑐𝑐𝑖𝑖,𝑣𝑣𝑚𝑚𝑚𝑚≠𝑛𝑛

∑ ∑ 𝑇𝑇𝑐𝑐𝑗𝑗,𝑣𝑣𝑚𝑚𝑗𝑗𝑚𝑚≠𝑛𝑛
. 

Histology 
Immunohistochemistry 

The immunohistochemistry procedure was adapted from a previous publication (Oikonomou et 
al., 2019). Brain tissue was fixed in 4% paraformaldehyde (PFA) at 4°C overnight on a shaker. 970 
Samples were immersed in 30% sucrose in 1x phosphate buffered saline (PBS) solution for >2 
days and then embedded in Tissue-Tek O.C.T. Compound (102094-104, VWR) before freezing 
in dry ice for 1 h. Samples were sectioned into 50 μm coronal slices on a cryostat (Leica 
Biosystems). Brain slices were washed once with 1x phosphate buffered saline (PBS) to remove 
O.C.T. Compound. Samples were then incubated overnight at 4°C on a shaker in a 1x PBS 975 
solution containing 0.1% Triton X-100, 10% normal goat serum (NGS; Jackson ImmunoResearch, 
PA, USA), and primary antibodies. Sections were washed three times for 15 min each in 1x PBS. 
Next, brain slices were incubated at 4°C overnight on a shaker in a 1x PBS solution containing 
0.1% Triton X-100, 10% NGS, and secondary antibodies. Sections were washed again three 
times for 15 min each in 1x PBS. Finally, slices were mounted on glass microscope slides 980 
(Adhesion Superfrost Plus Glass Slides, #5075-Plus, Brain Research Laboratories, MA, USA). 
After the brain slices dried, DAPI-containing mounting media (Fluoromount G with DAPI, 00-4959-
52, eBioscience, CA, USA) was added before protecting the slices with a cover glass (Cover 
glass, #4860-1, Brain Research Laboratories, MA, USA). Confocal images were acquired on a 
Zeiss LSM 880 confocal microscope (Zeiss, Oberkochen, Germany). The following primary 985 
antibodies were used: rabbit monoclonal to NeuN (Rbfox3) (1:500; ab177487; Abcam, MA, USA), 
rabbit monoclonal to S100 beta (1:500; ab52642; Abcam, MA, USA), and rabbit monoclonal to 
Olig2 (1:500; ab109186; Abcam, MA, USA). The following secondary antibody was used: goat 
anti-rabbit IgG H&L Alexa Fluor 647 (1:500; ab150079; Abcam, MA, USA). 

Fluorescent in situ hybridization chain reaction 990 

FISH-HCR  was  conducted  as  previously  reported (Patriarchi et al., 2018). Probes targeting 
neuronal markers were designed using custom-written software 
(https://github.com/GradinaruLab/HCRprobe). Probes contained a target sequence of 20 
nucleotides, a spacer of 2 nucleotides, and an initiator sequence of 18 nucleotides. Criteria for 
the target sequences were: (1) a GC content between 45%–60%, (2) no nucleotide repeats more 995 
than three times, (3) no more than 20 hits when blasted, and (4) the ∆G had to be above –9 
kcal/mol to avoid self-dimers. Last, the full probe sequence was blasted and the Smith-Waterman 
alignment score was calculated between all possible pairs to prevent the formation of cross-
dimers. In total, we designed 26 probes for Gad1, 20 probes for Vip, 22 probes for Pvalb, 18 
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probes for Sst, and 28 probes for Slc17a7. Probes were synthesized by Integrated DNA 1000 
Technologies. 

Droplet type identification 
scRNA-seq datasets were analyzed with custom-written scripts in Python 3.7.4 using a custom 
fork off of scVI v0.8.1, and scanpy v1.6.0. To generate a training dataset for classifying a droplet 
as debris, multiplets, neuronal, or non-neuronal cells, we randomly sampled cells from all 27 1005 
cortical tissue samples. We sampled a total of 200,000 cells, taking cells from each tissue sample 
proportional to the expected number of cells loaded into the single-cell sequencing reaction. 
Within each sample, cells were drawn randomly, without replacement, weighted proportionally by 
their total number of detected UMIs. For each sample, we determined a lower bound on the cutoff 
between cells and empty droplets by constructing a histogram of UMI counts per cell from the 1010 
raw, unfiltered gene count matrix. We then found the most prominent trough preceding the first 
prominent peak, as implemented by the scipy peak_prominences function. We only sampled from 
cells above this lower bound. Using these sampled cells, we trained a generative neural network 
model via scVI with the following parameters: 20 latent features, 2 layers, and 256 hidden units. 
These parameters were chosen from a coarse hyperparameter optimization centered around the 1015 
scVI default values (Supplemental Table 3). We included the sample identifier as the batch key 
so that the model learned a latent representation with batch correction. 

After training, Leiden clustering was performed on the learned latent space as implemented by 
scanpy. We used default parameters except for the resolution, which we increased to 2 to ensure 
isolation of small clusters of cell multiplets. Using the learned generative model, we draw 5000 1020 
cells from the posterior distribution based on random seed cells in each cluster. We draw an equal 
number conditioned on each batch. From these samples, we then calculated a batch-corrected 
probability of each cluster expressing a given marker gene (see Cluster marker gene 
determination). For this coarse cell typing, we chose a single marker gene for major cell types 
expected in the cortex (Supplemental Table 2). If a cluster was expressing the neuron marker 1025 
gene Rbfox3, it was labeled as “Neurons”. If a cluster was expressing any of the other non-
neuronal marker genes, it was labelled as “Non-neurons”. Next, we ran Scrublet on the training 
cells to identify potential multiplets. Scrublet was run on each sample independently, since it is 
not designed to operate on combined datasets with potential batch-specific confounds. We then 
calculated the percentage of droplets in each cluster of the combined data that were identified as 1030 
multiplets by Scrublet. We found a percentage threshold for identifying a cluster as containing 
predominantly multiplets by using Otsu’s threshold, as implemented by scikit-image. All droplets 
in any cluster above the multiplet percentage threshold were labelled as “Multiplets”. All other 
clusters were labelled as “Debris”. 

Next, we trained a cell-type classifier using scANVI on the droplets labeled as training data. We 1035 
used the weights from the previously trained scVI model as the starting weights for scANVI. 
Rather than using all cells for every epoch of the trainer, we implemented an alternative sampling 
scheme that presented each cell type to the classifier in equal proportions. Once the model was 
trained, all cells above the UMI lower noise bound were run through the classifier to obtain their 
cell-type classification. Droplets classified as “Neurons” or “Non-neurons” were additionally 1040 
filtered by their scANVI-assigned probability. We retained only cells above an FDR threshold of 
0.05, corrected for multiple comparisons using the Benjamini-Hochberg procedure. Finally, since 
the original run of Scrublet for multiplet detection was performed on only the training data, and 
thus did not take advantage of all the cells available, we ran Scrublet on all droplets classified as 
cells, and removed any identified multiplets. 1045 
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Cluster marker gene determination 
To identify which clusters are expressing marker genes, we determined an estimated probability 
of a marker gene being expressed by a random cell in that cluster. For each cluster, we randomly 
sampled 5,000 cells, with replacement. We used scVI to project each cell into its learned latent 
space, and then used scVI’s posterior predictive sampling function to generate an example cell 1050 
from this latent representation, and tallied how many times the gene is expressed. We repeated 
this for each batch, conditioning the posterior sample on that batch, to account for technical 
artifacts such as sequencing depth. Once we obtained a probability of expression of a marker 
gene for each cluster, we find a threshold for expression using Otsu’s method, as implemented 
by scikit-image. Clusters that have a probability of expression above the threshold are considered 1055 
positive for that marker gene. 

Neuronal subtype classification 
Cells classified as neurons were further subtyped using annotations from a well-curated reference 
dataset. We used the Mouse Whole Cortex and Hippocampus 10x dataset from the Allen Institute 
for Brain Science as our reference dataset (Yao et al., 2021). First, we filtered the reference 1060 
dataset to contain only cell types that are found within the brain regions collected for our 
experiments. To ensure that, overall, enough cells per cell type were present in our datasets, we 
merged cell types with common characteristics, such as expression of key marker genes. We re-
aligned our cell transcriptome reads to the same pre-mRNA reference used to construct the 
reference dataset, so that the gene count matrices had a 1:1 mapping. We then trained a joint 1065 
scANVI model with all cells identified as neurons from our samples and the reference database 
to learn a common latent space between them. The model was trained to classify cells based on 
the labels provided in the reference dataset. Cells were sampled from each class in equal 
proportions during training. After the model was trained, all neurons from our sample were run 
through the model to obtain their cell type classification. 1070 

Non-neuronal subtype classification 
Cells classified as non-neuronal were further subtyped using automatic clustering and marker 
gene identification. We trained an scVI model using only the non-neuronal cells and performed 
Leiden clustering as implemented by scanpy on the latent space. We determined which clusters 
were expressing each of 31 marker genes across 13 cell subtypes. Marker genes were identified 1075 
from a review of existing scRNA-seq, bulk RNA-seq, or IHC studies of mouse brain non-neuronal 
subtypes (Supplemental Table 2). Each cluster was assigned to a cell subtype if it was determined 
positive for all the marker genes for that cell subtype (see Cluster marker gene determination). If 
a cluster contained all the marker genes for multiple cell subtypes, the cluster was assigned to 
the cell subtype with the greatest number of marker genes. Clusters that did not express all the 1080 
marker genes for any cell subtype were labeled as “Unknown”. Clusters that expressed all the 
marker genes for multiple cell subtypes with the same total number of marker genes were labeled 
as “Multiplets”. For cell types that contained multiple clusters, we then calculated the probability 
of every gene being zero in each cluster (see Cluster marker gene determination). We then 
compared gene presence between clusters of the same cell type to see if there were any 1085 
subclusters that had a dominant marker gene (present in > 50% of samples), that was not present 
in any of the other clusters (< 10% of samples). For the three cell types that had unique marker 
genes, we named the cluster after the gene with the highest 2-proportion z-score between the 
sampled gene counts in that cluster vs the rest.  
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Quantification of images 1090 

Quantitative data analysis of confocal images was performed blind with regard to AAV capsid 
variant. Manual quantification was performed using the Cell Counter plugin, present in the Fiji 
distribution of ImageJ (National Institutes of Health, Bethesda, MD) (Schindelin et al., 2012). 
Transduction rate was calculated as the total number of double positive cells (i.e. viral transgene 
and cell type marker) divided by the total number of cell type marker labeled cells. For each brain 1095 
slice, at least 100 cells positive for the gene markers of interest were counted in the cortex. 

Differential expression 
To calculate differential expression within cell types between groups of animals, we used the 
DESeq2 R package (Love et al., 2014). For each cell type, the gene counts are summed across 
all cells of that type and treated as a pseudo-bulk sample. The summed gene counts from each 1100 
animal are then included as individual columns for a DESeq2 differential expression analysis. We 
performed 3 DPI DE and 25 DPI separately, testing each sample against saline-injected controls. 
For each cell type, only genes that were present in all samples of at least one condition are 
included. 

Marker gene dot plots 1105 

To generate dot plots for marker genes, we used scanpy’s dotplot function (Wolf et al., 2018). 
Gene counts were normalized to the sum of the total transcript counts per cell using scanpy’s 
normalize_total function. Normalized gene expression values are log-transformed as part of the 
plotting function. 

Statistics 1110 

Statistical analyses comparing the fraction of transduced cells in different cell types for Figures 2, 
3, and 4 C were conducted using GraphPad Prism 9. Statistical analyses comparing proportions 
of transduced cells within an animal in Figure 4 E and Figure 6 were performed using the Python 
statsmodels library v0.12.1. No statistical methods were used to predetermine sample sizes. The 
statistical test applied, sample sizes, and statistical significant effects are reported in each figure 1115 
legend. The significance threshold was defined as a = 0.05. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.25.449955doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.449955
http://creativecommons.org/licenses/by/4.0/


 

31 

 

Supplemental Figures 

 

Supplemental Figure 1. Plasmid details. (A) Size of typical transcriptome cDNA library post-
fragmentation. Both distinguishing XFPs and variant barcodes fall outside the typical capture 1120 
region of single-cell RNA sequencing workflows. (B) UBC-mCherry-AAV-cap-in-cis plasmid used 
for 7-variant barcoded pool. (C) Visualization of the construction procedure for the custom 
genome reference. Variant cargos are segmented into common and uncommon regions, and 
each unique segment is concatenated together as a contiguous gene. Variants are defined as 
different splicings of the custom AAV gene. 1125 
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Supplemental Figure 2. Expression rate estimation. (A) Percent of cells expressing AAV-
PHP.eB cargo transcripts above a fixed threshold in a single sample. (B) An example of the 
distribution of viral transcript counts in a single animal from AAV-PHP.eB carrying CAG-1130 
mNeonGreen-WPRE in neurons and astrocytes. (C) Visualization of our expression-rate 
estimation algorithm. The distribution of the cell type of interest and background debris is 
obtained. An error is calculated for different estimates of the percent of the cells that express 
background levels of transcripts. This error is minimized to find the best fit. (D) Performance of 
the expression rate estimation algorithm on simulated data consisting of negative binomial 1135 
distributions with parameters r between 0.1 and 10 and p between 0.001 and 0. 99, spaced evenly 
apart. (E) Comparison between mean transcripts/cell (x) and the estimated transduction rate (y) 
in major cell types for AAV-PHP.eB across 9 samples. 
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Supplemental Figure 3: Noise from debris and doublets. (A) An example of a Cell Ranger 1140 
filtered dataset. This is a t-SNE projection of the log-normalized gene expression space. 
Suspected debris clusters are outlined. (B) Marker gene expression for the major cell types in the 
brain—Oligodendrocytes/Olig2, Astrocytes/Aldh1l1, Neurons/Rbfox3, Vascular Cells/Cldn5, 
Immune Cells/Tmem119—for each cluster. Darker colors indicate higher mean expression, and 
dot size correlates with the abundance of the gene in that cluster. (C) An example of a multiplet 1145 
cluster from the joint scVI space of all training samples, projected via t-SNE. Cluster 51 is 
annotated, and raw gene expression of Cldn5 and Cx3cr1 are shown. The percentage of cells in 
cluster 51 expressing each marker gene is displayed. (right) Predicted doublets from Scrublet are 
overlaid in red. 

 1150 
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Supplemental Figure 4. Cell typing. (A) Cell typing workflow. A subset of cells are used for 
training. For each marker gene, clusters expressing that marker gene are identified. Clusters that 
have no marker genes (debris) or are determined to be multiplets via Scrublet are marked for 
removal. Training data used to train a scANVI model to predict the remaining cells. A reference 1155 
database can be used instead of manually labeled cells, as we did for neuronal subtypes. (B) 
Cell-type distribution of all identified cells from our combined cell-type taxonomy. This includes 
samples described in the study as well as additional controls and animals used for troubleshooting 
and prototyping. (C) Cell-type percentages across the major cell types in the ten samples used 
for AAV tropism characterization. One of the samples, BC1, had dramatically fewer neurons than 1160 
any other sample and correspondingly higher percentages of non-neurons. (D) Mitochondrial 
gene ratio and total transcript counts of the major cell type clusters in the ten samples used for 
tropism characterization. 
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Supplemental Figure 5. Transcript expression. (A) Viral transcript expression of different 1165 
barcodes across two samples (S1, S2). Each point is a distinct barcode. (B) Viral transcript 
abundance in entire samples (viral transcripts / total transcripts) across different variants carrying 
different cargo. (C) Fraction of transcripts detected in vascular cells vs all other cell types. 
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 1170 

Supplemental Figure 6. Inter-sample variability. (A) The standard deviations between 
measurements of the fraction of transduced cells in all major non-neuronal cell types in AAV-
PHP.V1 and AAV-PHP.eB. Inter-sample variance (left) refers to the standard deviation between 
animals, and intra-sample variance (right) refers to the standard deviation between barcodes 
within the same animal. (B) The distribution of recovered cell types compared to the distribution 1175 
of transduced cells across nine samples injected with AAV-PHP.eB. 
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Supplemental Figure 7. Cell subtype inspection. (A) Estimated transduction rate of endothelial 
cells vs pericytes across all samples and variants. (B) Pairwise transduction rate of Myoc+ and 
Myoc- astrocytes across all variants and samples. Each point is a single variant in a different 1180 
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sample. (C) Pairwise transduction rate of Vip+ neurons vs all other inhibitory neurons across all 
variants and samples. 

 

Supplemental Figure 8. Cell subtype markers. Gene expression of additional marker genes for 
astrocyte and OPC subtypes. 1185 

Supplemental Table 1. Primers. Primers used for round 1 and round 2 amplification of viral 
transcripts. Primers with TC1 and TC2 in the amplicon name indicate they were used only for 
those samples. 

Amplicon Read Round Sequence (Ns indicate Illumina sample index) 

All Viruses 1 1 CTACACGACGCTCTTCCGATCT 

All Viruses 1 2 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCT
ACACGACGCTCTTCCGAT 

mNeonGreen 
TC1 

2 1 TTCAAGGAGTGGCAAAAGGCCTTTACCGATGTGAT 

mRuby2 2 1 CAACGGGAACATGCAGTTGCCAAGTTTGCTGG 

mNeonGreen 2 1 TAACTATCTGAAGAACCAGCCGATGTAC 
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tdTomato TC2 2 1 AGGACTACACAATTGTCGAACAGTATGAG 

tdTomato 2 1 ACAACGAGGACTACACCATCGTGG 

mCherry 2 1 CATCGTGGAACAGTACGAACG 

WPRE 2 2 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATCTAGACGAGTC
GGATCTCCCT 

mNeonGreen 2 2 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATCTTTCAAGGAG
TGGCAAAAGGC 

mRuby2 2 2 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATCTCAACGGGAA
CATGCAGTTGC 

tdTomato TC2 2 2 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATCTGCATGGACG
AGCTGTACAAG 

tdTomato 2 2 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATCTCCTCTTTCTC
TATGGGATGGATGA 

mCherry 2 2 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATCTCGGCATGGA
CGAGCTGT 

 

Supplemental Table 2. Marker Genes. 1190 

Cell Type Marker Gene(s) 

Astrocytes Aldh1l1 (Cahoy et al., 2008), Sox9 (Sun et al., 2017) 

Neurons Rbfox3 (Lin et al., 2016) 

Vascular Cells Cldn5 (Song et al., 2020)  

Endothelial Cells Slc2a1 (Veys et al., 2020) 

Pericytes Pdgfrb (Winkler et al., 2010), Rgs5, Abcc9 (He et al., 2016) 
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Red Blood Cells Hba-a1, Hba-a2 (Capellera-Garcia et al., 2016) 

Vascular SMCs Acta2, Myh11, Tagln (Chasseigneaux et al., 2018) 

Vascular LMCs Fam180a, Slc6a13, Dcn, Ptgds (Marques et al., 2016) 

Microglia Cx3cr1, Tmem119  (Jordão et al., 2019) 

Leukocytes Itgal, Gzma (Huang and Sabatini, 2020) 

Perivascular Macropages Mrc1 (Jordão et al., 2019) 

Oligodendrocytes Olig2 (Dai et al., 2015) 

OPCs Pdgfra, Cspg4 (Suzuki et al., 2017) 

Mature Oligos Mog, Mbp (Miron et al., 2011) 

Committed Oligos Ptprz1, Bmp4, Nkx2-2, Vcan (Marques et al., 2016) 

 

Supplemental Table 3. scVI Hyperparameter Tuning 

Dispersion Latent Lib Size # Latent # Layers # Hidden Test KL Divergence 

Gene False 10 1 128 5366.4 

Gene-batch True 10 1 128 5406.1 

Gene True 10 1 128 5391.0 

Gene-batch True 50 2 512 5362.6 

Gene-batch False 10 1 128 5378.7 

Gene False 25 1 128 5354.6 

Gene False 25 2 256 5337.8 

Gene False 20 2 256 5336.7 

Gene False 40 4 1024 5338.0 
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Supplemental Table 4. Sample Metadata. Supplemental file contains the following fields. 

Field Name Description 

10X Version Whether the sample was processed using 10X V2 or V3 
chemistry 

Animal ID A unique animal identifier. Some animals provided 
multiple samples 

Target # Cells The target number of cells for extraction. 1.6X this 
number is loaded into the 10X Chromium instrument 

# Recovered Cells The number of cells recovered, after debris and 
multiplet filtering 

Cell Ranger # Cells The number of cells as predicted by Cell Ranger 

Predicted Multiplets The number of predicted multiplets 

Transcriptome Sequencing Depth The number of reads 

Transcriptome Reads/Cell The number of reads divided by the number of 
recovered cells 

Median UMIs/Cell Of the recovered cells, the median total UMI count 

Median Genes/Cell Of the recovered cells, the median number of genes 
detected with at least one transcript 

Variants Recovered Which variants were recovered from this sample. 
Samples labeled “Cell Typing Only” were not used for 
tropism analysis, but were included in the cell type 
classifier 

Virus Sequencing Depth The number of reads of the amplified viral transcripts 
across all templates 

Virus Reads/Cell The read depth of the amplified viral transcripts 

Age at Extraction (Days) The age of the animal at extraction time 

Virus Incubation Time (Days) How many days prior to extraction the animal was 
injected 
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Percent of Virus UMIs Determined What percent of transcriptome reads that aligned to the 
virus gene were disambiguated from the amplified 
lookup table 

 1195 

Supplemental Table 5. Variant Barcodes 

Variant Cargo Barcodes 

AAV-PHP.eB pAAV:CAG-NLS-mNeonGreen  

AAV-PHP.V1 pAAV:CAG-NLS-mRuby2  

AAV-PHP.eB pAAV:CAG-NLS-mNeonGreen CCTGACA, GGACAGA, GCACAGA, 
CGAGAGA 

AAV-PHP.V1 pAAV:CAG-tdTomato  

AAV-PHP.V1 pAAV:CAG-NLS-mNeonGreen CAGTGTC, GAGAGTG, GTGTGAG 

AAV-CAP-B10 pAAV:CAG-NLS-mNeonGreen  

AAV-PHP.eB pAAV:CAG-NLS-tdTomato  

AAV-CAP-B10 pAAV:CAG-NLS-tdTomato  

AAV9 UBC-mCherry-AAV-cap-in-cis CGTCTCAGCTATAACTTCCAA 

CGAGGTCGTAAGGTCGGCATT 

TGATTATCATGCCTGCTCAGG 

AAV-PHP.B UBC-mCherry-AAV-cap-in-cis TATACCCAACCACTCAGTCCC 

CGGTTTTAGCACGGCCATAGA 

AAGCGATGTCTCTACACGATA 

AAV-PHP.eB UBC-mCherry-AAV-cap-in-cis TACAGCTTTTTGACTGGAGGT 

CTGGCATTAATACGCGGGTCA 

TACAGGTCCTAGACAGGTGAT 

AAV-CAP-B10 UBC-mCherry-AAV-cap-in-cis GCTGGGCGTTAAAGTACTCGC 

GCAACTGGGATAATCGTAGTC 

AACGGAGTGAACGGACCCTAG 

AAV-PHP.V1 UBC-mCherry-AAV-cap-in-cis GTGGCGGGTTTCCGAAAAAGT 
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TCGTCGGCACTCTCTTAGAGC 

CATGTGATAGTGAAGCACGCC 

AAV-PHP.C1 UBC-mCherry-AAV-cap-in-cis TCTGTGCTGCTCTTCTAACAA 

TCTGACGGCGGGTAAACACTG 

TGGCCACCCGCAGAGTATACT 

AAV-PHP.C2 UBC-mCherry-AAV-cap-in-cis GACTAGGGTAAGTGAGCTATG 

CGAATTTCTTCCATACCTCCT 

TAGTGCCAACAACGGAGAAGA 

 

Supplemental Table 6. Differentially Expressed Genes. Supplemental file contains one tab for 
astrocytes, pericytes, and OPCs, with the following fields. 

Field Name Description 

Gene ID The Ensembl Gene ID 

Gene name The canonical gene name 

P Non Zero The probability of a cell expressing this gene in this cluster 

P Non Zero Rest The probability of a cell expressing this gene in the other cell 
subtype clusters 

 1200 

Supplemental Table 7. Differentially Expressed Genes Across Time Points. Supplemental 
file contains one tab per cell type, with the following fields. 

Field Name Description 

Gene ID The Ensembl Gene ID 

Gene name The canonical gene name 

Mean expression The mean expression of this gene in this group 

L2FC The log fold change of this gene 

L2FC SE The standard error of the L2FC 
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Stat The stat, as reported by DESeq2 

P-value The unadjusted P-value 

Adjusted P-value The adjusted P-value 
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