
 

 

1 

 

Impact of SNP microarray analysis of compromised DNA on kinship classification 

success in the context of investigative genetic genealogy 

 

Short title: SNP microarrays on compromised DNA for genetic genealogy  

 

Jard H. de Vries1,§, Daniel Kling2,§, Athina Vidaki3, Pascal Arp1, Vivian Kalamara3, Michael 

M.P.J. Verbiest1, Danuta Piniewska-Róg4,5, Thomas J. Parsons6, André G. Uitterlinden1,7, 

Manfred Kayser3,* 

 

1 Erasmus MC, University Medical Center Rotterdam, Department of Internal Medicine, Dr. 

Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands 

2 Department of Forensic Genetics and Toxicology, National Board of Forensic Medicine, 

Artillerigatan 12, 587 58 Linköping, Sweden 

3 Erasmus MC, University Medical Center Rotterdam, Department of Genetic Identification, 

Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands 

4 Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland 

5 Department of Forensic Medicine, Jagiellonian University Medical College, 31-531 Krakow, 

Poland 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.25.449870doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.449870
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

2 

 

6 International Commission on Missing Persons, Koninginnegracht 12a, 2514 AA, Den Haag, 

the Netherlands 

7 Erasmus MC, University Medical Center Rotterdam, Department of Epidemiology, Dr. 

Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands 

 

§these authors contributed equally to this work. 

*To whom correspondence may be addressed. Prof. Dr. Manfred Kayser, Email: 

m.kayser@erasmusmc.nl 

 

ORCID IDs 

J.H.V. https://orcid.org/0000-0001-8534-8994; 

D.K. https://orcid.org/0000-0002-4157-7194;  

A.V. https://orcid.org/0000-0002-5470-245X; 

V.K. https://orcid.org/0000-0002-9313-4109; 

D.P.-R. https://orcid.org/0000-0001-8307-9145; 

A.G.U. https://orcid.org/0000-0002-7276-3387; 

M.K. https://orcid.org/0000-0002-4958-847X; 

  

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.25.449870doi: bioRxiv preprint 

mailto:m.kayser@erasmusmc.nl
https://doi.org/10.1101/2021.06.25.449870
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

3 

 

Author Contributions 

J.H.V., D.K., A.V., A.G.U., M.K. designed study with contributions from T.J.P.; 

J.H.V., D.K., A.V., P.A., V.K., M.M.P.J.V. generated data; 

J.H.V., D.K., A.V. analyzed data; 

A.V. prepared main display items with contributions from J.H.V. and D.K.; 

A.G.U., D.P.-R., M.K. contributed resources; 

J.H.V., D.K., A.V., M.K. wrote the manuscript; 

P.A., V.K., M.M.P.J.V., D.P.-R., T.J.P., A.G.U. edited versions of the manuscript; 

All authors approved the final manuscript. 

 

Competing Interest Statement:  

There were no competing interests.  

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.25.449870doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.449870
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

4 

 

Abstract 1 

Single nucleotide polymorphism (SNP) data generated with microarray technologies have been 2 

used to solve murder cases via investigative leads obtained from identifying relatives of the 3 

unknown perpetrator included in accessible genomic databases, referred to as investigative 4 

genetic genealogy (IGG). However, SNP microarrays were developed for relatively high input 5 

DNA quantity and quality, while SNP microarray data from compromised DNA typically 6 

obtainable from crime scene stains are largely missing. By applying the Illumina Global 7 

Screening Array (GSA) to 264 DNA samples with systematically altered quantity and quality, 8 

we empirically tested the impact of SNP microarray analysis of deprecated DNA on kinship 9 

classification success, as relevant in IGG. Reference data from manufacturer-recommended 10 

input DNA quality and quantity were used to estimate genotype accuracy in the compromised 11 

DNA samples and for simulating data of different degree relatives. Although stepwise decrease 12 

of input DNA amount from 200 nanogram to 6.25 picogram led to decreased SNP call rates 13 

and increased genotyping errors, kinship classification success did not decrease down to 250 14 

picogram for siblings and 1st cousins, 1 nanogram for 2nd cousins, while at 25 picogram and 15 

below kinship classification success was zero. Stepwise decrease of input DNA quality via 16 

increased DNA fragmentation resulted in the decrease of genotyping accuracy as well as 17 

kinship classification success, which went down to zero at the average DNA fragment size of 18 

150 base pairs. Combining decreased DNA quantity and quality in mock casework and skeletal 19 

samples further highlighted possibilities and limitations. Overall, GSA analysis achieved 20 

maximal kinship classification success from 800-200 times lower input DNA quantities than 21 
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manufacturer-recommended, although DNA quality plays a key role too, while compromised 22 

DNA produced false negative kinship classifications rather than false positive ones.  23 

 24 

Author Summary 25 

Investigative genetic genealogy (IGG), i.e., identifying unknown perpetrators of crime via 26 

genomic database-tracing of their relatives by means of microarray-based single nucleotide 27 

polymorphism (SNP) data, is a recently emerging field. However, SNP microarrays were 28 

developed for much higher DNA quantity and quality than typically available from crime 29 

scenes, while SNP microarray data on quality and quantity compromised DNA are largely 30 

missing. As first attempt to investigate how SNP microarray analysis of quantity and quality 31 

compromised DNA impacts kinship classification success in the context of IGG, we performed 32 

systematic SNP microarray analyses on DNA samples below the manufacturer-recommended 33 

quantity and quality as well as on mock casework samples and on skeletal remains. In addition 34 

to IGG, our results are also relevant for any SNP microarray analysis of compromised DNA, 35 

such as for the DNA prediction of appearance and biogeographic ancestry in forensics and 36 

anthropology and for other purposes.  37 
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Introduction 38 

For almost three decades, forensic DNA profiling with standard sets of polymorphic short 39 

tandem repeat (STR) markers has successfully been used to identify perpetrators of crime, 40 

thereby contributing towards solving numerous criminal cases worldwide (1, 2). However, in 41 

principle, forensic STR profiling is unsuitable for identifying unknown perpetrators, whose 42 

STR profiles are not yet included in national forensic DNA databases or are unknown to the 43 

investigative authorities otherwise. This consequently leads to cold cases with STR profiles of 44 

crime scene stains being available but not matching any known suspect, including all criminal 45 

offenders stored in the national forensic DNA database. Such situation allows perpetrators to 46 

continue their criminal activities and justice is denied to victims of crime or their families.  47 

Over the last years, several DNA-based approaches for tracing unknown perpetrators 48 

have emerged. One such way is to search for family members of the unknown stain donor based 49 

on the forensic STR-profiles in the national forensic DNA database (i.e., familial search) (3). 50 

This approach, however, is limited in its success to first degree relatives, because of the limited 51 

number of autosomal STRs used in routine forensic DNA profiling (4). This disadvantage can 52 

be overcome by applying male-specific STRs from non-recombining regions of the Y-53 

chromosome (Y-STRs) that can highlight male relatives of the unknown male perpetrator, 54 

given that the vast majority of perpetrators of major crimes are males (5). However, because 55 

forensic DNA databases in almost all countries consist of autosomal STR profiles, but not Y-56 

STR profiles, Y-STR based familial search is restricted to voluntary DNA mass screenings (5). 57 

A more indirect way to find unknown perpetrators via focused police investigation is through 58 

investigative leads obtained via the prediction of externally visible characteristics of the 59 

unknown stain donor from crime scene DNA, including appearance traits (6), bio-geographic 60 

ancestry (7), and chronological age (8), in the context of Forensic DNA Phenotyping (9). Most 61 
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recently, investigative genetic genealogy (IGG) has started to emerge as new approach to find 62 

unknown perpetrators with the help of DNA (4, 10).  63 

IGG, also known as forensic genetic genealogy (FGG), is based on genomic data from 64 

hundreds of thousands of autosomal single nucleotide polymorphisms (SNPs) typically 65 

generated with SNP microarray technology (10). Because of the large number of autosomal 66 

SNPs involved, IGG allows close and distant relatives from both, maternal and paternal sides 67 

to be identified (4, 11). Over the last years, genomic databases consisting of high-density SNP 68 

data have emerged, albeit outside the forensic field. Instead of governmental authorities, these 69 

genetic genealogy databases are managed by private companies or private citizens, such as 70 

GEDmatch consisting of around 1.3 million high-density SNP profiles as of 2020 (12). The 71 

most commonly used method for identifying relatives in IGG is via DNA segments shared 72 

between the unknown perpetrator obtained from crime scene DNA and individuals in genomic 73 

databases (10, 13, 14). These identical-by-descend (IBD) segments that originate from the 74 

same ancestor signal a familial relation between the highlighted person in the genomic database 75 

and the unknown perpetrator, and the length of the shared segments translates into how close 76 

the family relationship is. Police investigation to find the unknown perpetrator is then focused 77 

on the highlighted relative via genealogical research (10).  78 

The recent resolution of the Golden State Killer case in the USA, together with several 79 

other cases, demonstrated the power of IGG (15, 16). As of November 2020, IGG had assisted 80 

in over 200 cold cases, of which at least 28 were solved (17) (18). In May 2019, GEDmatch, 81 

the most prominent genomic database used for IGG, updated its privacy regulations to require 82 

users to opt-in for law enforcement to search their SNP profiles, and by October 2019, only 83 

~185,000 GEDmatch users had done this (12), reflecting a dramatic decrease of law 84 

enforcement access compared to previous times when GEDmatch access for law enforcement 85 
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was unrestricted. In December 2019, the GEDmatch genomic database was acquired by the 86 

forensic genomics firm Verogen. The company FamilyTreeDNA (FTDNA) also hosts a SNP 87 

microarray database of 2 million of its customers that was initially established for other than 88 

forensic reasons, while the company actively works with law enforcement to permit database 89 

access for IGG (12, 19). FTDNA customers now need to opt-out to restrict law enforcement 90 

from using their SNP profiles for searches. Currently, all genomic databases available for IGG 91 

consist of SNP microarray data obtained from DNA of customer collected cheek swab or saliva 92 

samples, also known as direct-to-consumer genetic testing (10). In principle, SNP profiles 93 

extracted from whole genome sequencing (WGS) data obtained from crime scene DNA can 94 

also be used to search DTC SNP databases given the SNP overlap, which was recently 95 

exemplified in a murder case in Sweden (20). However, genomic databases for IGG that are 96 

based on WGS data are yet to be established. 97 

Besides the various ethical, societal, regulatory and other dimensions in relation to the 98 

forensic use of genomic databases that were not established for forensic purposes (4, 10, 21), 99 

there is an important technical dimension related to SNP microarray typing of forensic DNA 100 

such as for IGG purposes. Notably, all currently available SNP microarrays were developed 101 

and optimized for relatively high input DNA quality and quantity, which typically is not 102 

available from human biological stains found at crime scenes. Moreover, the DNA 103 

hybridization principle underlying all SNP microarray technologies is not expected to be well-104 

suited for compromised input DNA of low quantity and quality typically available from crime 105 

scene stains. While the statistical methods to genetically classify relatives from high-density 106 

SNP data in the context of IGG are being established throughout the last years (14, 22), studies 107 

that applied SNP microarrays to compromised DNA samples are scarce (23-25). More 108 

importantly, as far as we are aware, in-depth studies to systematically test for the impact the 109 
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use of SNP microarrays in compromised DNA has on kinship classification success in the 110 

context of IGG are missing completely from the scientific literature as of yet. It has been 111 

recognized by several authors that the lack of empirical data on the performance of SNP 112 

microarrays in compromised DNA and its consequence on forensic use marks a serious 113 

problem for the forensic application of SNP microarrays in general and IGG in particular (4, 114 

10, 26).  115 

In this study, we performed systematic SNP microarray experiments on hundreds of 116 

DNA samples from multiple individuals with varying degrees of DNA input quantity and 117 

quality to test the impact of resulting SNP microarray genotyping errors on kinship 118 

classification success in the context of IGG. From the individual DNA samples of which we 119 

used DNA samples of varying quality and quantity for SNP microarray analysis, we also 120 

generated high-quality reference data from the high quality and quantity DNA input conditions 121 

recommended by the microarray manufacturer. Together, these data were used to calculate 122 

genotype accuracy for the compromised DNA samples. The high-quality data were additionally 123 

used to simulate data of different degree relatives for kinship classification. To get further 124 

insights, we additionally performed SNP microarray genotyping on DNA samples with a 125 

combined decrease of quantity and quality i.e., DNA from mock casework samples of varying 126 

storage temperature, time, and artificial degradation as well as naturally degraded DNA 127 

obtained from skeletal remains. The overall SNP microarray data set we generated in this study 128 

allowed us to quantify the effect of decreased DNA quality and quantity on SNP microarray 129 

genotyping quality with regard to the ability to classify relatives of different degrees of 130 

relationship. This data is vital for the development of IGG applications based on SNP 131 

microarray analysis of DNA obtained from human crime scene samples in forensic genetic 132 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.25.449870doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.449870
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

10 

 

casework, or from low quality and/or quantity DNA samples for other purposes in forensic 133 

casework and anthropological studies.  134 

 135 

Results 136 

To evaluate SNP microarray technology for quantity and/or quality compromised input DNA 137 

and its consequence for kinship classification in the context of IGG, we performed a series of 138 

SNP microarray experiments with the widely used Illumina Global Screening Array (GSA). 139 

We started out by generating microarray data of 24 individuals by using high input DNA 140 

quantity and quality by meeting the recommendations of the microarray manufacturer i.e., 200 141 

ng of high molecular weight DNA. This reference dataset was then used to conditionally 142 

simulate SNP data of relatives of these 24 individuals based on four degrees of relationships 143 

i.e., full siblings, 1st cousins, 2nd cousins, and 3rd cousins (Figure S1). We also used this high-144 

quality reference dataset to determine genotyping errors in the data obtained from the 145 

compromised DNA samples of the same individuals, respectively (see methods for details). 146 

 147 

Impact of decreased input DNA quantity on SNP microarray-based kinship classification  148 

We quantified the impact of decreased input DNA quantity on the success of kinship 149 

classification based on SNP microarray data. For this, we generated 8 GSA datasets per each 150 

of 24 individuals based on manufacturer-recommended 200 ng input DNA as well as based on 151 
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seven lower amounts i.e., 1000 pg, 250 pg, 100 pg, 50 pg, 25 pg, 12.5 pg, and 6.25 pg, and 152 

used them to perform kinship classification.  153 

We found that on average the success of kinship classification remained over 98.5% 154 

for input DNA amounts from 200 ng down to 250 pg for siblings and 1st cousins, and down to 155 

1ng for 2nd cousins (Figure 1). With 25 pg (approximately 4 cells worth of DNA) and lower 156 

input DNA amounts, the kinship classification success was zero for relatives of all four degrees 157 

(Figure 1, Table S1). We observed considerable variation between DNA samples of the same 158 

input amount between the 24 individuals on how decreasing input DNA quantity impacted on 159 

kinship classification success. Classification of siblings remained 100% correct for all 24 160 

individuals from 200 ng down to 250 pg and for 17 individuals also with 100 pg (average 161 

classification rate of 93%). With 50 pg, 5 individuals still had 100% success rate for sibling 162 

classification, while with 25 pg 22 individuals showed 0% classification success for siblings 163 

and any other relatives tested. For 1st cousins, 100% classification success was revealed for all 164 

24 individuals with 200 ng and 1 ng, while with 250 pg it was for 22 individuals (average 165 

classification success of 99.4%), and with 100 pg for 13 individuals (76.6% success on average 166 

across individuals). None of the 24 individuals had 100% classification success when applying 167 

50 pg input DNA (18.5% success on average). For 2nd cousins, classification success was close 168 

to 99% for all 24 individuals with 200 ng, which remained stable down to 1 ng (98.6% success 169 

on average) and dropped to 91.6% with 250 pg, 55.7% with 100 pg and 6.6% with 50 pg. For 170 

3rd cousins, we first note that even with ideal input DNA quantity of the manufacturer-171 

recommended 200 ng, classification success was on average only 74.6% across the 24 172 

individuals, with no individual sample having more than 81.5% success rate, likely due to 173 

insufficient identical-by-descent (IBD) sharing. The classification success rate was slightly 174 

reduced from 1 ng input DNA (72.6% success). Using 250 pg input DNA, the 3rd cousin 175 
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classification success dropped down to 62.6%, with all but one sample decreasing in 176 

classification success by more than 1%, and further down to 30.7% with 100 pg, where all 177 

samples had decreased success rate but none yet at zero, and down to 3.3% with 50 pg, where 178 

11 samples had 0% classification success. From input DNA amounts of 25 pg and lower, 3rd 179 

cousin classification success was zero for all 24 individuals. When the true kinship relations 180 

were no longer classified correctly due to compromised input DNA quantity, misclassifications 181 

always occurred at the lower degrees of relatedness (e.g., siblings misclassified as cousins) and 182 

did not result in false overestimations of the classified degree of relationship. 183 

 184 
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Figure 1: Kinship classification of simulated relatives based on SNP microarray genotype data 185 

obtained from input DNA of decreased quantity. Each plot in this matrix represents a simulated 186 

kinship relation and a specific kinship classification based on a SNP microarray dataset obtained from 187 

stepwise decreasing input DNA quantity. Each of the 24 individual DNA samples used in this 188 

experiment had 1000 relatives simulated for each degree of relative, which were S1 (Full siblings), S2 189 

(1st cousins), S3 (2nd cousins), S4 (3rd cousins) or unrelated from the high-quality reference data 190 

generated from manufacturer-recommended input-DNA quantity and quality; the kinship classification 191 

was restricted to these possible relation categories. For each of these 24 individuals, 8 input DNA 192 

quantity levels i.e., 200 ng, 1 ng, 250 pg, 100 pg, 50 pg, 25 pg, 12.5 pg, and 6.25 pg were processed on 193 

the GSA. The estimated genetic relation between such dataset from quantity-compromised DNA and 194 

the relatives simulated from high-quality reference data was then classified per each of the 24 195 

individuals. The x-axis of the matrix describes the classified kinship relations, while the y-axis of the 196 

matrix describes the original simulated relations, across the 24 individuals used. For the individual 197 

plots, the x-axis describes the input DNA quantity, and the y-axis describes the average kinship 198 

classification rate. The green bar plots represent correctly classified relation and the red bar plots 199 

represent the incorrect classifications. Error bars display the 75% confidence interval. 200 

 201 

Effect of decreased input DNA quantity on SNP microarray genotype accuracy  202 

Aiming to better understand the observed impact of decreased input DNA quantity on 203 

decreased kinship classification success, we investigated the effect of decreased DNA quantity 204 

on SNP microarray genotype accuracy by calculating microarray-based SNP call rates and 205 

genotype errors rates depending on varying input DNA amounts (as detailed in the methods).  206 

We found that the stepwise decrease of input DNA quantity from optimal 200 ng down 207 

to 6.25pg led to a gradual decrease in the SNP call rate (Figure 2, Table S2). In particular, 208 

with manufacturer-recommended 200 ng, call rates for all 24 individuals were high as expected 209 

at 99.9% (SD 0.0%), and decreased to an average of 96.7% (SD 2.5%) with 1 ng, 90.6% (SD 210 

5.0%) with 250 pg, 84.4% (SD 4.5%) with 100 pg, and further down to a minimal call rate of 211 

42.8% (SD 6.3%) from the lowest amount of 6.25 pg. While the number of called SNPs 212 

decreased with decreasing input DNA amounts, an increase in the number of false genotypes 213 
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was seen, as may be expected, while differently so for the different types of genotype errors. 214 

Errors were classified as “false heterozygotes” when a homozygous SNP was incorrectly typed 215 

as a heterozygote, and “false homozygotes” when a heterozygous SNP was incorrectly typed 216 

as a homozygote. The error rate started to increase already with the first DNA dilution step 217 

below the manufacturer recommended 200 ng i.e. with 1 ng, albeit with a small average of 218 

1.8% (SD 2.4%) for heterozygote errors, while homozygote errors remained close to zero at 219 

0.01% (SD 0.01%) (Figure 2, Table S2). With 250 pg the heterozygote error rate increased to 220 

an average of 7.9% (SD 6.8%) and the homozygote error rate to an average of 0.15% (SD 221 

0.27%). Both error rates gradually increased further with further stepwise decreased input DNA 222 

amounts, with the heterozygote error rate more so than the homozygote error rate. With 25 pg, 223 

where the kinship classification success rate was zero for all degrees of relationship, the 224 

heterozygote error rate was on average 43.3% (SD 9.7%), while the homozygote error rate was 225 

8.1% (SD 2.6%). With the lowest input DNA amount of 6.25 pg, the heterozygous and 226 

homozygous error rates were highest with on average 72.6% (SD 2.7%) and 21.3% (SD 4.3%), 227 

respectively (Figure 2, Table S2).  228 

  229 
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Figure 2: Quality metrics of SNP microarray data from input DNA of decreased quantity. 230 

The x-axis represents the 8 stepwise decreased input DNA quantities tested (200 ng – 6.25 pg) 231 

and the degrees of kinship classification (S1 - Full siblings, S2 - 1st cousins, S3 - 2nd cousins, 232 

S4 - 3rd cousins) across the 24 individuals used. The y-axis runs from 0-100%, depicting call 233 

rate, homozygote error rate, heterozygote error rate and classification success. Genotype call 234 

rate and error rates are the average of the 24 genotype datasets obtained for each input DNA 235 

quantity level. Error bars represent the 75% confidence interval. 236 

 237 

Impact of decreased input DNA quality on SNP microarray-based kinship classification 238 

Further, we investigated the effect of compromised DNA quality on kinship classification 239 

success. This included non-degraded DNA samples as recommended by the microarray 240 

manufacturer and degraded samples in three DNA fragmentation steps with decreased average 241 

fragment size of 1000 bp, 500 bp and 150 bp for 12 individuals, of which 1 ng of DNA was 242 

used for SNP microarray analysis (details in the methods section). Data from sample #526 at 243 

the fragmentation level of 1000 bp was removed from the final data set for being an outlier 244 

(Supplementary Table 9). 245 

We observed that a stepwise decrease of input DNA quality by increasing the severity 246 

of DNA fragmentation led to a gradual decrease in kinship classification success (Figure 3, 247 

Table S3). More specifically, while an average fragment size of 1,000 bp (least severe 248 

degradation level tested) had no effect on the classification success for siblings for all 12 249 

individuals (100% success), the first cousin classification success of two individuals was no 250 

longer 100% (average success of 99.8%). A more severe effect was seen for the classification 251 

of 2nd cousins, where success decreased to an average of 89.7% from the 98.3% obtained with 252 

non-fragmented DNA. An average fragment size of 500 bp resulted in a significant drop of 253 

kinship classification success for all degrees of relatives tested i.e., to 56.7% for siblings (5 254 
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samples (41.7%) still at 100% success), 45.8% for 1st cousins (1 sample still at 100% success, 255 

while 4 samples were at 0% success), and 19% for 2nd cousins (5 samples at 0% success rate). 256 

As also seen in the DNA quantification experiments for optimal DNA amounts, for 3rd cousins 257 

the classification success was already reduced with non-degraded DNA (average 70.8%), and 258 

decreased further to 53.7% at 1000 bp fragmentation, and further to 9.5% at 500 bp. Finally, 259 

the genotype profiles obtained from the most severely fragmented DNA samples of 150 bp 260 

were insufficient to perform any accurate kinship classification (0%) for any of the relatives 261 

tested. Similar to the DNA quantification experiments, there were no cases where compromised 262 

input DNA quality resulted in an increase in the degree of kinship misclassification (no false 263 

positives); in fact, all samples not correctly classified only saw a decrease in the degree of 264 

kinship misclassification (Figure 3, Table S3). 265 

  266 
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 267 

Figure 3: Kinship classification of simulated relatives based on SNP microarray data from input 268 

DNA of decreased quality. Each plot in this matrix represents a simulated kinship relation and a 269 

specific kinship classification based on a SNP microarray dataset obtained from decreasing input DNA 270 

fragment size. Each of the 12 samples used in this experiment had 1000 relatives simulated for each 271 

degree of relative, which were S1 (Full siblings), S2 (1st cousins), S3 (2nd cousins), S4 (3rd cousins) or 272 

unrelated from the high-quality reference data generated from manufacturer-recommended input-DNA 273 

quantity and quality; the kinship classification was also restricted to these possible relation categories. 274 

For each of these 12 individuals, four input DNA fragmentation levels i.e., unfragmented, 100 bp, 500 275 
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bp, 150 bp were processed on the GSA to obtain a genetic dataset. The estimated genetic relation 276 

between such quality-compromised dataset and the relatives simulated from high quality reference data 277 

was then classified for each of the 12 individuals. The x-axis of the matrix describes the classified 278 

relations, while the y-axis of the matrix describes the original simulated relations, across the 12 279 

individuals used. For the individual plots, the x-axis describes the average fragment size of the input 280 

DNA, and the y-axis describes the average kinship classification rate. The green bar plots represent 281 

correctly classified relation and the red bar plots represent the incorrect classifications. Error bars 282 

display the 75% confidence interval. 283 

 284 

Effect of decreased input DNA quality on SNP microarray genotype accuracy  285 

Aiming to better understand the observed negative impact decreased DNA quality has on 286 

kinship classification success, we studied the effect of quality-compromised input DNA on 287 

SNP call rate and genotype error rate. Stepwise decrease of DNA quality by increase of DNA 288 

fragmentation from non-fragmented down to highly fragmented resulted in a gradual decrease 289 

in SNP call cate and an increase in genotyping errors, as may be expected. In particular, an 290 

average fragment size of 1,000 bp had an immediate negative effect on the SNP call rate with 291 

an average of 84.6% (SD 4.4%) and a negative effect on genotype accuracy with increasing 292 

heterozygous error of 16.6% (SD 6.5%) on average and homozygous error of 0.2% (SD 0.2%), 293 

compared to the non-degraded DNA samples with averages of 96.5% (SD 1.7%) 1.7% (SD 294 

1.3%) and 0.0% (SD 0.0%), respectively. An average fragment size of 500 bp resulted in a 295 

further decrease of the SNP call rate to an average of 75.1% (SD 5.7%), and a further decrease 296 

of the genotype accuracy with increasing average heterozygote error of 32.4% (SD 10.0%) and 297 

2.3% (SD 1.5%) homozygote error. Finally, the most severely fragmented input DNA of 150 298 

bp had an average SNP call rate of 62.7% (SD 7.2%), an average heterozygote error of 53.6% 299 

(SD 9.7%), and an average homozygote error of 8.1% (SD 2.7%) (Figure 4, Table S4).  300 

301 
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 302 

Figure 4: Quality metrics of the GSA genotype data from input DNA of decreased quality. The x-axis 303 

represents the 4 stepwise fragmentation levels tested (unfragmented, 1000bp, 500bp and 150bp) and 304 

the degrees of kinship classification (S1 - Full siblings, S2 - 1st cousins, S3 - 2nd cousins, S4 - 3rd cousins) 305 

across the 12 individuals used. The y-axis runs from 0-100%, depicting call rate, homozygote error 306 

rate, heterozygote error rate and classification success. Genotype call rate and error rates are the 307 

average of the 12 genotype datasets obtained for each input DNA fragmentation level. Error bars 308 

represent the 75% confidence interval. 309 

 310 

Additional factors influencing SNP microarray genotype accuracy and SNP microarray-311 

based kinship classification 312 

To further test SNP microarray performance on the type of DNA samples typically confronted 313 

with in forensic casework, and its impact on kinship classification success in the context of 314 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.25.449870doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.449870
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

20 

 

IGG, we performed SNP microarray analysis of forensic mock casework DNA samples. Mock 315 

casework samples are a typical element of forensic validation studies; they are produced in a 316 

way to mimic real crime scene samples. These mock casework samples were produced from 317 

blood of individuals for which we had generated high-quality reference data, thus allowing to 318 

estimate genotype accuracy and testing the impact on kinship classification. To this end, we 319 

ran a total of 55 mock casework DNA samples from i) one individual’s whole blood in making 320 

24 bloodstains of different size (blood volume), prepared on different substrates, and exposed 321 

under different environmental conditions such as storage time, temperature, humidity, and UV 322 

radiation, the latter to mimic sun exposure, ii) blood DNA samples from three individuals at 323 

200 ng on eight different artificial PCR inhibition levels, and iii) seven non-human DNA 324 

samples (for details see material and methods) (Table S5).  325 

Overall, we found that varying levels of blood stain storage conditions regarding 326 

humidity, substrate type and storage time (up to 25 days) did not seem to have any effect on 327 

the SNP microarray genotype accuracy and thus not on the kinship classification success 328 

(Table S5). In contrast, and as expected, the size of bloodstain (DNA quantity) and DNA 329 

damage via direct UV treatment (DNA quality) both appeared to affect genotype accuracy and 330 

kinship classification success (Table S5). Particularly for the smallest bloodstains produced 331 

from 1 µl of blood, the total isolated DNA amounts ranged from 0.167 to 5.163 ng depending 332 

on various conditions. The effect of low DNA amount was evident in bloodstain 17 (296 pg), 333 

which resulted in a lower accuracy of classification of 3rd cousins (47.1%), in line with what 334 

we expected from the DNA quantification experiments (Figure 1, Table S1). However, when 335 

we combined the effect of low DNA quantity with low DNA quality by damaging small 336 

amounts of DNA with direct UV treatment (30 minutes) as in bloodstain 22 (167 pg), we 337 

observed a decreased classification accuracy for 2nd cousins of 52.2% compared to 89.7% in 338 
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the non-treated DNA sample (Table S5). Notably, this decrease of kinship classification 339 

success was not evident in bloodstain 23 despite the increased time of UV exposure (60 340 

minutes), likely caused by the higher input DNA amount (1.35 ng) in this sample (Table S5). 341 

Finally, our chosen PCR inhibitor, hematin (27), did not seem to affect SNP microarray 342 

genotype accuracy. Independently from the hematin concentration, all samples yielded perfect 343 

call rates of over 99% (Table S6). Given the very high call rate observed, estimation of kinship 344 

classification success was not performed with the SNP array data from the hematin experiment. 345 

Moreover, SNP microarray genotyping of all seven animal cell DNA samples, derived from 346 

common pets and domesticated animals whose DNA is often recovered from crime scenes, 347 

resulted in very low SNP call rates below 70% (Table S7), highlighting the human specificity 348 

of the GSA. Notably, such low call rates were in our systematic DNA quantity and quality 349 

experiments only observed for the ‘worst’ human DNA samples, namely those with lowest 350 

input DNA quantity (12.5 and 6.25 pg) (Figure 2) and quality (150 bp fragment size) (Figure 351 

4). 352 

 353 

Correlation between QC metrics from SNP microarray data and SNP microarray-based 354 

kinship classification 355 

In typical practical applications of SNP microarray genotyping, such as for IGG but also for 356 

other forensic and non-forensic purposes, only the SNP call rate is available as quality control 357 

(QC) measure. Nevertheless, users of SNP microarray technology in practical applications 358 

shall be interested in the reliability of the data they obtained from their analyzed DNA samples. 359 

As a first step towards providing guidance on this matter of high practical relevance, we tested 360 

if our diverse set of experimentally generated SNP microarray data from various input DNA 361 

quantities and qualities would allow us to establish a preliminary measure on the reliability of 362 
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SNP microarray when deviating from the manufacturer recommendations for input DNA 363 

quantity and quality. To this end, aiming at maximizing the statistical power, we pooled all 364 

data we generated from high and low quality and quantity human DNA samples i.e., from DNA 365 

quantity, DNA quality, and mock human bloodstain experiments, resulting in a combined 366 

dataset containing call rate, genotype errors rates and classification successes from a total of 367 

264 DNA samples (Table S5, Table S8, Table S9). Using these data, and by employing n-368 

parameter logistic regression to fit a model, we correlated total SNP call rate with i) total 369 

genotype error rate, ii) heterozygote error rate and iii) homozygote error rate and obtained very 370 

high positive r2 estimates of 0.98, 0.99, and 0.95, respectively (Figure 5a). Furthermore, we 371 

correlated total SNP call rate with kinship classification success rate for all four degrees of 372 

relatives (Figure 5b), where the fitted model achieved an r2 of 0.89 for siblings, 0.87 for 1st 373 

cousins, 0.95 for 2nd cousins, and 0.94 for 3rd cousins. We also made a model correlating 374 

homozygote error rate with kinship classification success and achieved an r2 of 1.00 for 375 

siblings, 1.00 for 1st cousins, 1.00 for 2nd cousins, and 0.98 for 3rd cousins (Figure S2). 376 

  377 
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 378 

Figure 5: Relations of SNP microarray data quality metrics and kinship classification. To describe 379 

the relation between the studied quality control metrics of our experiment, models were fitted with n-380 

parameter logistic regression, using the genotype error, call rate and kinship classification success 381 
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data from the compromised quantity and quality as well as mock casework SNP microarray analysis in 382 

a total of 264 samples (Table S5, Table S8, Table S9). A) Relationship of SNP call rate and genotyping 383 

error rate. Three types of genotyping errors were considered for this model: homozygote error, 384 

heterozygote error, and the total genotyping error by combining both. The homozygote error model had 385 

a standard error (SE) of 0.016 with a goodness-of-fit (GoF / r2) of 0.948, the heterozygote error model 386 

had a SE of 0.0247 with a GoF of 0.991, and the total error model a SE of 0.014 with a GoF of 0.980. 387 

B) Relationship of SNP call rate and kinship classification success. One model was fitted for each 388 

degree of relation: S1-S1 (full sibling), S2-S2 (1st cousin), S3-S3 (2nd cousin), and S4-S4 (3rd cousin). 389 

The full sibling classification success prediction model had a SE of 0.163 with a GoF of 0.886. The 1st 390 

cousin success prediction model had a SE of 0.174 with a GoF of 0.872. The 2nd cousin success 391 

prediction model had a SE of 0.110 with a GoF of 0.946. The 3rd cousin success prediction model had 392 

a SE of 0.084 with a GoF of 0.943. 393 

 394 

As may be expected, we saw that all three genotyping error rates (total, heterozygote 395 

and homozygote) increased as the SNP call rate decreased, with the heterozygote error being 396 

impacted the most (Figure 5a). While the heterozygote error rate increased immediately with 397 

decreased SNP call rate, the homozygote error rate remained below 0.05% as long as 93% of 398 

the array SNPs were called (Figure 5a). More importantly, we found that within certain 399 

boundaries it was possible to predict kinship classification success solely based on SNP call 400 

rate (Figure 5b). Whereas for the most distant relationships, i.e., 3rd cousins, kinship 401 

classification rate gradually decreased with call rate, the success of classifying siblings, as well 402 

as 1st and 2nd cousins, remained at 100% until the call rate reached certain thresholds. These 403 

thresholds were different for the different degrees of relationship and were lower the more 404 

closely related the family members were. With SNP call rates below these thresholds, kinship 405 

classification success decreased rapidly (Figure 5b). More specifically, we observed a 406 

remaining high kinship classification success until, and drastic decrease below, 90% SNP call 407 

rate for 2nd cousins, ~86% for 1st cousins, and ~82% for siblings. Universally and independently 408 

of family relationship, we found that DNA samples with SNP call rates below 75% appeared 409 
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unsuitable for correctly inferring kinship relations, as below this threshold we observed 0% 410 

classification success for all four degrees of relationship.  411 

 412 

SNP microarray analysis of naturally degraded DNA from skeletal remains  413 

Finally, to assess SNP microarray performance on naturally degraded DNA, thereby combining 414 

compromised DNA quantity with compromised DNA quality through a natural body 415 

decomposition process, we analyzed DNA samples obtained from skeletal remains buried 416 

underground or found on forest surface that had experienced various natural conditions for 417 

various times of postmortem intervals. A total of 18 bone or teeth derived DNA samples were 418 

GSA-genotyped (Table S10). These DNA samples were additionally genotyped with a 419 

commercial forensic STR kit commonly used for forensic identification. The latter allows a 420 

comparison between the performance of both DNA technologies. Due to the nature of this 421 

sampling set-up, SNP microarray reference data obtained from manufacturer-recommended 422 

input DNA quantity and quality were not available for the individuals of which bone DNA 423 

samples were analyzed, thus not allowing genotype accuracy estimations and kinship 424 

classification success quantifications. However, by applying our established relation between 425 

SNP call rate and kinship classification success (see above, Figure 5b), we used the SNP call 426 

rate obtained from these naturally degraded DNA samples as proxy for SNP microarray data 427 

quality, and from the obtained results, provided expectations on kinship classification success 428 

in case such samples would be used for IGG purposes.  429 

Two out of the 18 bone DNA samples (bones 17 & 18) with the highest recovered DNA 430 

amounts of 27.09 and 78.5 ng fully consumed for GSA analysis, produced microarray-based 431 

SNP genotype profiles with a call rate above 95% (Table S10). According to our fitted models, 432 
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these data could be used to correctly classify relatives up to 3rd cousins (Figure 5b). These two 433 

bone DNA samples also yielded complete 24-loci forensic DNA profiles. Two other bone DNA 434 

samples (bones 14 & 16) with total input DNA amounts of 2.16 ng and 3.14 ng yielded call 435 

rates of 85.3% and 88.7%, respectively (Table S10), which according to our fitted models 436 

could still be used to classify relatives up to 3rd cousins (Figure 5b), albeit with reduced success 437 

rate. Sample 14 yielded a complete 24-locus forensic DNA profile, while sample 16 missed 438 

two non-autosomal loci. Additionally, 12 of the bone DNA samples with total input DNA 439 

amounts at the picogram level resulted in call rates below 70% (ranging from 32.6% to 69.7%), 440 

which according to our models is unsuited to obtain any accurate kinship classification (Figure 441 

5a). Of these 12 bone DNA samples, 7 gave complete 24-loci forensic DNA profiles, while 5 442 

had partial profiles between 14 and 22 of the 24 markers. The remaining two bone DNA 443 

samples (bones 1 and 2) with total input DNA amounts of 36 pg and 56 pg failed the GSA 444 

analysis completely as they produced no signals. In the forensic DNA profiling, these two DNA 445 

samples had produced results for 16 and 22 of the 24 loci, respectively.  446 

 447 

 448 

Discussion  449 

Our work represents the first study that systematically explores the impact SNP microarray 450 

analysis of quantity and quality compromised DNA has for kinship classification success, 451 

which is relevant for IGG. Earlier studies on SNP microarray genotyping of forensic DNA 452 

samples did not report genotype reliability and whether the genetic data would be applicable 453 

for kinship classification (18) or investigated the use of SNP microarrays for low quantities of 454 

DNA in less samples and not analyzing DNA below 1 ng (23, 25). Moreover, as far as we are 455 
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aware, no previous study empirically investigated the impact of quantity and/or quality 456 

compromised DNA on SNP microarray-based kinship classification success, which, however, 457 

is highly relevant for applying SNP microarrays for IGG purposes in forensic practice. 458 

The model commonly used in genetic genealogy for classifying relatives from genomic 459 

data implements versions of the so-called segment approach (13, 28-30), which we also applied 460 

here in a modified way. The novelty in our approach lies in the combination of conditional 461 

simulation with the final step in which the original (perfect), gold standard reference genotype, 462 

is replaced with an imperfect sample (e.g., DNA of low quantity and/or quality). Using this 463 

novel approach on the SNP microarray data acquired from optimal manufacturer-464 

recommended input DNA of high quantity and quality, 25% of the 3rd cousins were not 465 

correctly classified, while for 2nd cousins this only was 1%, and for 1st cousins and for siblings 466 

we had 100% classification success (Figure 1). This finding is in line with expectations, as the 467 

more distant the family relationship is, the less likely one will be able to detect shared DNA 468 

because recombination can make the shared segment shorter or can lead to not inheriting the 469 

shared DNA at all (31).  470 

In our quantity-compromised DNA experiments, an amount of 250 pg of high 471 

molecular weight DNA yielded similarly high success rates of near 100% for classifying 472 

siblings and 1st cousins, and 1 ng for 2nd cousin, as did the manufacturer-recommended 200 ng. 473 

Although these reduced input DNA quantities resulted in decreased SNP call rates and 474 

increased rates with which homozygous loci are erroneously called as heterozygotes, we did 475 

not notice any measurable impact on kinship classification success. This picture changed when 476 

the input DNA quantity was decreased below these critical amounts, which resulted in 477 

gradually decreased kinship classification success down to 25 pg DNA and lower, where 478 
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kinship classification success was zero for all four degrees of relatives tested. While an increase 479 

in the homozygote error rate was observed, the kinship classification success rates dropped.  480 

On the other hand, in our quality-compromised DNA microarray experiments, when 1 481 

ng of DNA was gradually fragmented and used for SNP microarray analysis, the first 482 

fragmentation level of 1000 bp yielded similarly high success rates of 100% for classifying 483 

siblings and 1st cousins as the non-fragmented input DNA did, while decreases in SNP call 484 

rates and increases in genotype error rate were seen compared to non-fragmented input DNA. 485 

For 2nd cousins and 1000 bp fragmentation, a reduced classification success was found, which 486 

further decreased for all relatives with further increased fragmentation levels. At the highest 487 

fragmentation level of 150 bp, the kinship classification success was zero for all degrees of 488 

relatives. These findings together imply the main deciding factor if kinship classification based 489 

on SNP microarray data from compromised DNA is successful or not is the amount of proper 490 

quality DNA in a sample. 491 

Another novelty of our work is that we empirically determined how GSA microarray 492 

genotype data is affected when compromised DNA is analyzed. We found that false 493 

heterozygotes were much more prevalent than false homozygotes when degrading the DNA 494 

quality and quantity. Previous work has highlighted how detrimental genotyping errors are for 495 

relative classification (32) (33). We analyzed both genotyping error types separately as these 496 

were different in prevalence and how they affected relative classification rate. Our data strongly 497 

suggests that the false homozygote genotypes are the driving cause for relative 498 

misclassification. This is expected, as the segment approach is highly sensitive to homozygote 499 

genotype errors. Only a false homozygote can cause IBS0 (where neither of the alleles are 500 

similar between the individuals) and pre-maturely end a shared segment. This is corroborated 501 

by our finding that homozygote genotyping error rate and kinship classification success rates 502 
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are strongly correlated (r2 of 0.999 for siblings, r2 of 1.00 for 1st cousins, r2 of 0.999 for 2nd 503 

cousins and a r2 of 0.976 for 3rd cousins) (Figure S2). The false homozygote genotype calls 504 

will terminate segments in the kinship classification model rather than prolonging them; thus, 505 

resulting in a decreased degree of inferred relatedness instead of an increased one. This could 506 

explain why decreasing DNA quantity or quality did not inflate the false positive kinship 507 

classification rate i.e., the degree of relatedness was always underestimated in our experiments.  508 

Other models to infer family relationships from genomic data may have a different 509 

sensitivity to genotyping errors, which may be explored in future studies. In particular, the 510 

likelihood ratio-based model, adopted in forensic STR profiling, could be an alternative (32, 511 

34, 35). With this model, fewer markers are needed in the calculations compared to the segment 512 

model (32). Nevertheless, a virtue of the segment approach used here is that it is unaffected by 513 

the most frequent error of Illumina GSA SNP genotyping microarrays as we showed here i.e., 514 

heterozygote genotyping errors. Another advantage of the segment approach is that it allows 515 

kinship classification to be estimated in the absence of specifically stated pairs of hypotheses 516 

of relatedness, which instead is a key requirement for applying the likelihood ratio approach. 517 

We note that several implementations of the segment approach mitigate issues with genotyping 518 

errors, for instance through allowing a number of opposite homozygote genotypes in a shared 519 

segment (29, 36). 520 

As a side aspect, we studied the isolated effect of decreasing SNP numbers, as proxy 521 

for SNP call rate, on the kinship classification success under optimal input DNA conditions. 522 

For this, the used the high-quality reference data, leaving aside the effects of decreased input 523 

DNA quantity and quality. This exercise illustrates that for closer relationships (e.g., siblings) 524 

SNP genotyping call rates as low as 5.6% can still allow accurately classification through 525 

detection of shared segments, while for more distant relationships (e.g. 3rd cousins) it needs 526 
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SNP genotyping call rates above 50% to be sufficient (Figure S3). These minimal SNP 527 

numbers rather serve as theoretical expectations, whereas practically relevant thresholds of 528 

SNP call rates to achieve trustworthy kinship classifications are seen in Figure 5. These 529 

findings confirm our observations from quantity and quality compromised DNA samples that 530 

SNP genotyping call rate alone is not driving kinship classification success (Figures 2, 4 & 5). 531 

This further corroborates the finding that SNP genotyping errors are the main driving force of 532 

kinship misclassification, even so, a decrease in SNP genotyping call rate can be accounted for 533 

in the segment approach by tuning the number of SNPs required to define IBD segments. 534 

However, we demonstrated that decreasing this threshold can have a detrimental impact on 535 

kinship classification success (Figure S4). Decreasing the number of SNPs per segment will 536 

lead to false inclusion of random segments as IBD, thus, resulting in an estimated higher degree 537 

of family relationship compared to the true degree. 538 

Remarkably, we had fairly high kinship classification success with low input DNA 539 

amounts of 100 pg. We attribute this to the whole genome amplification (WGA) step that is 540 

part of the standard SNP microarray protocol. WGA increases the amount of DNA several 541 

thousand fold (37, 38), potentially compensating in part for a low input DNA amount. WGA 542 

is typically not utilized in forensic DNA analysis, as it can cause STR profiling to result in 543 

extraneous bands (39) and unequal amplification between different targeted loci (40). While 544 

these concerns are relevant for forensic STR profiling, the detrimental effect of WGA on SNP 545 

microarray genotypes is reported to be considerably lower (38, 41). WGA-based SNP 546 

microarray genotype data were found to be highly concordant with the SNP microarray data 547 

from the respective gDNA (42). An additional benefit of WGA is that it is unaffected by the 548 

presence of the PCR-inhibitor hematin (Table S6). However, the assumed WGA-based 549 

compensation effect of low input DNA quantity has limits, as our study clearly demonstrated. 550 
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By decreasing the DNA quantity and quality below the recommendations of the 551 

microarray manufacturer, we also observed a notable rise of genotyping errors, where the 552 

increase of false heterozygous genotypes was larger than that of false homozygote genotypes 553 

(Figures 2 & 4). The intrinsic mechanisms of the Illumina GSA suggest an explanation why 554 

heterozygote genotype calls are more prone to be false than homozygote genotype calls. We 555 

provide a brief description of Infinium technique behind Illumina GSA arrays in Figure S5. 556 

We hypothesize that the majority of false genotype calls observed with decreased input DNA 557 

quantity and quality was caused by decreasing probe intensity due to less DNA being bound to 558 

hybridization probes, and a subsequent effect on the signal processing and genotype 559 

interpretation software (Figures S6 & S6). When probe intensity decreases, the chance 560 

increases that the SNP call shifts to a different genotyping cluster. The heterozygote cluster is 561 

found closest to the lowest intensity values, which may cause homozygotes to be called as 562 

heterozygotes, explaining the higher heterozygote error rate compared to homozygote error 563 

rate, which we observed at increasingly compromised input DNA for both input DNA quantity 564 

and quality.  565 

Judging the suitability of a DNA sample for SNP microarray analysis is generally 566 

difficult since a number of factors such as quantity, fragmentation, and DNA damage could 567 

impact genotype accuracy. In typical practical applications of SNP microarrays to 568 

compromised DNA, such as IGG, reference data from manufacturer-recommended input DNA 569 

quantity and quality are unavailable so that genotyping errors cannot be determined. Therefore, 570 

we used quality metrics that are available for every SNP microarray dataset, such as SNP call 571 

rate, to address if a SNP microarray dataset is suitable for kinship classification, or not. Our 572 

results show that SNP genotyping call rate is highly correlated with genotyping error rate and 573 

with kinship classification success rate (Figure 5a&b). Therefore, we suggest that the SNP 574 
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call rate, being the most common SNP microarray genotyping quality metric available, can be 575 

used as a primary indicator to estimate the reliability of Illumina GSA genotype datasets, and 576 

thus its suitability for kinship classification such as in IGG. In our data analysis, we observed 577 

a steady increase in false SNP genotypes in SNP microarray datasets with SNP call rates below 578 

99% (Figure 5b). Different SNP genotyping call rate thresholds are applied by different users, 579 

with 95% being one standard call rate cut-off (43, 44). We found that samples with SNP call 580 

rates of 90% or above yielded reliable kinship classification; while below 90% we started to 581 

observe a decrease in kinship classification success, first for 2nd cousins, then on lower call rate 582 

levels also for 1st cousins and for siblings (Figure 5b). Third cousin classification started at a 583 

75% success rate even at high quality and quantity input DNA and declined gradually with 584 

decreasing call rates. Based on our data, for SNP genotyping call rates below 75% it is unlikely 585 

that kinship classification will be successful for any degree of family relationship. 586 

Consequently, there is a grey zone between 75% and 90% call rate where the kinship 587 

classification success is still high for close relationships (e.g., siblings), but quickly drops for 588 

distant relationships (e.g., 2nd cousins). Notably, these thresholds coincide with the increase in 589 

homozygote error rate, starting at roughly 90% call rate as well (Figure 5b). 590 

Since experimental DNA degradation is artificial and does not resemble natural 591 

degradation processes, we additionally analyzed bone and tooth derived DNA samples from 592 

skeletal remains. These DNA samples naturally degraded under varying conditions and 593 

combine decreased DNA quantity and decreased quality, which is typical in missing person 594 

cases (45). However, only a minority of the skeleton-derived naturally degraded DNA samples 595 

yielded high-enough call rates sufficient for concluding high genotype accuracy (two samples 596 

had call rate > 93%, two others were in the grey zone >85% call rate). These four bone DNA 597 

samples also had comparatively high amounts of quantified DNA, highlighting the importance 598 
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of input DNA amount for GSA analysis. The qPCR-measured input DNA amounts of these 599 

four best performing bone DNA samples were all above 2.1 ng, while we obtained similar call 600 

rates of ~85% using 100pg of non-fragmented DNA. As our DNA quality experiments have 601 

shown that severely degraded DNA cannot be genotyped accurately with the GSA, the lower 602 

SNP microarray genotyping reliability can be attributed to the poor quality of nuclear DNA in 603 

the majority of the bone or teeth DNA samples tested (45). Notably, the SNP microarray results 604 

of these bone and teeth derived DNA samples were not in good agreement with results from 605 

forensic STR profiling. Although we found that 3 of the 4 samples with high SNP call rates 606 

had complete forensic STR profiles, this was also seen for 7 of the samples with low SNP call 607 

rates. A difference in success rates of forensic STR profiling and SNP microarrays is not 608 

unexpected given the substantial differences in the underlying genotyping technologies and in 609 

the number of analyzed DNA markers with each technology.  610 

While the majority of naturally degraded DNA samples from skeletal remains did not 611 

result in reliable SNP genotype profiles, our mock casework samples that simulated crime 612 

scene samples generally did result in high quality genotyping profiles as well as high kinship 613 

classification success (Table S5). This is most likely due to the fact that blood stains generally 614 

are a good source for DNA (46) and that the artificial DNA degradation applied to the mock 615 

casework samples was less severe in impact and time than the natural DNA degradation in the 616 

skeletal remains. These preliminary data provide optimistic expectations that SNP microarray 617 

genotyping might find application in the forensic cases, including IGG, as long as DNA yield 618 

is high enough e.g., with input DNA amounts above 250-500 pg, and DNA degradation is 619 

rather low, such as obtained from crime scene stains that experienced rather mild 620 

environmental conditions similar to what we simulated in our mock casework samples. For 621 

DNA samples of lower quantities and/or more severe degradation, as seen in the skeletal 622 
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remain samples and the severely fragmented DNA samples analyzed here, SNP microarray 623 

analysis is rather not suitable. Besides DNA quantification to select samples for SNP 624 

microarray analysis, the achieved SNP call rate and the preliminary models we introduced here 625 

can be used as guidance on the suitability of the generated data such as for kinship classification 626 

in IGG applications.  627 

While our study is the first to empirically investigated the impact of quantity and/or 628 

quality compromised DNA on SNP microarray-based kinship classification success in the 629 

context of IGG, others previously reported on the use of SNP microarrays on forensic DNA 630 

samples, or other samples with quantity limitations. The company Parabon Nanolabs (USA) 631 

reported results from about 250 forensic case samples genotyped on the CytoSNP-850k array 632 

(18), a predecessor of the Illumina GSA array (47). Roughly half of the DNA samples analyzed 633 

with SNP microarrays were reported with SNP call rates above 95%, while also about half had 634 

more than 10 ng of input DNA used (18). Based on our analyses, those cases are expected to 635 

find kinship matches in IGG database investigations using the segment approach as long as the 636 

respective relative is included in the database used. Wendt et al. (23) recently performed DNA 637 

titration experiments from 200 ng to 1 ng on 3 DNA samples obtained from postmortem blood 638 

samples with Illumina array (Omni2.5Exome-8 v1.3) genotyping as part of their DNA input 639 

pretesting for a genome-wide association study (GWAS). They found that the SNP microarray 640 

genotypes from 200 ng down to 25 ng did not differ significantly and thus used 25 ng as input 641 

DNA threshold for their GWAS. Similar to our findings, which were based on larger sample 642 

size and larger titration span going down to 6.25 pg, the authors showed higher rates of allelic 643 

drop-in (false heterozygotes) than allelic drop-out (false homozygotes) with decreasing DNA 644 

quantity. Another recently published study explored how long-time stored serum samples, with 645 

an average input DNA amount of 5.8 ng, performed on two other types of SNP microarrays, 646 
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the Affymetrix Axiom Array (Thermofisher) and the Illumina HumanCoreExome array. In 647 

80% of these DNA samples, SNP call rates above 94% were reported. In comparison, 92% of 648 

our 1 ng high-quality DNA samples had SNP call rates above 94%. The level of degradation 649 

was not quantified in that previous study, which could account for the lower number of reported 650 

samples with high call rate. However, the authors had made alterations to the standard SNP 651 

microarray genotyping protocol to account for the expected low DNA quality, given the use of 652 

long-time stored serum. For Axiom Array analysis the number of WGA cycles was doubled, 653 

and for the Illumina Human Core Exome array analysis DNA restoration kits were used (25). 654 

These are options that might improve SNP call rates, which we did not explore here and may 655 

deserve systematic investigation in the future.  656 

In conclusion, our study provides the first empirical evidence how SNP microarray 657 

analysis of quantity- and quality-compromised DNA impacts on kinship classification success, 658 

which is highly relevant in the context of IGG. The GSA used here as an example of a widely 659 

used SNP microarray was able to obtain high-density SNP profiles that were accurate enough 660 

to achieve high kinship classification success at 800 times lower input DNA amounts for 661 

siblings and 1st cousins, and 200 times lower for 2nd cousins, compared to the amount 662 

recommended by the microarray manufacturer. Decreasing DNA quantity or quality reduced 663 

the number of called SNPs and introduced heterozygote and, to a lesser extent, homozygote 664 

genotyping errors. These SNP microarray genotyping errors, believed to be caused by low 665 

probe intensity, are the primary cause of incorrect kinship classification as result of using 666 

compromised DNA for SNP microarray analysis. When applied for IGG purposes, the 667 

consequence may potentially be to miss a match to a relative included in the genetic genealogy 668 

database, while the genotyping errors are unlikely to result in a false positive kinship match as 669 

our study implies. Overall, our results are relevant for SNP microarray applications of 670 
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compromised DNA for IGG purposes, aiming at finding unknown perpetrators of crime via 671 

their relatives stored in genomic databases accessible by law enforcement agencies. They are 672 

also relevant for other forensic SNP microarray applications such as appearance prediction and 673 

biogeographic ancestry inference of unknown perpetrators or missing persons from 674 

compromised DNA, aiming at helping to identify unknown perpetrators and missing persons 675 

via focused investigative intelligence. 676 

 677 

 678 

Materials and Methods 679 

Samples. Two types of human biological samples were used in this study: i) high-quality 680 

EDTA blood samples from 24 completely anonymous blood donors of European descent that 681 

A.U.G. received in 2003 from the Sanquin blood bank in Rotterdam, Netherlands, for the 682 

purpose of genetic research and genetic method evaluation, and ii) DNA samples from 18 683 

skeletons collected by a forensic pathologist after medico-legal examination of human remains 684 

found on a forest surface or exhumed for genetic identification, at the Department of Forensic 685 

Medicine in Krakow, Poland, including teeth, skull bones, humeri, femoral, clavicle and 686 

metacarpal bone. Sample details and description of DNA isolation and quality control can be 687 

found in Supplementary Methods. 688 

DNA titration. The manufacturer-recommended amount of input DNA for the Illumina GSA 689 

microarray, used here as a prominent SNP microarray example, is 200 ng (48). This is beyond 690 

what is typically available in forensic crime scene samples where the DNA yield is highly 691 

various and depends on the size of the crime scene stain and other parameters. In this series of 692 

experiments, we therefore tested for the effect of the input DNA amount below the optimal 200 693 
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ng on the SNP microarray performance in terms of genotyping suboptimal amounts of DNA 694 

i.e. 1000 pg, 250 pg, 100 pg, 50 pg, 25 pg, 12.5 pg and 6.25 pg, produced via DNA titration 695 

and confirmed via a qPCR assay (Qiagen Investigator Quantiplex Kit). The minimal amount 696 

of 6.25 pg roughly equals the genomic DNA content of one human diploid cell. Given that for 697 

each of the 24 individuals tested we analyzed 8 different input DNA amounts, this DNA 698 

quantity experiment included a total of 192 DNA samples that were processed for SNP 699 

microarray genotyping. 700 

DNA fragmentation. The manufacturer’s recommendation on input DNA quality for the 701 

Illumina GSA microarray is to use high molecular weight DNA. DNA samples obtained from 702 

crime scene stains are usually of low molecular weight due to DNA degradation caused by 703 

various factors that impact on biological stains at the scene of crime, such as temperature and 704 

humidity, or long time periods since sample deposition at the scene of crime prior to collection. 705 

In this series of experiments, we therefore tested for the effect of input DNA with decreased 706 

quality. We opted for DNA fragmentation as one component of DNA degradation and used the 707 

adaptive focused acoustics technology (Covaris), which has the advantage of fragmenting 708 

DNA to a preset average fragment length. For 12 samples, randomly sampled from the initial 709 

24, we degraded 1 ng of DNA to average fragment sizes of 1,000 bp, 500 bp, and 150 bp as 710 

analyzed on the Labchip GX (Perkin Elmer). Given that for each of the 12 individuals tested 711 

we analyzed 4 different input DNA amounts, this DNA quality experiment included a total of 712 

48 DNA samples that were processed for SNP microarray genotyping. 713 

Mock casework. To test for the performance of the Illumina GSA microarray on forensic-type 714 

samples, we generated mock casework samples that mimic crime scene stains. In total, 24 715 

bloodstains from whole blood of one of the 24 blood donors were exposed to different 716 

conditions that are often encountered in forensic samples. The factors we considered included 717 
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stain size (the volume of blood used), storage time, storage temperature, substrate (the surface 718 

blood was deposited), relative humidity and DNA damage (via UV radiation), as detailed in 719 

Table S5. The total amount of DNA extracted from each bloodstain was used as input in the 720 

Illumina GSA array, ranging from 0.167 to 127.8 ng of DNA. Additionally, we tested the 721 

effects of PCR inhibitor hematin and non-human DNA on GSA genotyping, detailed in the 722 

supplementary methods. 723 

Microarray genotyping. The study used the Infinium Global Screening Array (GSA) for all 724 

SNP microarray genotyping (48). The choice was made partly based on its popularity in the 725 

Direct-to-Consumer Genetics industry, but also due to its rich up-to-date SNP content. Array 726 

genotyping was performed according to standard Illumina protocols (37). We decided to refrain 727 

from additional sample or data treatment, e.g. the use of restoration kits on the DNA samples 728 

or application of Hardy-Weinberg equilibrium on the SNP data. Microarray scan data was 729 

converted to genotypes using Genome Studio 2.0, the standard software for processing Illumina 730 

SNP microarrays. As this project consisted of samples of sub-optimal input DNA quantity and 731 

quality, standard microarray QC protocols, such as filtering on SNP or sample call rates, were 732 

not executed. We extracted a subset of markers based on the overlap with the 1000 Genomes 733 

phase III reference panel (49), resulting in a total of 519,300 SNP markers. Genetic positions 734 

in centiMorgan (cM) were extracted from Rutger’s map or alternatively interpolated for 735 

markers absent from the repository (50). For each gold standard sample, the genotypes were 736 

phased to generate haplotypes employing the Eagle V2.4 algorithm (51) with the European 737 

(CEU) individuals from the 1000 Genomes Project as reference data (49). 738 

Genotype quality assessment. The high-density SNP profiles obtained from GSA analysis of 739 

each tested condition was rated by two main measures of quality: SNP call rate and genotype 740 

discordance to the gold standard, which was obtained from manufacturer-recommended input 741 
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DNA quantity and quality for each of the 24 individuals. SNP call rate is the fraction of the 742 

total probes with genotype calls and it is the most common quality measure used in SNP 743 

microarray analysis. The number of false genotypes in each dataset was determined by direct 744 

comparison of the genetic profile from each tested condition to their corresponding gold 745 

standard reference dataset obtained from optimal DNA conditions. Heterozygous error rate is 746 

defined as the percentage of false heterozygotes among all heterozygotes, and homozygous 747 

error rate is defined as the percentage of homozygotes that are either heterozygotes or opposite 748 

homozygote in the gold standard reference data. 749 

Conditional simulations of relatives. For each of the 24 individuals, we generated relatives 750 

through a conditional simulation approach using the gold standard reference dataset obtained 751 

from manufacturer-recommended input DNA quantity and quality. Figure S1 provides an 752 

overview of our algorithm to simulate family members based on our gold standard samples. In 753 

brief, the approach uses phased genotype data from high quality samples and proceeds by 754 

conditionally generating relatives for each sample. We restricted the algorithm to siblings, 1st 755 

cousins, 2nd cousins and 3rd cousins (In the figures abbreviated as S1, S2, S3 and S4), spanning 756 

a range of the most relevant degrees of relationships for IGG purposes. For each of the 24 gold 757 

standard samples, we repeated this relative simulation process 1000 times for each type of 758 

relation. In detail, the simulation process starts at the first SNP on a chromosome and initiates 759 

by drawing alleles from the gold standard sample with probabilities equal to the identical by 760 

descent (IBD) probabilities for each degree of relationship (14, 52). Moving along the 761 

chromosome, the process either continues with the same IBD state as for the previous marker 762 

or change IBD state with probabilities equal to the rate of recombination between the markers. 763 

Ultimately, the process generates a complete high-density SNP dataset for the relative with a 764 

mosaic of shared DNA with the gold standard sample. In contrast to approaches that employ 765 
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population allele frequencies and gene dropping to generate pedigree data, our approach i) 766 

takes into account the known phased genotype of the original sample and ii) uses phased 767 

haplotypes from the population to draw non-IBD alleles; thus, mitigating potential biases 768 

caused by linkage disequilibrium. The novelty in our approach is the combination of 769 

conditional simulation with the final step in which the original, gold standard, genotype is 770 

replaced with an imperfect sample.  771 

Inferring degree of relatedness. Genealogy assessment, referred here as kinship classification, 772 

was performed by inferring the degree of relatedness of the imperfect sample to the simulated 773 

relatives (see Figure S1). The term imperfect is used as an umbrella for inhibited, degraded or 774 

quantity-reduced DNA samples. We used a version of what we call the segment approach to 775 

infer degree of relatedness between individuals. The algorithm is described in for example (13, 776 

29, 30) and detailed for forensic purposes in Kling et al. (14). The version implemented by 777 

direct-to-consumer company Ancestry.com is also outlined in a white paper (28). This is a 778 

method that identifies haplotypes between individuals that are identical by descent (IBD) 779 

without requiring information on allele frequencies in the population. Briefly, the most naïve 780 

version of the approach measures stretches of genotypes where at least one nucleotide is 781 

identical at each base position between the pair of individuals (IBS1 or IBS2) to ultimately 782 

infer IBD segments. The stretches are only terminated if opposite homozygous genotypes are 783 

detected (IBS0). Furthermore, in order to accurately define a segment as IBD the algorithm 784 

needs thresholds, firstly the length as measured in cM and secondly the total number of 785 

overlapping SNPs in each segment. Both thresholds have the purpose of excluding non-IBD 786 

segments. The length restriction was tuned to include short enough segments for distant 787 

relatives and still large enough not to include unrelated individuals as relatives. We used 5 cM 788 

as the length detection threshold, corroborated by previous studies (53) as well as our own 789 
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studies (Figure S7). We further explored the impact of the second threshold i.e., the number 790 

of overlapping SNPs required in each segment. As the imperfect samples may contain several 791 

locus dropouts, a default requirement of say 500 SNPs can result in missed segments. 792 

Therefore, we explored 100-700 SNPs as thresholds, detailed in Figure S6. Finally, in order to 793 

explore the isolated effect of decreasing number of markers, we thinned the data, resulting in 794 

reduced marker subsets ranging from the original 519,300 down to 10,379 markers (Figure 795 

S3). We proceeded to infer relatedness with each reduced set of markers using the methods 796 

previously described. 797 
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