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Highlight 11 

Implementing sophisticated mathematical approaches such as machine learning authorisms in 12 
GWAS can simultaneously consider a wide range of interconnected biological processes and 13 
mechanisms that shape the phenotype of complex traits such as yield and its components in 14 
soybean. 15 

Abstract 16 

Genome-wide association study (GWAS) is currently one of the important approaches for 17 
discovering quantitative trait loci (QTL) associated with traits of interest. However, insufficient 18 
statistical power is the limiting factor in current conventional GWAS methods for characterizing 19 
quantitative traits, especially in narrow genetic bases plants such as soybean. In this study, we 20 
evaluated the potential use of machine learning (ML) algorithms such as support vector machine 21 
(SVR) and random forest (RF) in GWAS, compared with two conventional methods of mixed 22 
linear models (MLM) and fixed and random model circulating probability unification 23 
(FarmCPU), for identifying QTL associated with soybean yield components. In this study, 24 
important soybean yield component traits, including the number of reproductive nodes (RNP), 25 
non-reproductive nodes (NRNP), total nodes (NP), and total pods (PP) per plant along with yield 26 
and maturity were assessed using 227 soybean genotypes evaluated across four environments. 27 
Our results indicated SVR-mediated GWAS outperformed RF, MLM and FarmCPU in 28 
discovering the most relevant QTL associated with the traits, supported by the functional 29 
annotation of candidate gene analyses. This study for the first time demonstrated the potential 30 
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benefit of using sophisticated mathematical approaches such as ML algorithms in GWAS for 31 
identifying QTL suitable for genomic-based breeding programs.    32 

Keywords: Data-driven Models; FarmCPU; Genome-wide association study; MLM; Soybean 33 
Breeding; Support vector machine. 34 

Introduction 35 

Soybean (Glycine max [L.] Merr.) is known as one of the most important legume crops with 36 
substantial economic value (Rębilas et al., 2020). Soybean is widely used for food, feed, fiber, 37 
biodiesel, and green manure (Temesgen and Assefa, 2020). Despite the importance of genetic 38 
improvement in soybean yield, the soybean germplasm has in general a narrow genetic basis, 39 
especially within North American germplasm, which has resulted in limited enhancement of the 40 
genetic gain, historically (Xavier and Rainey, 2020). Therefore, there is a great need for 41 
analytical breeding to explore the optimum genetic potential of soybean (Mangena, 2020; Suhre 42 
et al., 2014).  43 

Analytical breeding strategy as an alternate breeding approach requires a better understanding of 44 
the factors, or individual traits, responsible for the development, growth, and yield (Richards, 45 
1982). This strategy considers highly correlated secondary traits with the trait of interest as the 46 
selection criteria that can make empirical selection more efficient for improving the genetic gain 47 
(Reynolds, 2001; Richards, 1982; Xavier and Rainey, 2020). The application of the analytical 48 
approaches in plant breeding programs has been limited due mainly to lack of sufficient 49 
resources, as they are time and labor-consuming (Richards, 1982; Xavier et al., 2018). Therefore, 50 
breeders are restricted to evaluating secondary traits in a small number of genotypes, which 51 
results in the limitation of the knowledge in the genome-to-phenome analysis process (Kahlon et 52 
al., 2011; Nico et al., 2019; Robinson et al., 2009). 53 

Yield potential in soybean is mainly determined by the following yield component traits: the 54 
total number of pods, nodes, reproductive nodes, non-reproductive nodes, and pods per plant 55 
(Pedersen and Lauer, 2004; Reynolds, 2001; Xavier et al., 2018; Xavier and Rainey, 2020; 56 
Yoosefzadeh-Najafabadi et al., 2021b). Of these, the total number of nodes and pods play more 57 
important roles in seed yield production than other yield components (Robinson et al., 2009; 58 
Yoosefzadeh-Najafabadi et al., 2021b). Several studies reported a steady increase in the total 59 
number of nodes and the total number of pods in soybean cultivars from 1920 to 2010 (Kahlon et 60 
al., 2011; Suhre et al., 2014; Xavier and Rainey, 2020). These findings may highlight the 61 
importance and potential use of the phenotypic and genotypic information on these traits, along 62 
with yield per se, as selection criteria in cultivar development programs (Ma et al., 2001).  63 

Genetic studies of soybean yield component traits can accelerate the breeding process more 64 
accurately (Xavier and Rainey, 2020). Genome-Wide Association Studies (GWAS), as one of 65 
the common genetic approaches, can be implemented on diverse populations to detect the 66 
quantitative trait loci (QTL) associated with the soybean yield component traits (Kaler et al., 67 
2020). Associated QTL can be used for screening large soybean populations in a short time with 68 
less elaborate efforts (Xavier et al., 2018). Several GWAS algorithms have been developed for 69 
genetic studies, such as mixed linear models (MLM), multiple loci linear mixed model 70 
(MLMM), and fixed and random model circulating probability unification (FarmCPU) (Kaler et 71 
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al., 2020). However, due to the narrow genetic base of some plant species, including soybean, 72 
the conventional approaches may not have enough statistical power to detect reliable QTL (Kaler 73 
et al., 2020; Mohammadi et al., 2020; Xavier and Rainey, 2020). Therefore, the development of 74 
more sophisticated statistical methods is required in order to establish effective GWAS methods 75 
for plant species with a narrow genetic base.  76 

Current GWAS methods are based on the conventional statistical methods that are useful for 77 
studying less complex traits in plant species with broader genetic bases (Lipka et al., 2015; 78 
Pasaniuc and Price, 2017). Machine learning (ML) algorithms as powerful and reliable 79 
mathematical methods can be considered as an alternative to conventional statistical methods for 80 
performing GWAS, which are efficient for studying more complex traits in plants with narrow 81 
genetic base (Xavier and Rainey, 2020). Recently, the use of ML algorithms has been reported in 82 
different areas such as plant science (Hesami et al., 2020; Yoosefzadeh-Najafabadi et al., 2021a), 83 
animal science (Tulpan, 2020), human science (Chen and Verghese, 2020), engineering (Kim et 84 
al., 2020), and computer science (Jordan and Mitchell, 2015). The application of ML algorithms 85 
in GWAS was previously investigated in humans by Szymczak et al. (2009). They explained a 86 
possible use of different ML algorithms such as artificial neural networks (ANN), Bayesian 87 
network analysis (BNA), and random forests (RF) in GWAS for human disease studies 88 
(Szymczak et al., 2009). One of the most common used ML algorithms is RF developed by 89 
Breiman (2001), which generates a series of trees from the independent samples for better 90 
prediction performance (Meinshausen, 2006). The latter algorithm has been widely used in plant 91 
genomics (Ogutu et al., 2011), phenomics (Yoosefzadeh-Najafabadi et al., 2021a), proteomics 92 
(Jamil et al., 2020), and metabolomics (Sun et al., 2020).  93 

The first and only use of the RF-mediated GWAS in soybean, for detecting the genomics 94 
association in soybean yield component traits, was reported by Xavier and Rainey (2020). 95 
Support vector machine (SVM) is another common algorithm that can detect behavior and 96 
patterns of nonlinear relationships (Auria and Moro, 2008; Hesami and Jones, 2020; Su et al., 97 
2017). Theoretically, SVM should have high performance due to the use of structural risk 98 
minimization instead of the empirical risk minimization inductive principles (Belayneh et al., 99 
2014; Yoosefzadeh-Najafabadi et al., 2021a). There is a significant number of reports on the 100 
successful using of SVM in prediction problems (Denton and Salleb-Aouissi, 2020; Duan et al., 101 
2005; Hesami et al., 2020; Tulpan, 2020; Yoosefzadeh-Najafabadi et al., 2021a). Support vector 102 
regression (SVR) is known as the regression version of SVM that commonly used for continuous 103 
dataset. There are also reports on the successful use of SVR for addressing plant prediction 104 
problems (Awad and Khanna, 2015). However, the possible use of SVR in GWAS is still 105 
unexplored in plant science area. 106 

In this study we aimed to: (1) gain a better understanding of the genetic relationships between 107 
soybean yield and its component traits, and (2) investigate the potential use of RF and SVM 108 
algorithms in GWAS for discovering QTL underlying soybean yield components as compared to 109 
conventional GWAS methods of MLM and FarmCPU. The results of this study will help 110 
soybean breeders to have a better perspective of exploiting ML algorithms in GWAS studies, and 111 
may offer them new genomic tools for screening high yielding genotypes with improved genetic 112 
gain based on genomic regions associated with yield components.  113 
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Materials and Methods 114 

Population and experimental design 115 

An GWAS panel of 250 soybean genotypes was grown at the University of Guelph, Ridgetown 116 
Campus in two locations, Palmyra (42°25'50.1"N 81°45'06.9"W, 195 m above sea level) and 117 
Ridgetown (42°27'14.8"N 81°52'48.0"W, 200m above sea level) in Ontario, Canada, in two 118 
consecutive years, 2018 and 2019. The panel used in this study consisted of the main germplasm 119 
of the soybean breeding program at the University of Guelph, Ridgetown Campus, that has been 120 
established over 35 years for cultivar development and genetic studies. The randomized 121 
complete block design (RCBD) with two replications was used for all four environments. In 122 
general, there were 500 and 1000 research plots per environment and year, respectively. Each 123 
plot consisted of five 4.2 m long rows with 57 seeds per m2 seeding rate.  124 

Phenotyping 125 

In this experiment, soybean seed yield (t ha-1 at 13% moisture) for each plot was estimated by 126 
harvesting three middle rows. Soybean seed yield components, including the total number of 127 
reproductive nodes per plant (RNP), the total number of non-reproductive nodes per plant 128 
(NRNP), the total nodes per plant (NP), and the total number of pods per plant (PP), were 129 
measured using 10 randomly selected plants from each plot. The maturity was recorded as the 130 
number of days from planting to physiological maturity (R7, (Fehr and Caviness, 1971) for each 131 
genotype. 132 

Genotyping 133 

Young trifoliate leaf tissue for each soybean genotype from the first replication of the trail at the 134 
Ridgetown in 2018, were collected and in a 2 mL screw-cap tube. The leaf samples were freeze-135 
dried for 72 hours, using the Savant ModulyoD Thermoquest (Savant Instruments, Holbrook, 136 
NY). By using the DNA Extraction Kit (SIGMA®, Saint Louis, MO), DNA was extracted for 137 
soybean genotypes, and the quantity of DNAs was checked via Qubit® 2.0 fluorometer 138 
(Invitrogen, Carlsbad, CA). For genotyping-by-sequencing (GBS), DNA samples were sent to 139 
Plate-forme D’analyses Génomiques at Université Laval (Laval, Quebec, Canada). The GWAS 140 
panel was genotyped via a GBS protocol based on the enzymatic digestion with ApeKI (Sonah et 141 
al., 2013). Single-nucleotide polymorphisms (SNPs) were called by the Fast GBS pipeline 142 
(Torkamaneh et al., 2020), using Gmax_275_v2 reference genome. Markov model was used to 143 
impute the missing loci, and SNPS with a minor allele frequency (MAF) less than 0.05 were 144 
removed below the threshold. In total, after checking the quality of reading sequence and 145 
removing SNPs with more than 50% heterozygosity, 23 genotypes were eliminated from the 146 
experiment and 17,958 high-quality SNPs from 227 soybean genotypes used for genetic analysis.  147 

Statistical analyses 148 

The best linear unbiased prediction (BLUP) as one of the common linear mixed models 149 
(Goldberger, 1962) was used to estimate the genetic values of each soybean genotype. Also, R 150 
package lme4 (Bates et al., 2014) was used to analyze yield and yield components with 151 
‘environment’ as a fixed effect and ‘genotype’ as a random effect. To control for the possible 152 
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soil heterogeneity among the plots within a given block and reduce the associated experimental 153 
errors, nearest-neighbor analyses (NNA) was used as one of the common error control methods 154 
(Bowley, 1999; Katsileros et al., 2015; Stroup and Mulitze, 1991). Outliers were determined in 155 
the raw dataset based on the protocols proposed by Bowley (1999) and treated the same as 156 
missing data points in the analysis. Overall, the following statistical model was used in this 157 
study: 158 

��� �  � � ���	 � 
� � �� � 
��� � ���  , � � 1, … , �; � � 1, … , �  (Eq 5.1) 159 

Where Yij stands for the trait of interest (soybean seed yield and yield component traits) as a 160 
function of an intercept μ, f(s) stands for the spatial covariate, Gi is the random genotype effect, 161 
Ej stands for the fixed environment effect, GEij is the genotype x environment interaction effect, 162 
and εij stands for the residual effect. 163 

The heritability was calculated for soybean seed yield and yield components using lme4 open-164 
source R package (Bates et al., 2007) based on the following equation:  165 

�� �
 
�

�   

 
�

��  
�

�   
    (Eq 5.2) 166 

where  2G stands for the genotypic variance, and  2E is the environmental variance.   167 

Analysis of population structure 168 

A total of 17,958 high-quality SNPs from 227 soybean genotypes were used to conduct 169 
population structure analysis using fastSTRUCTURE (Raj et al., 2014). Five runs were 170 
conducted for K set from 1 and 15 to estimate the most appropriate number of subpopulations by 171 
using the K tool from the fastSTRUCTURE software. 172 

Association studies 173 

Since different GWAS methods may capture different genomic regions (Yang et al., 2018). 174 
Therefore, MLM and FarmCPU (two most common GWAS methods) and RF and SVM (two 175 
most common machine learning algorithms) were used in this study. MLM and FarmCPU were 176 
implemented by using GAPIT package (Lipka et al., 2012), and RF, as well as SVM, were 177 
conducted through the Caret package (Kuhn et al., 2020) in R software version 3.6.1. A brief 178 
description of each of the GWAS methods is provided below:  179 

Mixed Linear Model (MLM): This GWAS is based on the likelihood ratio between the full 180 
model, consisting of the marker of interest, and the reduced model, which is known as the model 181 
without the marker of interest (Wen et al., 2018).  182 

Fixed and random model circulating probability unification (FarmCPU): This GWAS takes 183 
the advantages of using MLM as the random model, and stepwise regression as the fixed model 184 
iteratively (Liu et al., 2016). False discovery rate (FDR) is used for setting the threshold both in 185 
the FarmCPU and MLM models (Benjamini and Hochberg, 1995). 186 
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Random Forest (RF): This machine-learning algorithm was first implemented by Xavier and 187 
Rainey (2020) in a soybean GWAS study. This method is known as the powerful non-parametric 188 
regression approach that is derived from aggregating the bootstrapping in various decision trees 189 
(Breiman, 2001). In this experiment, a 1000-set of decision trees constructed the forest, and the 190 
GWAS analysis was done by measuring the importance of each feature (Botta et al., 2014), 191 
which was an SNP in this study.  192 

Support vector regression (SVR): This machine learning algorithm is known as one of the 193 
common supervised learning methods in prediction problems (Cortes and Vapnik, 1995). This 194 
algorithm is based on constructing a set of hyperplanes that can be useful in regression problems 195 
(Fletcher, 2009). The association statistics in this algorithm can be achieved by estimating the 196 
feature importance that was previously proposed by Weston et al. (2001). In this experiment, 197 
SNP markers were selected as inputs, and the traits were selected as target variables for 198 
estimating the feature importance.  199 

Variable Importance measurement 200 

As one of the common indices for tree-based algorithms, the impurity index was chosen as the 201 
metric of the feature importance for the RF algorithm. Regarding the SVR algorithm, the 202 
variable importance method for SVR Weston et al. (2001) was implemented in this dataset. For 203 
both algorithms, the importance of each SNP was scaled based on 0 to 100 percent scale. Since 204 
there is no confirmed way of defining the significant threshold in the tested algorithms, the 205 
global empirical threshold that provides the empirical distribution of the null hypothesis 206 
(Churchill and Doerge, 1994; Doerge and Churchill, 1996) was used for establishing threshold in 207 
this study. The global empirical threshold was estimated based on fitting the ML algorithm, 208 
storing the highest variable importance, repeating 1000 times, and select the SNPs based on 209 
α=0.05.  210 

Data-driven model processes 211 

In order to estimate the feature importance in RF and SVR algorithms, a five-fold cross-212 
validation strategy (Siegmann and Jarmer, 2015) with ten repetitions was applied on the dataset. 213 
All of the tested machine learning algorithms were optimized for their parameters for this dataset 214 
accordingly. 215 

Functional annotation of candidate SNPs 216 

For each tested GWAS model, the flanking regions of each QTL was determined using LD decay 217 
distance (Fig.1), and then potential candidate genes were retrieved using the G. max cv. William 218 
82 reference genome, gene models 2.0 in SoyBase (https://www.soybase.org). After listing 219 
potential candidate genes in defined windows around each significant SNP, at the peak of each 220 
QTL, Gene Ontology annotation, GO term enrichment (https://www.soybase.org), and the report 221 
from previous studies were used as the criteria to select and report the most relevant candidate 222 
genes associated with the identified QTL. The Electronic Fluorescent Pictograph (eFP) browser 223 
for soybean (www.bar.utoronto.ca) was also used to generate additional information such as 224 
tissue- and developmental-stage dependent expression (based on transcriptomic data from 225 
Severin et al. (2010)) for the identified candidate genes. 226 
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Visualization 227 

All of the visualizations in this study were conducted using the ggplot2 package (Wickham, 228 
2011) in R version 3.6.1 software and Microsoft Excel software (2016). 229 

Results 230 

Phenotyping evaluations 231 

The tested GWAS panel of 227 soybean genotypes showed significant variations among the 232 
genotypes for seed yield, maturity, and yield component traits. The distribution of the phenotypic 233 
measures for the traits across the four environments is presented in Fig. 2. The highest 234 
heritability was observed for maturity with an estimate of 0.78 followed by 0.34, 0.33, 0.31, and 235 
0.30 for NP, RNP, NRNP, and PP, respectively (Fig. 2). The lowest heritability was estimated 236 
for yield with a value of 0.24 (Fig. 2). Soybean seed yield and PP showed the highest variability 237 
across the environments (Fig. 2).  238 

The linear correlations among all the measured traits were estimated using the coefficients of 239 
correlation (r). Based on the results (Fig. 3), all traits were positively correlated with each other, 240 
except the NRNP that was negatively associated with yield, maturity, RNP, NP, and PP. NP 241 
showed the highest correlation with the RNP (r= 0.97) and NRNP (r= -0.63). RNP had the 242 
highest correlation (r =0.86) with yield among all the tested yield components (Fig. 3). 243 

Genotyping evaluations 244 

For the tested GWAS panel, high-quality SNPs were obtained from 210M single-end Ion Torrent 245 
reads that were proceeded with Fast-GBS.v2. From a total of 40,712 SNPs, 17,958 SNPs were 246 
polymorphic and mapped to 20 soybean chromosomes. The minimum and maximum number of 247 
SNPs were 403 and 1780 on chromosomes 11 and 18, respectively. Overall, the average number 248 
of SNPs across all the 20 chromosomes was 898, with the mean density of one SNP for every 249 
0.12 cM across the genome. 250 

Population structure and kinship 251 

The structure profile for the tested population is presented in Fig. 4. The result of genotypic 252 
evaluations suggested that the tested GWAS panel was composed of four to seven 253 
subpopulations. Therefore, we chose to conduct the structure analysis using K=7 as the 254 
appropriate K for the structure profile of the tested GWAS panel (Fig. 4). In order to reduce the 255 
confounding, the kinship was also estimated between genotypes of the GWAS panel. 256 

GWAS analysis  257 

The average value for soybean maturity in the tested GWAS panel was 106 days with a standard 258 
deviation of 5 days (Fig. 3). Association analysis by the MLM method identified nine associated 259 
SNP markers located on chromosomes 2 and 19 (Fig. 5A). Using FarmCPU, a total of nine 260 
associated SNP markers were located on chromosomes 2, 19, and 20 (Fig. 5A). By using the RF 261 
method, the total of three SNP markers on chromosomes 3, 16, and 17 were associated with the 262 
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soybean maturity, whereas SVR-mediated GWAS detected 11 associated SNP markers located 263 
on chromosomes 2, 6, 10, 16, 19, and 20 (Fig. 5A).  264 

SVR-mediated GWAS detected five QTL directly related to the reproductive period and R8 full 265 
maturity (Table 1). The average soybean seed yield in the GWAS panel was 3.5 t ha-1 with a 266 
standard deviation of 0.45 (Fig. 3). Using MLM, FarmCPU, RF, and SVR approach, we 267 
identified two, three, five, and 18 SNP markers associated with the yield, respectively (Fig. 5B). 268 
The SNP markers identified by MLM and FarmCPU were located on chromosomes 6 and 8. 269 
Using the RF-mediated GWAS method, associated SNP markers were located on chromosomes 270 
4, 7, 12, and 17. By using the SVR-mediated GWAS method, the SNP markers were located on 271 
chromosomes 3, 4, 6, 7, 15, 19, and 20 (Fig. 5B). In SVR-mediated GWAS, the identified QTL 272 
were co-localized with eight previously reported related QTL such as seed yield, seed weight, 273 
and seed set (Table 2). However, other tested GWAS methods could not co-localized with any 274 
QTL associated with seed yield (Table 2). 275 

The average NP in the tested GWAS panel was 15.21 nodes with a standard deviation of 0.77 276 
nodes (Fig. 3). By using the MLM and FarmCPU methods, one and two associated SNP markers 277 
were detected, respectively (Fig. 6A). Four and ten associated SNP markers were detected by NP 278 
using RF and SVR methods, respectively. SVR-mediated GWAS was the only method that were 279 
co-localized with three previously reported NP-related QTL (Table 3).  The average NRNP was 280 
3.33 nodes with a standard deviation of 0.28 nodes (Fig. 3). A total of two, three, five, and ten 281 
associated SNP markers were detected using the MLM, FarmCPU, RF, and SVR methods, 282 
respectively (Fig. 6B). The detected SNP markers using the SVR method were located on 283 
chromosomes 4, 7, 18, 19, and 20, whereas SNP markers identified through RF were located on 284 
chromosomes 1, 4, 7, 18, and 19 (Fig. 6B). Chromosomes number 4, 8, and 15 were identified as 285 
carrying SNP markers with NRNP using FarmCPU. The MLM method identified SNP markers 286 
located on chromosomes 8 and 15, which most of the detected QTL co-localized with previously 287 
reported QTL related to seed weight, seed protein, water use efficiency, first flower, and soybean 288 
cyst nematode (Table 4). 289 

The average RNP was 11.89 nodes with a standard deviation of 0.98 nodes (Fig. 3). Based on the 290 
results of MLM and FarmCPU methods, four associated SNP markers with RNP were located on 291 
chromosomes 8 and 19. Using the RF method, four associated SNP markers were identified on 292 
chromosomes 8, 9, 15, and 20. Using the SVR method, 11 SNP markers were associated with 293 
RNP located on chromosomes 4, 7, 8, 15, 18, 19, and 20 (Fig. 7A). Regardless of the type of 294 
GWAS methods used in this study, we found SNP markers associated with the trait on 295 
chromosome 8. The position of the associated SNP marker on chromosome 8 was identical both 296 
in SVR and RF (462.3 Kbp) and MLM and FarmCPU (481.6 Kbp). The list of detected QTL for 297 
RNP is presented in Table 5. The average value for PP in the tested GWAS panel was 45.02 pods 298 
with a standard deviation of 8.54 pods. We did not detect any SNP marker associated with PP 299 
using the MLM and FarmCPU methods. However, by using the RF method, four SNP markers 300 
were found to be associated with PP and located on chromosomes 7, 10, 19, and 20 (Fig. 7B). 301 
Twelve associated SNP markers were found by SVR that were located on chromosomes 6, 9, 10, 302 
11, 15, 18, and 19 (Fig. 7B). The GWAS of chromosome 10 with PP were found both in RF and 303 
SVR with 4.6 cM distance far from each other. In PP, MLM and FarmCPU did not detect any 304 
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related QTL for this trait, while SVR-mediated GWAS was identified seven QTL directly related 305 
to the pod number (Table 6).  306 

Identification of candidate genes within QTL 307 

According to the flanking regions of each QTL which was determined using LD decay distance, 308 
150-kbp upstream and downstream of each SNP’s peak were considered to identify potential 309 
candidate genes (Fig. 1). Candidate genes were extracted for each significant peak SNP with 310 
high allelic effect and based on the gene annotation, enrichment tools and previous studies 311 
(Table S1).  For maturity, three peak SNPs (Chr2_695362, Chr2_720134, and Chr19_47513536) 312 
had the highest allelic effect than other detected peak SNPs (Fig. 8A). On the basis of the gene 313 
annotation and expression within QTL, Glyma.02g006500 (GO:0015996) and Glyma.19g224200 314 
(GO:0010201) were identified as the strong candidate genes for maturity, which encode 315 
chlorophyll catabolic process and phytochrome A (PHYA) related genes, respectively. 316 
Glyma.02g006500 (GO:0015996) was exactly detected in the peak SNP position of 317 
Chr2_695362, whereas Glyma.19g224200 (GO:0010201) was 119 Kbp far from the detected 318 
peak SNP at Chr19_47513536. In yield, the peak SNP with the position of Chr7_1032587 had 319 
the highest allelic effect in comparison with other detected peak SNPs (Fig. 8B). Within a 77 320 
Kbp above from the detected peak SNP (Chr7_1032587), Glyma.07G014100 (GO:0010817) was 321 
identified, which encodes the regulation of hormone levels, as the strongest candidate genes in 322 
yield. For NP, two peak SNPs (Chr7_1032587 and Chr7_1092403) had the highest allelic effect 323 
among all detected peak SNPs (Fig. 8C). SNP peak position of Chr7_1032587 was detected in 324 
common for yield, NP, and NRNP. Glyma.07G205500 (GO:0009693) and Glyma.08G065300 325 
(GO:0042546) were detected as the strongest candidate genes both in NP and NRNP, which 326 
encode UBP1-associated protein 2C and cell wall biogenesis, respectively. Both detected gene 327 
candidates were exactly at the associated peak SNPs at Chr7_1032587 and Chr8_5005929 (Fig. 328 
8D). Regarding peak SNPs associated with RNP, the highest allelic effects were found in peak 329 
SNPs of Chr9_40285014 and Chr15_34958361 (Fig. 8E). Glyma.15G214600 (GO:0009920) and 330 
Glyma.15G214700 (GO:0009910), which encode cell plate formation involved in plant-type cell 331 
wall biogenesis and acetyl-CoA biosynthetic process, as strong candidate genes in NRNP. 332 
Glyma.15G214600 (GO:0009920) and Glyma.15G214700 (GO:0009910) were 127 and 90 Kbp 333 
far from the detected peak SNP at Chr15_3495836, respectively. In PP, the highest allelic effects 334 
were found in peak SNPs at Chr7_15331676, Chr11_5245870, and Chr18_55469601 (Fig. 8F). 335 
Glyma.07G128100 (GO:0009909) was the strongest candidate genes for PP, which encodes 336 
regulation of flower development. Glyma.07G128100 (GO:0009909) was detected exactly in the 337 
peak SNP position of Chr7_15331676. 338 

Discussion 339 

One of the objectives of this study was to gain a better understanding of the roles of soybean 340 
yield component traits in the production of total seed yield and how these traits can be used for 341 
facilitating the development of high-yielding soybeans. The genetic dissection of soybean yield 342 
component traits in order to develop genetic and genomics toolkits can be useful for designing 343 
breeding population and selection criteria aiming at improving yield genetic gains in new 344 
cultivars (Cooper et al., 2009; Hu et al., 2020; Xavier and Rainey, 2020). For this aim, a wide 345 
range of analyses, including Pearson correlation, normality and distribution plots, GWAS both in 346 
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combined and separate environments, and functional annotation of candidate genes and QTL, 347 
were performed in this study. The collective evaluation of the mentioned analysis contributes to 348 
building the wide perspectives of the genetic architecture of the soybean yield component traits. 349 
One of the important factors for genetic studies is to evaluate the phenotypic variation within 350 
genotypes and environments. High phenotypic variation was observed for yield and PP, while 351 
maturity and NP had the lowest phenotypic variation across the tested environments. These 352 
findings are in line with the results of previous research on yield component traits (Kahlon and 353 
Board, 2012; Xavier and Rainey, 2020). The heritability and correlation analyses showed that NP 354 
had the highest heritability and significant linear correlations with RNP and PP. Also, PP had the 355 
highest correlation with yield among all the tested soybean yield components. The number of 356 
nodes and pods in soybean are known as the two of the key soybean yield components that play 357 
an important role in determining the final soybean seed yield (Herbert and Litchfield, 1982; 358 
Kahlon and Board, 2012; Xavier and Rainey, 2020). However, studies showed the low 359 
heritability rates for soybean yield components, especially NP and PP (KUSWANTORO, 2017; 360 
Sulistyo and Sari, 2018; Xavier et al., 2016a; Xavier and Rainey, 2020). The nature of these 361 
traits can explain low heritability rates as they are mostly affected by environmental factors 362 
(Price and Schluter, 1991). Although heritability indicates the strength of the relationship 363 
between phenotype and genetic variation of the particular trait, it does not indicate the value of 364 
the trait for genetic study (Cassell, 2009). Different low heritable traits are highly correlated with 365 
significant economic traits (Cassell, 2009). In soybean, yield can be considered as the most 366 
important economic trait that is highly determined by yield components. Therefore, any genetic 367 
and environmental studies around yield components can open the possibility of overall yield 368 
improvement in major crops such as soybean.  369 

GWAS is known as one of the most important genetic toolkits for detecting QTL associated with 370 
quantitate traits (Kaler et al., 2020). There are several statistical methods implemented in GWAS 371 
for improving the detection of associated SNP markers with the trait of interest. While 372 
conventional GWAS are appropriate approaches for detecting SNP markers with large effects on 373 
complex traits, they are, however, underpowered for the simultaneous consideration of a wide 374 
range of interconnected biological processes and mechanisms that shape the phenotype of 375 
complex traits (Lee et al., 2020). Therefore, using variable importance values in ML algorithms 376 
for identifying SNP-trait associations may improve the power of ML-mediated GWAS for 377 
discovering variant-trait association with higher resolution (Szymczak et al., 2009). The variable 378 
importance methods based on linear and logistic regressions, support vector machines, and 379 
random forests are well established in the literature (Grömping, 2009; Williamson et al., 2020; 380 
Wu and Liu, 2009; Yoosefzadeh-Najafabadi et al., 2021a). Among all the tested GWAS methods 381 
in this study, SVR-mediated GWAS was the best method to detect SNP markers with high allelic 382 
effects associated with the tested traits. The advantage of SVR-mediated GWAS over 383 
conventional GWAS models can be explained by the presence of a nonlinear relationship 384 
between input and output variables, which is used to build an algorithm with accurate prediction 385 
ability (Kaneko, 2020). Therefore, genomic regions could be better detected by SVR-mediated 386 
GWAS because of its ability to consider the interaction effects between SNPs rather than p-387 
values for individual SNP-trait GWAS tests.  388 

None of the detected QTL by MLM, FarmCPU, and RF were reported to be associated directly 389 
with soybean maturity. However, using SVR-mediated GWAS, five QTL were detected on 390 
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chromosomes 16 and 19 specifically related to the soybean maturity. Those QTL were 391 
previously reported by Sonah et al. (2015) and Copley et al. (2018) in separate studies. Also, the 392 
peak SNP position of Chr19_47513536 detected by SVR-mediated GWAS had the highest allelic 393 
effect among all the detected SNPs in soybean maturity, which is in line with Sonah et al. 394 
(2015). For soybean seed yield, five QTL detected by SVR-mediated GWAS were reported 395 
previously (Copley et al., 2018; Hu et al., 2014), while none of the detected QTL from other 396 
tested GWAS methods was previously reported for this trait. There was no previous study on the 397 
genetic structure of NRNP and RNP, therefore, all the detected QTL in this study are presented 398 
for the first time. For PP, conventional GWAS methods were not able to detect any associated 399 
QTL. However, using SVR-mediated GWAS, a total of seven QTL were detected to be related to 400 
pod numbers based on previous studies (Zhang et al., 2015a). It would be necessary to 401 
emphasize that the average allelic effects of all detected QTL presented in Fig. 8 was not directly 402 
estimated by the tested GWAS methods. The RF and SVR-mediated GWAS methods do not 403 
specifically provide an allele effect therefore, the aim of this study was mostly focused on 404 
detecting the associated genes and QTL underlying the soybean yield, maturity, and yield 405 
components.  406 

The results of candidate gene identifications within identified QTL by SVR-mediated GWAS 407 
analyses reveled important information. For example, from all the detected genes using SVR-408 
mediated GWAS for maturity, candidate gene Glyma.02g006500 (GO:0015996) is a protein 409 
ABC transporter 1, that is annotated as a chlorophyll catabolic process and located exactly in the 410 
peak SNP position at Chr02_695362. ATP-binding cassette (ABC) transporter genes play 411 
conspicuous roles in different plant growth and developmental stages by transporting different 412 
phytochemicals across endoplasmic reticulum (ER) membranes (Hwang et al., 2016). Because of 413 
the central roles of ABC transporters in transporting biomolecules such as phytohormones, 414 
metabolites, and lipids, they play important roles in plant growth and development as well as 415 
maturity (Block and Jouhet, 2015; Hwang et al., 2016). Moreover, recent studies revealed that 416 
ER uses fatty acid building blocks made in the chloroplast to synthesize Triacylglycerol (TAG). 417 
Therefore, ABC transporter genes are important for the normal accumulation of Triacylglycerol 418 
(TAG) during the seed-filling stage and maturity (Block and Jouhet, 2015; Kim et al., 2013). 419 
Additionally, Glyma.19g224200 (GO:0010201) in E3 locus, which was previously discovered by 420 
Buzzell (1971) and molecularly characterized as a phytochrome A (PHYA) gene (Watanabe et 421 
al., 2009), was detected through the SVR-mediated GWAS. Phytochromes, through 422 
PHYTOCHROME INTERACTING FACTOR (PIF), regulate the expression of some specific 423 
genes encoding rate-limiting catalytic enzymes of different plant growth regulators (e.g., abscisic 424 
acid, gibberellins, auxin) and, therefore, play crucial roles in plant maturity (Legris et al., 2019). 425 
In addition, PHYB is inactivated after imbibition shade signals, which repress PHYA-dependent 426 
signaling in the embryo that results in the maturity of seeds by preventing germination (Casal, 427 
2013; De Wit et al., 2016). This is obtained by regulating the balance between abscisic acid and 428 
gibberellin. Subsequently, abscisic acid transports from the endosperm to the embryo by ABC 429 
transporter (De Wit et al., 2016).  430 

Regarding NRNP, candidate gene Glyma.07G205500 (GO:0009693- UBP1-associated protein 431 
2C) that annotated as ethylene biosynthetic process was located exactly in the peak SNP position 432 
of Chr7_37469678, was detected by SVR-mediated GWAS. An interaction screen with the 433 
heterogeneous nuclear ribonucleoprotein (hnRNP) results in the production of 434 
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oligouridylatebinding protein 1 (UBP1)-associated protein (Lambermon et al., 2002). It has been 435 
well documented that this protein plays important roles in several physiological processes such 436 
as responses to abiotic stresses (Li et al., 2002), leaf senescence(Kim et al., 2008), floral 437 
development (Streitner et al., 2008), and chromatin modification (Liu et al., 2007). In addition, 438 
previous studies showed that the production of productive or non-reproductive nodes is 439 
completely accompanied by the upregulation or downregulation of this protein (Bäurle and 440 
Dean, 2008; Na et al., 2015). In addition, Glyma.08G065300 (GO:0042546- MADS-box 441 
transcription factor) that is associated with cell wall biogenesis, was located in the SNP position 442 
of Chr8_5005929.  The genes of the MADS-box family can be considered as the main regulators 443 
for cell differentiation and organ determination (Lee et al., 2013). The floral organ recognition 444 
MADS-box family has been categorized into A, B, C, D, and E classes. Among these classes, 445 
class E was shown to be associated with reproductive organ development (Hussin et al., 2021). 446 
Indeed, activation or repression of this transcription factor leads to the development of nodes to 447 
productive or non-productive nodes (Ditta et al., 2004; Gao et al., 2010; Liu et al., 2013). 448 

Gene expression data provided by Severin et al. (2010) noted that 20 candidate genes for PP that 449 
were detected using the SVR-mediated GWAS were expressed in flowers, 1 cm pod (7 DAF), 450 
pod shell (10-13 DAF), pod shell (14-17 DAF) and seeds. In PP, most of the genes detected by 451 
SVR-mediated GWAS are associated with auxin influx carrier or auxin response factors (ARFs), 452 
gibberellin synthesis, and response to brassinosteroid (Lin et al., 2020; Yin et al., 2018). Song et 453 
al. (2020) and Li et al. (2018a) also reported that some genes related to PP were associated with 454 
embryo development, stamen development, ovule development, cytokinin biosynthesis, and 455 
response gibberellin that we also identified in our study. Soybean seed yield significantly 456 
depends on seed number and seed size (Liu et al., 2010; Rotundo et al., 2009). These two factors 457 
are determined from fertilization to seed maturity. Therefore, soybean seed development can be 458 
divided into three stages or phases: pre-embryo or seed set, embryo growth or seed growth, and 459 
desiccation stages or seed maturation phases (Ruan et al., 2012; Weber et al., 2005). In 460 
Arabidopsis, a complex signaling pathway and regulatory networks, including sugar and 461 
hormonal signaling, transcription factors, and metabolic pathway, have been reported to be 462 
involved in seed development (Le et al., 2010; Orozco-Arroyo et al., 2015). Several key genes 463 
and transcription factors (e.g., LEAFY COTYLEDON 1 (LEC1), LEC2, FUSCA3 (FUS3), 464 
AGAMOUS-LIKE15 (AGL15), ABSCISIC ACID INSENSITIVE 3 (ABI3), YUCCA10 465 
(YUC10), ARFs) have been determined to control several downstream plant growth regulators 466 
pathways to the seed development (Lepiniec et al., 2018; Pelletier et al., 2017; Sun et al., 2010). 467 
Indeed, a high ratio of abscisic acid to gibberellic acid can regulate seed development 468 
(Figueiredo and Köhler, 2018; Wang et al., 2016).  The downregulation of FUS3 obtains this 469 
through repressing GA3ox1 and GA3ox2 and activating ABA biosynthesis (Weber et al., 2005). 470 
In soybean, RNA seq analysis for the seed set, embryo growth, and early maturation stages of 471 
developing seeds in two soybeans with contrasting seed size showed cell division and growth 472 
genes, hormone regulation, transcription factors, and metabolic pathway are involved in seed 473 
size and numbers (Du et al., 2017).  474 

Conclusion 475 

A better understanding of the genetic architecture of the yield component traits in soybean may 476 
enable breeders to establish more efficient selection strategies for developing high-yielding 477 
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cultivars with improved genetic gains. Major yield components such as maturity, NP, NRNP, 478 
RNP, and PP play important roles in determining the overall yield production in soybean. This 479 
study verified the importance of those traits, using correlation and distribution analyses, in 480 
determining of the total soybean seed yield. Furthermore, by testing different conventional and 481 
ML-mediated GWAS methods, this study demonstrated the potential benefit of using ML-482 
mediated methods in GWAS. SVR-mediated GWAS outperformed all the other methods tested 483 
in this study, and therefore, it is recommended as an alternative to conventional GWAS methods 484 
with a greater power for detecting genomic regions associated with complex traits such as yield 485 
and its components in soybean, and possibly other crop species. To the best of our knowledge, 486 
this study is the first attempt in which SVR was used for GWAS analyses in plants. In order to 487 
verify the causal relationship between identified QTL and the target phenotypic traits, we 488 
identified candidate genes within each QTL using gene annotation procedures and information. 489 
The results demonstrated the efficiency of SVR-mediated GWAS in detecting reliable QTL that 490 
can be used in marker-assisted selection. Nevertheless, further investigation is recommended to 491 
confirm the efficiency of SVR-mediated GWAS in detecting associated genomic regions in other 492 
plant species.  493 

Supplementary Data 494 

Table S1 The full list of detected genes using different GWAS methods for soybean seed yield, 495 
maturity, and yield component traits. 496 
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Tables 877 
 878 
Table 1. The list of detected QTL for soybean maturity using different GWAS methods in the tested soybean 
population. 

GWAS 
Method Chromosome Peak SNP position Detected QTL Environment a Reference 

MLM 2 
2212910 Sclero 3-g31 

NA (Moellers et al., 
2017) 

8233782 Seed Weight 6-g1 
NA (Sonah et al., 

2015) 

FarmCPU 
2 

2212910 Sclero 3-g31 
NA (Moellers et al., 

2017) 

8233766 Seed Weight 6-g1 
NA (Sonah et al., 

2015) 
20 37765851 WUE 2-g53 NA (Kaler et al., 2017) 

RF 

3 2978272 

Leaflet area 1-g2.1 NA (Fang et al., 2017) 
Leaflet width 1-g4.1 NA (Fang et al., 2017) 
Leaflet area 1-g2.2 NA (Fang et al., 2017) 

Leaflet width 1-g4.2 NA (Fang et al., 2017) 
Salt tolerance 1-g12 NA (Kan et al., 2015) 

16 5730281 

Plant height 6-g17 
NA (Zhang et al., 

2015b) 

Plant height 1-g17 
NA (Zhang et al., 

2015b) 
First flower 4-g63 NA (Mao et al., 2017) 

17 34757372 
SDS root retention 1-

g6 
NA (Bao et al., 2015) 

SVR 

2 

695362 
Seed linolenic 2-g1 

NA (Leamy et al., 
2017) 

Seed linolenic 2-g2 
NA (Leamy et al., 

2017) 

720134 
SDS 1-g12.1 2 (Wen et al., 2014) 
SDS 1-g12.2 2 (Wen et al., 2014) 

Ureide content 1-g2 2 (Ray et al., 2015) 
827374 SDS 1-g12.3 NA (Wen et al., 2014) 

10 
1595239 Shoot Cu 1-g8 

NA (Dhanapal et al., 
2018) 

1689395 Seed oil 5-g3 
NA (Sonah et al., 

2015) 

16 

2438652 

Reproductive period 
4-g16 

NA (Zhang et al., 
2015b) 

R8 full maturity 9-g2 
NA (Zhang et al., 

2015b) 

2460921 

Reproductive period 
2-g16 

NA (Zhang et al., 
2015b) 

R8 full maturity 2-g2 
NA (Zhang et al., 

2015b) 

19 
47513536 R8 full maturity 4-g1 

NA (Sonah et al., 
2015) 

47513572 First flower 4-g81 NA (Mao et al., 2017) 
a  Detected in separate environments (1: 2018Ridgetown, 2:2019Ridgetwon, 3:2018Palmyra, 4:2019Palmyra, NA: 
Not found in any environment). MLM: Mixed Linear Model, FarmCPU: Fixed and random model circulating 
probability unification, RF: Random Forest, SVR: Support Vector Regression 
 879 
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Table 1. The list of detected QTL for soybean yield using different GWAS methods in the tested soybean 
population. 

GWAS 
Method Chromosome Peak SNP 

position Detected QTL Environment a Reference 

MLM 5 34391386 

Ureide content 1-
g16.1 

NA (Ray et al., 
2015) 

Ureide content 1-
g16.2 

NA (Ray et al., 
2015) 

FarmCPU 5 34391386 

Ureide content 1-
g16.1 

NA (Ray et al., 
2015) 

Ureide content 1-
g16.2 

NA (Ray et al., 
2015) 

RF 7 1032587 WUE 2-g18 
NA (Kaler et 

al., 2017) 

SVR 

3 

36309302 

First flower 4-g10 
NA (Mao et 

al., 2017) 

First flower 3-g2 
NA (Hu et al., 

2014) 

Seed weight 4-g3 
NA (Hu et al., 

2014) 

Seed yield 4-g2 NA (Hu et al., 
2014) 

R8 full maturity 3-
g3 

NA (Hu et al., 
2014) 

37617293 

Plant height 3-g17 
NA (Contreras-

Soto et al., 
2017) 

Leaflet shape 1-
g1.1 

NA (Fang et 
al., 2017) 

Leaflet shape 1-
g1.2 

NA (Fang et 
al., 2017) 

Leaflet shape 1-
g1.3 

NA (Fang et 
al., 2017) 

Seed set 1-g32.1 
NA (Fang et 

al., 2017) 

Seed set 1-g32.2 
NA (Fang et 

al., 2017) 

7 
44488152 Seed yield 4-g4 

NA (Hu et al., 
2014) 

1032587 WUE 2-g18 
NA (Kaler et 

al., 2017) 

15 34958361 SCN 5-g35 
NA (Li et al., 

2016) 

19 41385139 

Seed weight 5-g20 
NA (Zhang et 

al., 2016) 

Seed weight 4-g18 
NA (Hu et al., 

2014) 

Seed yield 4-g5 NA (Hu et al., 
2014) 

Shoot Zn 1-g28.1 
NA (Dhanapal 

et al., 
2018) 

Shoot Zn 1-g28.2 
NA (Dhanapal 

et al., 
2018) 
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Shoot Zn 1-g29.1 
NA (Dhanapal 

et al., 
2018) 

Shoot Zn 1-g29.2 
NA (Dhanapal 

et al., 
2018) 

Shoot Zn 1-g29.3 
NA (Dhanapal 

et al., 
2018) 

a  Detected in separate environments (1: 2018Ridgetown, 2:2019Ridgetwon, 3:2018Palmyra, 4:2019Palmyra, 
NA: Not found in any environment). 
MLM: Mixed Linear Model, FarmCPU: Fixed and random model circulating probability unification, RF: 
Random Forest, SVR: Support Vector Regression 
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Table 2. The list of detected QTL for soybean total number of nodes per plant (NP) using different GWAS methods 
in the tested soybean population. 

GWAS 
Method 

Chromosome Peak SNP position Detected QTL Environment a Reference 

FarmCPU 19 40131952 
Pubescence density 1-g17 

NA (Chang 
and 

Hartman, 
2017) 

Seed weight 9-g5.1 
NA (Copley et 

al., 2018) 

RF 

4 1205787 Shoot Ca 1-g10 
NA (Dhanapal 

et al., 
2018) 

6 

50570624 

Seed set 1-g51.1 
NA (Fang et 

al., 2017) 

Seed set 1-g43.1 
NA (Fang et 

al., 2017) 

Seed set 1-g25.1 
NA (Fang et 

al., 2017) 

Seed set 1-g43.2 
NA (Fang et 

al., 2017) 

Seed set 1-g25.2 
NA (Fang et 

al., 2017) 

Seed set 1-g51.2 
NA (Fang et 

al., 2017) 

50570473 

Seed set 1-g43.3 
NA (Fang et 

al., 2017) 

Seed set 1-g51.3 
NA (Fang et 

al., 2017) 

Seed set 1-g25.3 NA (Fang et 
al., 2017) 

Pod number 1-g3 
NA (Fang et 

al., 2017) 

Seed palmitic 2-g2 
NA (Fang et 

al., 2017) 
Seed long-chain faty acid 

1-g22 
NA (Fang et 

al., 2017) 

SVR 6 

50570624 

Seed set 1-g51.1 
NA (Fang et 

al., 2017) 

Seed set 1-g43.1 
NA (Fang et 

al., 2017) 

Seed set 1-g25.1 
NA (Fang et 

al., 2017) 

Seed set 1-g43.2 
NA (Fang et 

al., 2017) 

Seed set 1-g25.2 
NA (Fang et 

al., 2017) 

Seed set 1-g51.2 
NA (Fang et 

al., 2017) 

50570473 

Seed set 1-g43.3 
NA (Fang et 

al., 2017) 

Seed set 1-g51.3 NA (Fang et 
al., 2017) 

Seed set 1-g25.3 
NA (Fang et 

al., 2017) 
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Pod number 1-g3 
NA (Fang et 

al., 2017) 

Seed palmitic 2-g2 
NA (Fang et 

al., 2017) 
Seed long-chain faty acid 

1-g22 
NA (Fang et 

al., 2017) 

7 

1032587 WUE 2-g18 
NA (Kaler et 

al., 2017) 

1092403 
WUE 2-g18 

NA (Kaler et 
al., 2017) 

First flower 3-g4 
NA (Fang et 

al., 2017) 

18 55645699 

Leaflet shape 1-g4.1 
NA (Fang et 

al., 2017) 

Leaflet shape 1-g4.2 
NA (Fang et 

al., 2017) 

Leaflet shape 1-g4.3 
NA (Fang et 

al., 2017) 

Seed stearic 4-g5 
NA (Li et al., 

2015) 

Node number 1-g6.1 
NA (Fang et 

al., 2017) 

Node number 1-g6.2 
NA (Fang et 

al., 2017) 

Pod number 1-g1.1 NA (Fang et 
al., 2017) 

Pod number 1-g1.2 
NA (Fang et 

al., 2017) 

Pode number 1-g1.3 
NA (Fang et 

al., 2017) 

WUE 3-g31 
NA (Kaler et 

al., 2017) 
Seed weight, SoyNAM 14-

g28 
NA (Xavier et 

al., 
2016b) 

Lodging, SoyNAM 4-g15 
NA (Cook et 

al., 2014) 

Branching 1-g1.1 
NA (Fang et 

al., 2017) 

Plant height 5-g4.2 
NA (Fang et 

al., 2017) 

Plant height 5-g4.3 NA (Fang et 
al., 2017) 

Shoot p 1-g30 
NA (Dhanapal 

et al., 
2018) 

19 47350110 Node number 1-g2.3 
NA (Fang et 

al., 2017) 
a  Detected in separate environments (1: 2018Ridgetown, 2:2019Ridgetwon, 3:2018Palmyra, 4:2019Palmyra, NA: 
Not found in any environment). MLM: Mixed Linear Model, FarmCPU: Fixed and random model circulating 
probability unification, RF: Random Forest, SVR: Support Vector Regression 
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Table 3. The list of detected QTL for soybean total number of non-reproductive nodes per plant (NRNP) using 
different GWAS methods in the tested soybean population. 
GWAS 
Method Chromosome Peak SNP 

position  Detected QTL Environment a Reference 

MLM 15 10193796 

Seed protein 6-g2 NA (Zhang et al., 2018) 

Seed Arg 1-g4 NA (Zhang et al., 2018) 

Seed coat luster 1-g1.3 NA (Fang et al., 2017) 

FarmCPU 15 10193796 

Seed protein 6-g2 NA (Zhang et al., 2018) 

Seed Arg 1-g4 NA (Zhang et al., 2018) 

Seed coat luster 1-g1.3 NA (Fang et al., 2017) 

RF 

1 54647498 First flower 4-g2 NA (Mao et al., 2017) 

7 329800 
Phytoph 2-g32 NA (Qin et al., 2017) 

Phytoph 2-g7 NA (Qin et al., 2017) 

18 12945778 SCN 4-g14 NA (Vuong et al., 2015) 

19 40218800 Seed weight 9-g5.1 
NA (Copley et al., 

2018) 

SVR 
7 1032587 2 WUE 2-g18 2 (Kaler et al., 2017) 

19 40218800 Seed weight 9-g5.1 
NA (Copley et al., 

2018) 
a Detected in separate environments (1: 2018Ridgetown, 2:2019Ridgetwon, 3:2018Palmyra, 4:2019Palmyra, NA: 
Not found in any environment). 
MLM: Mixed Linear Model, FarmCPU: Fixed and random model circulating probability unification, RF: 
Random Forest, SVR: Support Vector Regression 
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Table 4. The list of detected QTL for soybean total number of reproductive nodes per plant (RNP) using different 
GWAS methods in the tested soybean population. 
GWAS 
Method Chromosome Peak SNP position  Detected QTL Environment a Reference 

RF 
9 40285014 

Shoot Fe 1-g8.1 
NA (Dhanapal et al., 

2018) 

Shoot Fe 1-g8.2 
NA (Dhanapal et al., 

2018) 

Shoot Fe 1-g8.3 
NA (Dhanapal et al., 

2018) 

Shoot Fe 1-g9 
NA (Dhanapal et al., 

2018) 

Shoot Fe 1-g10 
NA (Dhanapal et al., 

2018) 

Shoot Fe 1-g11 
NA (Dhanapal et al., 

2018) 

Soybean mosaic virus 2-g5 
NA (Che et al., 

2017) 
15 34958361 SCN 5-g35 NA (Li et al., 2016) 

SVR 
7 1032587 WUE 2-g18 

NA (Kaler et al., 
2017) 

15 34958361 1 SCN 5-g35 1 (Li et al., 2016) 
a Detected in separate environments (1: 2018Ridgetown, 2:2019Ridgetwon, 3:2018Palmyra, 4:2019Palmyra, NA: Not 
found in any environment). 
MLM: Mixed Linear Model, FarmCPU: Fixed and random model circulating probability unification, RF: Random 
Forest, SVR: Support Vector Regression 
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Table 5. The list of detected QTL for soybean total number of pods per plant (PP) using different GWAS 
methods in the tested soybean population. 
GWAS 
Method Chromosome Peak SNP 

position Detected QTL Environment a Reference 

RF 

7 15331676 
Seed weight, 
SoyNAM 14-g11 

NA 
(Xavier et al., 
2016b) 

19 42300695 
First flower 4-g77 NA (Mao et al., 2017) 

Lodging, SoyNAM 
4-g17 

NA (Cook et al., 2014) 

SVR 

9 39366957 

Pod number 1-g4.1 NA (Fang et al., 2017) 

Pod number 1-g4.2 NA (Fang et al., 2017) 

Pod number 1-g4.3 NA (Fang et al., 2017) 

Seed thickness 2-g4 NA (Fang et al., 2017) 

9 39372117 

Seed Thr 2-g1 NA (Li et al., 2018b) 

Seed Ser 2-g1 NA (Li et al., 2018b) 

Seed Tyr 2-g2 NA (Li et al., 2018b) 

Seed Lys 2-g2 NA (Li et al., 2018b) 

Seed leu 2-g2 NA (Li et al., 2018b) 

Seed ile 2-g2 NA (Li et al., 2018b) 

Seed Ala 2-g2 NA (Li et al., 2018b) 

Seed Gly 2-g2 NA (Li et al., 2018b) 

11 5245870 
Ureide content 1-g29 NA (Ray et al., 2015) 

Pod number 1-g6 NA (Fang et al., 2017) 

18 

55645699 Leaflet shape 1-g4.1 NA (Fang et al., 2017) 

55469601 

Leaflet shape 1-g4.2 NA (Fang et al., 2017) 

Leaflet shape 1-g4.3 NA (Fang et al., 2017) 

Seed stearic 4-g5 NA (Li et al., 2015) 

Node number 1-g6.1 NA (Fang et al., 2017) 

Node number 1-g6.2 NA (Fang et al., 2017) 

Pode number 1-g1.1 NA (Fang et al., 2017) 

Pode number 1-g1.2 NA (Fang et al., 2017) 

Pode number 1-g1.3 NA (Fang et al., 2017) 

WUE 3-g31 
NA (Dhanapal et al., 

2015a) 
Seed weight, 
SoyNAM 14-g28 

NA (Xavier et al., 
2016b) 

Lodging, SoyNAM 
4-g15 

NA (Cook et al., 2014) 

Branching 1-g1.1 NA (Fang et al., 2017) 

Plant height 5-g4.2 NA (Fang et al., 2017) 

Plant height 5-g4.3 NA (Fang et al., 2017) 

Shoot p 1-g30 
NA (Dhanapal et al., 

2018) 
Seed yield, SoyNAM 
7-g19 

NA (Cook et al., 2014) 
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R8 full maturity, 
SoyNAM 13-g19 

NA (Cook et al., 2014) 

Plant height 5-g4.3 NA (Fang et al., 2017) 

19 

43077182 

Seed weight 9-g5.2 NA (Copley et al., 2018) 

Seed weight 5-g21 NA (Copley et al., 2018) 

First flower 5-g3 NA (Fang et al., 2017) 

First flower 5-g17 NA (Fang et al., 2017) 

47235604 
First flower 4-g77 NA (Mao et al., 2017) 

Seed palmitic 1-g19 NA (Priolli et al., 2015) 

47350110 

Leaf carotenoid 
content 1-g14 

NA (Dhanapal et al., 
2015b) 

Ureide content 1-
g50.3 

NA (Ray et al., 2015) 

Ureide content 1-
g50.4 

NA (Ray et al., 2015) 

47224293 Node number 1-g2.3 NA (Fang et al., 2017) 
a detected in separate environments (1: 2018Ridgetown, 2:2019Ridgetwon, 3:2018Palmyra, 4:2019Palmyra, NA: 
Not found in any environment). MLM: Mixed Linear Model, FarmCPU: Fixed and random model circulating 
probability unification, RF: Random Forest, SVR: Support Vector Regression 
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Figure legends 889 

Fig. 1 LD decay distance in the tested 227 soybean genotypes 890 

Fig. 2 The distribution of seed yield (A), maturity (B), NP (C), NRNP (D), RNP (E), and PP (F) 891 
in 227 soybean genotypes across four environments. The estimated heritability is provided for 892 
each of the six traits. RNP: Total number of reproductive nodes per plant, NRNP: The total 893 
number of non-reproductive nodes per plant, NP: The total nodes per plant, PP: The total number 894 
of pods per plant. 895 

Fig. 3 The distributions and Pearson correlations among the soybean seed yield, maturity, and 896 
yield component traits. RNP: Total number of reproductive nodes per plant, NRNP: The total 897 
number of non-reproductive nodes per plant, NP: The total nodes per plant, PP: The total number 898 
of pods per plant. The heat map scale for values is provided by colour for the panel. 899 

Fig. 4 Structure and kinship plots for the 227 soybean genotypes. The x-axis is the number of 900 
genotypes used in this GWAS panel, and the y axis is the membership of each subgroup. G1-G7 901 
stands for the subpopulation. 902 

Fig. 5 Genome-wide Manhattan plots for GWAS studies of A) maturity and B) seed yield in 903 
soybean using MLM, FarmCPU, RF, and SVR methods, from top to bottom, respectively. 904 

Fig. 6 Genome-wide Manhattan plots for GWAS studies of A) the total number of nodes (NP) 905 
and B) the total number of non-reproductive nodes (NRNP) in soybean using MLM, FarmCPU, 906 
RF, and SVR methods, from top to bottom, respectively. 907 

Fig. 7 Genome-wide Manhattan plots for GWAS studies of A) The total number of reproductive 908 
nodes (RNP) and B) the total number of pods (PP) in soybean using MLM, FarmCPU, RF, and 909 
SVR methods, from top to bottom, respectively. 910 

Fig. 8 The average effects of reference allele and alternative allele from the detected SNP’s peak 911 
for seed yield (A), maturity (B), NP (C), NRNP (D), RNP (E), and PP (F) in 227 soybean 912 
genotypes across four environments. RNP: Total number of reproductive nodes per plant, NRNP: 913 
The total number of non-reproductive nodes per plant, NP: The total nodes per plant, PP: The 914 
total number of pods per plant 915 
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Fig. 1 LD decay distance in the tested 227 soybean genotypes 
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Fig. 2 The distribution of seed yield (A), maturity (B), NP (C), NRNP (D), RNP (E), and PP (F) in 227 
soybean genotypes across four environments. The estimated heritability is provided for each of the six 
traits. RNP: Total number of reproductive nodes per plant, NRNP: The total number of non-reproductive 
nodes per plant, NP: The total nodes per plant, PP: The total number of pods per plant. 
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Fig. 3 The distributions and Pearson correlations among the soybean seed yield, maturity, and yield 
component traits. RNP: Total number of reproductive nodes per plant, NRNP: The total number of non-
reproductive nodes per plant, NP: The total nodes per plant, PP: The total number of pods per plant. The 
heat map scale for values is provided by colour for the panel. 
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Fig. 4 Structure and kinship plots for the 227 soybean genotypes. The x-axis is the number of genotypes 
used in this GWAS panel, and the y axis is the membership of each subgroup. G1-G7 stands for the 
subpopulation. 
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Fig. 5 Genome-wide Manhattan plots for GWAS studies of A) maturity and B) seed yield in soybean 
using MLM, FarmCPU, RF, and SVR methods, from top to bottom, respectively. 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.24.449776doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.24.449776


 

Fig. 6 Genome-wide Manhattan plots for GWAS studies of A) the total number of nodes (NP) and B) the 
total number of non-reproductive nodes (NRNP) in soybean using MLM, FarmCPU, RF, and SVR 
methods, from top to bottom, respectively. 
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Fig. 7 Genome-wide Manhattan plots for GWAS studies of A) The total number of reproductive nodes 
(RNP) and B) the total number of pods (PP) in soybean using MLM, FarmCPU, RF, and SVR methods, 
from top to bottom, respectively. 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.24.449776doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.24.449776


 

Fig. 8 The average effects of reference allele and alternative allele from the detected SNP’s peak for seed 
yield (A), maturity (B), NP (C), NRNP (D), RNP (E), and PP (F) in 227 soybean genotypes across four 
environments. RNP: Total number of reproductive nodes per plant, NRNP: The total number of non-
reproductive nodes per plant, NP: The total nodes per plant, PP: The total number of pods per plant 
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