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Abstract

Metric multidimensional scaling is one of the classical methods for embedding data into
low-dimensional Euclidean space. It creates the low-dimensional embedding by approximately
preserving the pairwise distances between the input points. However, current state-of-the-art
approaches only scale to a few thousand data points. For larger data sets such as those occurring
in single-cell RNA sequencing experiments, the running time becomes prohibitively large and
thus alternative methods such as PCA are widely used instead. Here, we propose a neural
network based approach for solving the metric multidimensional scaling problem that is orders
of magnitude faster than previous state-of-the-art approaches, and hence scales to data sets with
up to a few million cells. At the same time, it provides a non-linear mapping between high- and
low-dimensional space that can place previously unseen cells in the same embedding.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) experiments provide quantitative measurements for thou-
sands of genes across tens to hundreds of thousands or even millions of cells. The high-dimensionality
as well as the sheer size of scRNA-seq data sets pose particular challenges for downstream analysis
methods such as clustering and trajectory inference methods. An essential step in single-cell data
processing is the reduction of data dimensionality to remove noise in gene expression measure-
ments [27]. One of the most popular methods for dimensionality reduction of single-cell data is
principle component analysis (PCA). PCA aims to maximize the variance in the reduced space
and can be computed efficiently by a singular value decomposition. The existence of efficient
implementations [1] has contributed to its routine application to large single-cell data sets.

Metric Multidimensional Scaling (MDS), on the other hand, aims to find an embedding that
preserves pairwise distances between points (i.e. cells) which can improve the accuracy of various
types of downstream analyses of single-cell data compared to PCA [27]. Its high computational cost,
however, has hindered its wide application to single-cell data sets. In PHATE [20], for example,
metric MDS is paired with a sampling-based approach to cope with its computational complexity.

Surprisingly, no algorithm is known that can solve metric MDS efficiently with more than a
few thousand cells. Here, we provide the first such algorithm. Our contributions are two-fold:
First, we provide a two-layer neural network approach that can solve the metric MDS problem for
(single-cell) data sets with up to a few million data points (cells). This is orders of magnitude
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larger than current state-of-the-art methods can handle. Second, our approach for the first time
learns a non-linear mapping of the high-dimensional points into the low-dimensional space, which
can be used to place previously unseen cells in the same low-dimensional embedding.

1.1 Preliminaries

MDS comes in three different versions: 1) classical MDS, 2) metric MDS, and 3) non-metric MDS,
aka ordinal scaling. While we focus here on metric MDS, it is important to understand all three
methods and their differences.

Suppose we are given n data points z; € R™ that we want to embed into R¥ where k < m. Let
y; be the corresponding point of z; in the low-dimensional space R¥.

Classical MDS Classical MDS tries to map these data points into R¥ while trying to preserve
the pairwise inner products (z;, z;). Specifically, it solves the optimization problem

min Y (i 25) — (i ys)”

Y1,Y2,--,Yn ERF i

Metric MDS Metric MDS tries to preserve the pairwise distances between the points, i.e., it
solves the optimization problem

min > wi(lwi = x4l = N1y — i),
Y1,Y2;--,yn ERF I

where ||.|| denotes the Euclidean norm and w;; > 0 are some given weights.

Non-metric MDS Non-metric MDS embeds the data into low-dimensional Euclidean space by
preserving only the relative distance ordering, i.e, it solves the optimization problem

min_ > wi(f(les = al) = llyi - y51)%,

y17y27"~7ynERk7f i,j

where f is a monotonically increasing function. Note, only the ordering of the pairwise distances
is important here which should be preserved and not the actual distances.

All three formulations differ only in the objective functions that are minimized. While this
seems like a minor difference, it has a substantial impact on its computability. It can be shown
that classical MDS is equivalent to PCA when the input points are given explicitly and hence can
be solved efficiently by a singular value decomposition. Thus, it can be solved efficiently for large
data sets, having millions of cells. The computational complexity of metric MDS is fundamentally
different. It has been shown that metric MDS is NP-hard when the target dimension is one [21]
and it is believed that it is NP-hard in general. Hence, no efficient algorithm is likely to exist for
solving this problem optimally. However, even finding a local minima is very time consuming. The
most popular algorithm for solving this problem is the SMACOF algorithm by [8]. However, its
running time grows quadratically in the number of data points n. It can only be applied to solve
this problem with up to a few thousand data points.

There is one more important difference between classical MDS and metric MDS; it can be
shown that in classical MDS the optimal solution corresponds to a linear mapping of the high-
dimensional space R” into the low-dimensional Euclidean space R¥. This is not true for metric
MDS. The optimal solution for metric MDS does not correspond to a linear mapping. Asking for
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a linear mapping leads to suboptimal solutions. Having a mapping from the input space R" into
the output space R¥ is important for new, unseen data points. For instance, one can compute the
mapping on a training set and apply the same mapping to the test set as it is common practice for
other low-dimensional embedding and preprocessing methods like PCA. The SMACOF algorithm
does not provide such a mapping.

Often, the input points are not given explicitly, but instead, their pairwise distances or pairwise
scalar products are given. In this case, such a mapping cannot be provided.

1.2 Related work

Multidimensional scaling has a long history, see e.g., [13]. Classical MDS was first studied by [29]
and independently by [12]. They used an eigenvector decomposition to solve the problem. Later,
[18] defined the problem of metric MDS as an optimization problem and used a steepest descent
approach for solving it. [8] improved the running time of Kruskal’s algorithm by using an iterative
majorization approach. This algorithm is referred to as SMACOF algorithm. Surprisingly, it still
represents the state-of-the-art for solving the metric MDS problem. The non-metric MDS problem
was introduced by [18] and [14]. It is mainly used in the psychometric area.

The research on MDS can be split up into two branches; improving statistical performance
and improving speed. Here, we focus on the latter one. The books by [5], and [2] provide an
in-depth coverage on the statistical properties and applications of MDS. See also the book by [3]
for a comparison of MDS to other embedding techniques.

When the input points are given explicitly, then classical MDS can be shown to be equivalent
to PCA. Hence, computational speed is no issue in this case. When the input is instead a distance
matrix, [22] and [33] used a divide-and-conquer approach for scaling up classical MDS to larger
data sets. However, their approach only works for the classical MDS problem.

A technique called landmark MDS was introduced by [9]. The idea behind this approach is to
select only a subset of the input points, called landmarks, compute the distance matrix between
these points, and use only these points for the embedding. Hence, it can scale to larger data sets at
the expense of ignoring the majority of the input points in the embedding process. This approach
is also used in Isomap by [28]. [32] provided a similarity between kernel PCA and metric MDS.
However, they are both similar but not equivalent due to their computational complexity (P vs.
NP).

As already stated, classical MDS can be solved to optimality via a linear mapping. This is not
true for the metric MDS. [24] set the weights w;; = 1/ ||z; — ;|| in the metric MDS problem and
used a steepest descent algorithm for embedding the data. However, unlike the title suggests, it
does not provide a mapping from the input space R™ to the target space R¥.

There have also been some early attempts on solving the metric MDS problem using neural
networks. This includes works by [19], and [23]. However, their approaches scaled to very small
data sets with up to a few hundred data points only. While the neural network approach later
was used for other non-linear embedding and dimensionality reduction methods and gave rise to
autoencoders, see e.g., the seminal work by [15] they have never been used successfully for solving
reasonably-sized metric MDS problems. [31] used a neural network approach for classical MDS and
considered non-metric MDS in [30]. However, they did not consider the metric MDS problem.

2 Multidimensional scaling and linear mappings

In this section we will introduce projected metric MDS as an intermediate version of MDS that
combines the optimization objective of metric MDS with the linear mapping obtained from classical


https://doi.org/10.1101/2021.06.24.449725
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.24.449725; this version posted June 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

MDS.

When applying MDS to a given input set, it is often important to also obtain the corresponding
mapping, i.e., the mapping that maps the whole input space R™ to the output space R¥. This
is for instance necessary when MDS is used as a preprocessing step. One usually computes the
embedding on the given training data set and applies the same mapping to the test data set, i.e., to
new, unseen data points without recomputing the whole problem again. This is common practice
in preprocessing steps, like PCA and also necessary in order to not induce a shift in the distribution
of the test data. Hence, it is important to obtain such a mapping along with the actual embedding.

Let X € R™ ™ be the matrix where the ith row is the ith input point x; € R™. We define the
distance matrix Dx € R™" as (Dx);; = ||zi — xj||. Let D% be the elementwise squared distance
matrix, i.e., (D%)ij = ||z — xjHQ. Let Y and Dy be defined accordingly for the output points ;.

Classical MDS minimizes the error on the pairwise scalar products, i.e., >, ((zs, z;) — (i, y;i))2.
It has been shown that the optimal solution leads to a linear mapping which is obtained by the top-k
eigenvectors of the Gram matrix X ' X. The following computation shows that classical MDS can
be translated into an optimization problem where approximately the error on the squared distances
is minimized.

The objective function of classical MDS can be rewritten in matrix notation as

2
min HXTX _ YTYH .
Y F

It holds that X T X = —%HD%H, where H =1 — %ee—r is a centering matrix with I being the
identity matrix and e € R™ the all-ones vector.
Hence, the objective function of classical MDS can be rewritten as

1
win 7 || H(D% — DY) H||j..
Note, this is very similar, however not equivalent to
i |15 — D3

i.e., to the problem of minimizing the error on the squared distances. Compare this to the metric
MDS problem that solves

1 2
i Dx — Dy||%.
min 5 | | %

Hence, classical MDS can be seen as approximately minimizing the error of the squared distances
while metric MDS tries to minimize the error of the distances. Thus, classical MDS can be a bit
more sensitive to outliers in the data. One could then ask for an intermediate approach between
classical and metric MDS; one could try to minimize the error on the distances while asking for a
linear mapping. This gives rise to the projected metric MDS problem.

Definition 1 (projected metric MDS). Given some input data X € R™ ™, projected metric
MDS solves the following optimization problem

i Dx — Dy|]?
min  |[Dx — Dy |7

)

st. Y =XP.

Matrix P € R™*? along with the constraint forces the mapping to be linear. The following
theorem relates the optimal solution of projected metric MDS to the optimal solution of metric
MDS.


https://doi.org/10.1101/2021.06.24.449725
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.24.449725; this version posted June 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Theorem 1. Let X € R™™ be an input data matriz with centered rows, Y* € R™ ¥ the solution
of metric MDS and P* € R™*F the solution of the projected metric MDS. Then, the following
inequality holds:

|Dx — Dxp«|lr — ||[Dx — Dy+||r
| Dy« ||F

S n—T+2,

where r = rank(X).

In order to prove the theorem, we will need two technical lemmas (Lemma 1 and Lemma 2)
and Proposition 1, where we show how to compute a projection matrix P such that the projected
points are close to the given ones in a least-square sense. We show that this optimization problem
has a closed formula solution and use this result as a way to generate a feasible solution for the
projected metric MDS instance. After this we are ready to state the proof of Theorem 1..

Definition 2. We say that rows of data matric X are centered if
n
» wy=0, Vje{l,...,d}. (1)
i=1

Lemma 1. If X € R™™ is centered, then for each P € R™* matriz X P is centered.

Proof. Since X is centered, we have
17X =o,

where 1 € R" is vector of ones. From associativity of matrix multiplication we have that
0=1"X=01"X)P
= 17(XP),
which implies that X P is centered. ]
Lemma 2. Let X € R™™ ™ be a matriz with centered rows. Then
IDx |7 = 20 X[
Proof. Since

(Dx)3j = (zi — zj)" (wi — z;)
T

T T
=o; T+ x; T — 2% j

and rows of X are centered, we have

n n n n
Z Z(DX)% = Z Z(gzc;f:cZ + x;‘-Fa:j — 22T x;)

i=1 j=1 i=1 j=1
n n n n
T T
=D D wlwi+ Y wjw
i=1 j=1 i=1 j=1
n T n
-2 E xX; E Zj
i=1 j=1
= 4N F-
2n|| X ||?
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Proposition 1. Let X € R" ™ be an input data matriz, Y € R™* for some k < m, and a singular
value decomposition of X given by the following:

> o0][wve
X = ; 2
w3 2] o
where U = [Uy Ua], Uy € R™", Uy € R and V = [Vy V3, Vi € R™X", Vp € R™*(M=7) gpe
orthogonal matrices. ¥ € R™" is a diagonal matrix that contains r non-zero singular values such
that o1 > 09 > ... > o, > 0, where r is a rank of matriz X .

The solution of the following optimization problem

min [V~ X P} 3)
s given by ) 3 }
P=wx"tUly, (4)
whose objective value is ) ) )
IY = XP|E = U Y|} ()

Proof. The objective function in (3) can be rewritten as follows:

Y — XP| = |Y —USVTP|3 (6)
= |UT(Y —-UsvVTP)|%
= ||UTY — VTP, (7)

where last equality follows from unitary invariance of Frobenius norm. We introduce substitution

%)= ire ] ®
such that the objective in (7) is

- - 2

- Uty WA

_ 2 _ 1 ¥ 1
et oy [0 ],

T vty =5z, 1

a Ugy .

where UlT Y — f]Zl can be set to zero matrix when Z; is a solution of the following equation:

»Z =ULY.
Indeed, Z; = fJ_IUlT Y, while Zy can be set to 0 since it does not affect the objective value.

Substitution of Z; from (8) gives the solution (4) whose objective value is given in (5).
O

Now we are ready to state the proof of Theorem 1
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Proof of Theorem 1. In order to prove the inequality, we first bound (Dy — D 15)@2]‘-
(Lk>“lzxﬁ)%
= ((Dy)ij — (Dyp)is)?
= (Dy)}; — 2(Dy)ij(Dyp)ij + (Dx p)¥;
= 119113 — 257 9; + 195113
+ 1P a3 — 22 PPy + || PTay 3
— 2113 — 2079 + 1313 -
VIBT2il3 - 22T PPTa; + | PTa 3 (9)

Now, from Cauchy-Schwartz inequality follows that §7 7; < |57 4;| < ||7ill2]|7;]]2 which gives

1:115 = 287 95 + 155115 > 15:l13 + 17115 — 2117: 121155112
= (I7ll2 = 17;112)°, (10)
and analogously
1P )3 — 207 PP aj + | PTayll3 > (1P aill2 — | PP ajl2)*. (11)
From (9), (10), and (11) follows that
2
(DY‘“DXP%j
< gll3 — 253 95 + 19513 + |1 PP 2il3 — 22 PP

- - - . .
+ 1P a5 — 2\/(||in|2 - IijHz)?\/(HPTxillz — [1PT2]12)?
= [1ill3 — 25 G5 + 15113 + 1P 13 — 227 PP

+ 1P ;15 — 2 (lGill2 — ;12| ‘llpT%’lb — [|1P" 2|2

< 15il3 — 287 55 + 1913 + || P zill3 — 2] PP

+ 1P 25115 = 2(1ill2 — 11§5112) (1P il — | P a5]]2)

< 1ill3 = 20Fell2l P zill2 + |1 P75

+ 185115 — 2081120 P ;12 + 1PT w5115 — 23] §; — 227 PP

+2/G5ll2l P will2 + 20|l P 12

= (I7ill2 = 1P 2ll2)* + (Ijll2 — 1 PT2j]12)?

— 291§ — 22T PP,

+ 2G5l P will2 + 20|l ]| P 12 (12)

which after summing up both sides gives

n n

> > (Dy = Dypliy

i=1 j=1
n n B n n 5

<D gl = 1P 2ill2)® + > ) (ldjlla — 1P 25l2)?
i=1 j=1 i=1 j=1
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s (
7

+2<
n

+2<ZHQ¢\2> Do IP a2 | (13)
1=1

=1

NE

Il
—

T n n 5 T n 5
@ ZQ—%ZﬂQ S,
j=1 i=1 =1

J

NE

n
HPT%'H2> > gl
j=1

1

-
Il

Now, from |||z| — ||y|l| < ||z — y|| and Lemma 1 we obtain the following bound
1Dy = Dypll7

n n n n
<SS - PT35S 5 - Pyl

i=1 j=1 i=1 j=1

+ 2Vl XP|pVallY |p +2vn| XPlpv/a|lY | p
= 2n|[Y — X P} + 4nl| X Pl||[Y || p (14)

Now, from Proposition 1 we conclude that
IXPllr = [UEVIETUTY |Ip = Y F (15)
and
1Dy — Dy pliE < 20|l U5 Y[[F + 4nl|Y |17

< 20| Va|[BIIY |5 + 4n|Y I
= 2n(n — 1) |[Y || + 40|V ||% (16)

Inequality (16) and Lemma 2 imply
|Dy = Dy sl < (n—r+2)| Dy || (17)
Finally, from triangle inequality and (16) we conclude that

|IDx — Dypllr < |Dx — Dyllr + |Dy — Dy sllr
< ||Dx — Dy|lr + Vn —r +2||Dy||F

which completes the proof. O

While the theorem proves that the objective function values of projected metric MDS and metric
MDS do not differ too much, in practice they still might provide substantially different solutions.
See Figure 1 for an example. Hence, we conclude that it is really necessary to have a nonlinear
mapping between the input and the output space. This motivates the neural network approach
introduced below.
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Figure 1: We use an open box example (a) in order to illustrate the power of nonlinear mapping,
such as metric MDS (d), over the linear mapping, such as PCA (b) and projected metric MDS (c).

3 The neural network approach

Here we will describe the neural network architecture that we used as well as the algorithm for
computing the metric MDS mapping. We use a very simple fully-connected neural network with a
single hidden layer and a tanh activation function. The size of the input layer corresponds to the
dimension of the input data n, while the size of the output layer corresponds to the dimension & of
the output data. The size of the hidden layer is chosen as an estimate of the intrinsic dimension of
the input data set. In practice, we estimated the intrinsic dimension by computing a SVD of the
input data and selecting the top k singular values that retain at least 95% of the data variance.

The motivation for our simple neural network architecture comes from the fact that any feed-
forward neural network with only a single hidden layer and any infinitely differentiable sigmoidal
activation function, i.e., a function that retains the S shape can uniformly approximate any con-
tinuous function on a compact set, see, e.g., [6]. Furthermore, any mapping from the input points
to the output points can be extended to a continuous mapping from R™ to R¥, provided that the
set of input points is finite and no two input points share the same coordinates, i.e., z; # x; for
i # j. Hence, a neural network should be able to approximate that mapping arbitrarily well. Due
to the simplicity, differentiability, and the small number of parameters compared to the number of
input points and features, there is little chance of overfitting. As can be seen in the experiments,
the found mapping generalizes well on test data.

Algorithm 1 NN approach for metric MDS problem

1: procedure TRAIN(X, NN)

2 while NN is not in local optimum do

3 Partition X into set of batches B uniformly at random
4: for each batch X € B do

5: Evaluate Y = NN(X)
6

7

8

9

Compute distance matrices D ¢ and Dy

Evaluate loss function HD T = DYH;
Update weights in NN using Adam optimizer
end for
10: end while
11: end procedure

We adopt the standard batch stochastic gradient descent approach and partition the input data
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set into a set of batches. We optimize the weights in our simple neural network following the idea
of the Siamese neural network approach, see, e.g., [4]. The basic idea of this approach is that
in each learning step the neural net is shown two points, say x; and x;. The outputs are stored
for both points, say y; and y; respectively and the distance |ly; — y;|| between the output vectors
are calculated. A loss function is defined in terms of the squared difference of this distance and
the distance between the points in the input space ||z; — x|, for all pairs of input points in the
current batch. The weights of the neural network are updated using the Adam optimizer. Since
the data is shuffled after each epoch, we sample the input distance matrix uniformly at random
which provides an unbiased estimate of it. We set the batch size to 256 points which provides a
good tradeoff between memory consumption and number of iterations needed to converge. All the
steps of our simple but efficient approach are summarized in Algorithm 1.

4 Experiments

We implemented the neural network (NN) approach and compared it to other methods for solving
MDS!. Specifically, we compared it to the SMACOF algorithm which still represents the state-
of-the-art for solving the metric MDS problem. However, due to its inherent quadratic runtime
and space complexity, it is prohibitive to run it on data sets with more than a few thousand
data points. To still assess the quality of our neural network approach, we also compared it to a
random projection (RP) approach. In the random projection approach, a random Gaussian matrix
is used for projecting the points into a low-dimensional Euclidean space. The well-known Johnson-

Lindenstrauss lemma [17] states that such a random projection can embed any n-point data set into

a low-dimensional Euclidean space of dimension at most O (g%”) while incurring a multiplicative

distortion error of no more than 1 + ¢ for any small ¢ > 0 in the worst case. [7| showed that in
general this approach works surprisingly well when trying to embed a data set while preserving
inter-cluster distances. We also compared our neural network approach to PCA to demonstrate
that the preservation of distances as explicitly optimized for in mMDS cannot be obtained as a
by-product of a much simpler optimization model (here classical MDS). Finally, we also compared
it to the projected metric MDS problem that we have defined in Section 2. We solved the projected
metric MDS problem using a quasi-Newton method combined with a smoothing technique. Note
that this approach also does not scale well to large data sets.

We ran the experiments on a Ryzen 9 3900X CPU with 12 cores running at 3.8 GHz, 64
GB DDR4 RAM and a RTX 2080 graphics card using an Ubuntu 19.10. operating system. All
implementations were done in Python 3.7. We used PyTorch 1.5.1 for the neural network approach.
We used the implementation of the random projection, PCA, and SMACOF algorithm from scikit-
learn 0.22.1.

4.1 Comparison of loss and running time of metric MDS

Figure 2 shows the metric MDS loss achieved by the different methods on the USPS, MNIST,
CIFAR10, and SVHN data sets for different embedding dimension k. For each data set, we com-
puted the embedding on the train data set and then applied the mapping of the input space to the
lower-dimensional output space provided by each method (except SMACOF) to new, unseed data
points from the test data set. Since the SMACOF algorithm does not provide such a mapping we
recomputed the embedding of combined train data and test data and reported the loss of SMACOF
on the test data set in Figure 2b. On the smallest USPS data set our neural network approach

!The source code is publicly available via https://github.com/dmatijev/nnMDS.git

10


https://doi.org/10.1101/2021.06.24.449725
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.24.449725; this version posted June 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

—

loglloss)

dimension dimension

(e) SVHN train data. (f) SVHN test data. (g) MNIST train data.  (h) MNIST test data.

dimension dimension

Figure 2: The loss of the metric MDS problem for different values of the target dimension for train
and test data sets. The loss function is displayed on a logarithmic scale. Due to its quadratic
running time, SMACOF was run only on the smallest USPS data set.

LY -m- RP

(a) Glove.6B data set with 400000  (b) FastText data set with 1M  (¢) Glove.840B data set with
data points. data points. 2.1M data points.

Figure 3: Comparison of the loss function of the metric MDS problem for random projections (RP),
PCA, and our neural network (NN) approach.

is typically at least as good as the SMACOF algorithm, which we could not run on other (larger)
data sets due to its prohibitive running time. As expected, both methods yielded substantially
smaller loss across data sets than the remaining methods that do not explicitly optimize the same
objective. Note that the metric MDS loss function is plotted on a logarithmic scale.

Figure 3 shows consistent results on three word embedding data sets that represent words as
vectors that geometrically capture the semantics of the words. More precisely, the Glove data set
consists of 2 data sets: glove.6B learned word vectors on Wikipedia 2014 dump (size 400K), and
glove.840B learned word vectors on Common Crawl corpus (size 2.2.M). The FastText data set
wiki-news-300d-1M holds 1M word vectors trained on Wikipedia 2017 dump, UMBC webbase
corpus and statml.org news dataset. We had to exclude SMACOF from this comparison due to its
quadratic running time.

We also report the running time of our approach in Table 1 and compare it to the running time
of the SMACOF algorithm when embedding the different data sets into dimension k = 12. We
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observed that neither the running time of SMACOF nor of our approach depends on the dimension
k. Since the SMACOF algorithm can handle only small data sets we subsampled the MNIST data
set. We always ran our approach for 1000 epochs on all data sets. Table 1 shows that the running
time of the SMACOF algorithm grows quadratically in the number of data points. In contrast, our
approach shows an approximately linear dependence, which allows it to be applied to large data
sets where it is orders of magnitude faster than the current state-of-the-art approach.

Table 1: Running times of SMACOF and our neural network based approach on data sets of
different size. The dimension of the output space k was fixed to 12 in this experiment. Times
are presented in format hh:mm:ss. Missing values indicate that the solver did not finish within
24 hours.

Dataset size n SMACOF NN

USPS 7291 256 0:11:28 0:05:14
MNIST_ 5 5000 784 0:21:41 0:03:43
MNIST_10 10000 784 1:22:12 0:04:09
MNIST_15 15000 784 3:05:47  0:05:47
MNIST_20 20000 784 5:38:38  0:07:11
MNIST_ 25 25000 784 8:47:28  0:08:53
MNIST_ 30 30000 784 12:40:55  0:10:20

MNIST 60000 784 - 0:21:21
CIFAR10 50000 3072 - 0:27:45
SVHN 73257 3072 - 0:50:56
FastText 999994 300 - 2:52:18
Glove.6B 400000 100 - 1:02:32
Glove.840B 2196016 300 - 6:07:24

5 Metric MDS based clustering of scRNA-seq data

In this section we demonstrate the utility of metric MDS for the clustering of single-cell RNA
sequencing (scRNA-seq) data. The unsupervised clustering of scRNA-seq data allows to identify
known as well as novel cell types based on the cell’s transcriptomes. Seurat [25] is the most widely
used computational method for clustering of scRNA-seq. It is based on the Louvain clustering
algorithm and relies on a prior preprocessing of the data that includes, among others, a dimen-
sionality reduction step using principle component analysis (PCA). A major advantage of metric
MDS over PCA is its flexibility with respect to the distance metric that is used in the underlying
optimization problem. We therefore compared the standard Seurat clustering pipeline to a pipeline
in which we replaced the PCA step by our metric MDS approach but kept all other computational
steps identical. In metric MDS we experimented with 3 different distance metrics, the Euclidean,
cosine, and correlation based distance.

We compared the PCA and metric MDS based clustering approaches on all but one real data sets
that were used in [10] to benchmark clustering methods using cell phenotypes defined independently
of scRNA-seq. Following [10], we labeled cell types based on FACS sorting in the Koh data set, and
grouped cells according to genetic perturbation and growth medium in the Kumar data set. In data
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Figure 4: Comparison of metric MDS using different distance metrics and PCA in scRNA-seq
clustering on 5 real data sets.

set Zhengmix4eq (Zhengmix4uneq), the authors in [10] randomly mixed equal (unequal) proportions
of presorted B cells, naive cytotoxic T cells, CD14 monocytes, and regulatory T cells. Data set
Zhengmix8eq additionally included equal proportions of CD56 NK cells, naive T cells, memory T
cells, and CD4 T helper cells. We excluded a single data set in which ground truth labels correspond
to collection time points that all methods in [10] failed to reconstruct. In agreement with recent
clustering benchmarks [10, 11] we used the Adjusted Rand Index (ARI) [16] and Normalized Mutual
Information (NMI) [26] to quantify the similarity of inferred to ground truth clusterings.

Table 2: Average scores of ARI and NMI metrics across 5 real data sets. Clusterings are obtained
from embeddings computed by mMDS using correlation, cosine and euclidean distance.

Metrics correlation cosine euclidean Seurat (PCA)
ARI 0.9177 0.9179  0.8681 0.8180
NMI 0.9325 0.9302  0.8880 0.8757

On average, metric MDS yielded more accurate clusterings than when applying PCA, inde-
pendent of the specific distance metric used (Table 2). Clusterings obtained from embeddings
computed by metric MDS using correlation or cosine based distances were most accurate, and
achieved a substantial improvement compared to PCA on the three most difficult (with respect to
PCA performance) data sets (Figure 4). Performance metric NMI provided a consistent picture of
method performance. A t-SNE visualization of the two embeddings highlights the better separa-
tion of cell types by metric MDS compared to PCA on data set Zhengmix4eq (Figure 5), especially
between naive cytotoxic and regulatory T cells.
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Figure 5: t-SNE visualizations of the embeddings computed by PCA (left) and correlation based
metric MDS (right) on Zhengmix4eq data set.

6 Conclusion

We presented a two-layer neural network approach for solving the metric multidimensional scaling
problem. Our approach provides two advantages over previous state-of-the-art approaches; it is
orders of magnitude faster and scales to much larger data sets with up to a few million data points
and may thus represent a viable alternative to the widely used PCA in single-cell analysis. At the
same time it provides a mapping of the input space to the output space. This allows to apply the
same embedding to new, unseen data, which prevents inducing a shift in the data distribution for
test data.
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